JPH02250746A - Cooling method for ball screw - Google Patents

Cooling method for ball screw

Info

Publication number
JPH02250746A
JPH02250746A JP7288189A JP7288189A JPH02250746A JP H02250746 A JPH02250746 A JP H02250746A JP 7288189 A JP7288189 A JP 7288189A JP 7288189 A JP7288189 A JP 7288189A JP H02250746 A JPH02250746 A JP H02250746A
Authority
JP
Japan
Prior art keywords
ball screw
ball
pipe
cooling
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7288189A
Other languages
Japanese (ja)
Inventor
Yuichi Kawaguchi
川口 友一
Kenji Oshima
大嶋 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP7288189A priority Critical patent/JPH02250746A/en
Publication of JPH02250746A publication Critical patent/JPH02250746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Abstract

PURPOSE:To improve an axial feeding accuracy and to prolong the life of the bearing of a ball screw, by controlling a throttle valve so as to flow the optimum amount of a coolant corresponding to a heating amount by the value that the heating state of the ball screw is found by a temperature sensor. CONSTITUTION:Two orthogonal ball screws 1 and 3 parallel to the face of the bed whose graphic display is omitted of a machine tool are provided and rotated with their NC driving by a servomotor not shown in a figure. Ball screw nuts 2, 4 screwed with the ball screws 1, 3 have temperature sensors 5, 6 and the ball screws 1, 3 have cooling holes penetrated in the axial direction. A coolant is returned to a tank 8 via a pipe 13, variable aperture 11, pipe 15 and pipe 14, variable aperture 12 and pipe 16 by a pump 10. A control device 17 controls the contractions of the variable apertures 11, 12 by the outputs of the temperature sensors 5, 6 to circulate the optimum, amount of the coolant. Thus, the thermal displacement of the ball screw is reduced, the axial feeding accuracy is improved, the fluctuation the loads of the ball screw support bearings are reduced and the life of the bearing is prolonged.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、工作機械等に使用されるボールねじの冷却方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for cooling a ball screw used in a machine tool or the like.

従来の技術 最近の工作機械等に用いられるボールねじ、は、送り速
度の高速化と重切削化に伴って発熱量が多くなり、この
ために冷却を行っている。この冷却方法は、温度変化に
伴う粘度変化を除いて常時−定流量の温度管理された冷
却油をボールねじの冷却用穴に流通させて内側からボー
ルねじを冷却するのが一般的であった。
BACKGROUND OF THE INVENTION Ball screws used in recent machine tools and the like generate more heat due to faster feed rates and heavier cutting, and are therefore required to be cooled. This cooling method generally cools the ball screw from the inside by constantly flowing a constant flow of temperature-controlled cooling oil through the cooling hole of the ball screw, excluding changes in viscosity due to temperature changes. .

発明が解決しようとする課題 従来の技術で述べたボールねじの冷却穴に一定流量の冷
却油を流通させる方法は、発熱量及び発熱の周期等その
都度発熱状況の異なるボールねじに、固定された一定流
量の冷却油を流通させるだけでは発熱状況の変化に応じ
た最適の冷却を行うことができないという問題点を有し
ている。
Problems to be Solved by the Invention The method of circulating a constant flow of cooling oil through the cooling hole of a ball screw described in the prior art is based on the method of circulating cooling oil at a constant flow rate through the cooling hole of a ball screw fixed to a ball screw that has different heat generation conditions each time, such as the amount of heat generated and the cycle of heat generation. There is a problem in that only by circulating a constant flow of cooling oil, it is not possible to perform optimal cooling in response to changes in heat generation conditions.

本発明は、従来の技術の有するこのような問題点に鑑み
なされたものであり、その目的とするところは、ボール
ねじの発熱状況に合わせて効果的に冷却する冷却方法を
提供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to provide a cooling method that effectively cools the ball screw in accordance with the heat generation status of the ball screw. It is.

課題を解決するための手段 上記目的を達成するために本発明のボールねじの冷却方
法は、ボールねじの発熱状況を温度センサにより検知し
、咳検知した値により発熱量に応じた冷却液の最適流量
が得られるような絞り量を制、御装置により算出して可
変絞りを自動調整し、常時最適流量配分された冷却液に
よりボールね乙の冷却を行うものである。
Means for Solving the Problems In order to achieve the above object, the ball screw cooling method of the present invention detects the heat generation state of the ball screw with a temperature sensor, and uses the cough detected value to optimize the cooling fluid according to the amount of heat generated. The control device calculates the amount of throttle to obtain the flow rate, automatically adjusts the variable throttle, and constantly cools the ball with the optimally distributed cooling fluid.

作用 運転中のボールねじの発熱状況は、常時温度センサによ
って検出され、温度センサの出力は制御装置に入力され
て、ここで発熱量に応じた最適流量が得られる絞り量が
算出される。そして制御装置の出力により可変絞りをI
J 御して、発熱状況に対応した流量の冷却液によりボ
ールねじの冷却を行う。
The state of heat generated by the ball screw during operation is constantly detected by a temperature sensor, and the output of the temperature sensor is input to the control device, which calculates the amount of throttling that will provide the optimum flow rate according to the amount of heat generated. Then, the variable aperture is controlled by the output of the control device.
J to cool the ball screw with the cooling liquid at a flow rate that corresponds to the heat generation situation.

実施例 実施例について第1図を参照して説明する。工作機械の
図示しないベツド上に削設されたX軸方向の滑り案内面
に対して平行にボールねじlが回転可能に設けられてお
り、ボールねじlに螺合されるボールねしナツト2は、
ベツド上に移動可能に載置される図示しない往復台に固
着されている。
Embodiment An embodiment will be explained with reference to FIG. A ball screw l is rotatably provided parallel to a sliding guide surface in the X-axis direction cut on a bed (not shown) of a machine tool, and a ball screw nut 2 screwed onto the ball screw l is ,
It is fixed to a carriage (not shown) that is movably placed on the bed.

そしてNCII動の図示しないサーボモータによりボー
ルねじ1が回転され、往復台の移動位置決めが行われる
ようになっている。
Then, the ball screw 1 is rotated by an NCII-driven servo motor (not shown), and the movement and positioning of the carriage is performed.

更に往復台上に削設されたX軸方向のすべり案内面に対
して平行にボールねじ3が回転可能に設けられており、
ボールねじ3に螺合されるボールねじナツト4は、往復
台上に移動可能に載置される中台に固着されている。そ
してNc%l動の図示しないサーボモータによりボール
ねじ3が回転されて中台の移動位置決めが行われるよう
になっている。ボールねじ1及び3には軸方向に貫通す
る冷却穴が刻設されており、ボールねじナツト2及び4
の発熱個所に温度センサ5及び6が取付けられている。
Furthermore, a ball screw 3 is rotatably provided parallel to the sliding guide surface in the X-axis direction cut on the carriage.
A ball screw nut 4 that is screwed onto the ball screw 3 is fixed to an intermediate base that is movably placed on the carriage. The ball screw 3 is rotated by an Nc%l-driven servo motor (not shown), and the intermediate platform is moved and positioned. The ball screws 1 and 3 are provided with cooling holes passing through them in the axial direction, and the ball screw nuts 2 and 4
Temperature sensors 5 and 6 are attached to heat generating locations.

一方本機外に冷却油貯蔵タンク8が設置され、タンクの
近傍に冷却油の温度を所定温度に調節するオイルコント
ローラ9が設置されている。クーラントポンプIOはタ
ンク9又はその近傍に設けられており、ポンプの吐用口
は、管路13及び14によりボールねじ1及び3の冷却
穴の入口にそれぞれ連通され、管路13及び14の途中
に外部からの制御信号により流量調節が可能な可変絞り
11及び12が設けられている。そしてボールねじの冷
却穴の出口は、管路15及び16によりタンク8に連通
されており、冷却油の循環経路が形成されている。更に
制御装置17が設けられており、制御装置17は温度セ
ンサ5.6の出力信号により、各ボールねじl、3の発
熱量に応したそれぞれの最適流量を算出して、可変絞り
If、12に制御信号を出力するようになっている。
On the other hand, a cooling oil storage tank 8 is installed outside the machine, and an oil controller 9 for adjusting the temperature of the cooling oil to a predetermined temperature is installed near the tank. The coolant pump IO is installed in or near the tank 9, and the discharge ports of the pump are communicated with the inlets of the cooling holes of the ball screws 1 and 3 through conduits 13 and 14, respectively, and Variable throttles 11 and 12 are provided in which the flow rate can be adjusted by external control signals. The outlet of the cooling hole of the ball screw is communicated with the tank 8 through pipes 15 and 16, forming a cooling oil circulation path. Furthermore, a control device 17 is provided, and the control device 17 calculates the respective optimum flow rates according to the calorific value of each ball screw l, 3 based on the output signal of the temperature sensor 5.6, and adjusts the variable throttle If, 12. It is designed to output a control signal to.

続いて本実施例の作用について説明する。運転中のボー
ルねじl及び3の冷却穴にオイルコントローラ9により
温度管理された冷却油が、ポンプ10により管路L3及
びI4を介して供給され、冷却穴内を流れる間にボール
ねじの冷却が行われて管路15及び16を経てタンクに
戻されている。
Next, the operation of this embodiment will be explained. Cooling oil whose temperature is controlled by the oil controller 9 is supplied to the cooling holes of the ball screws l and 3 during operation via the pipes L3 and I4 by the pump 10, and the ball screws are cooled while flowing through the cooling holes. and is returned to the tank via lines 15 and 16.

運転中の各ボールねし1.3は早送りの頻度切削負荷の
変動等により発熱状況が異なり、ポルねじ1の温度変化
は温度センサ5により、またボールねじ3の温度変化は
温度センサ6により制御装置I7に入力されており、制
御装置17内ではそれぞれの入力信号により個別に最適
流量を算出して対応する可変絞り11及び12に制御信
号を出力する。そしてボールねじlの冷却穴を通る油の
流量は、管路13の途中に設けられた可変絞り11によ
って調節が行われ、ボールねじ3の冷却穴を通る油の流
量は管路14の途中に設けられた可変絞り12によって
調節が行われる。従って発熱の大きいボールねしには多
量の冷却油が、また発熱の小さいボールねしには少量の
冷却油が流れるよう流量配分される。
During operation, each ball screw 1.3 has different heat generation conditions due to changes in the frequency of rapid feed, cutting load, etc., and the temperature change of the pol screw 1 is controlled by the temperature sensor 5, and the temperature change of the ball screw 3 is controlled by the temperature sensor 6. The control device 17 calculates the optimum flow rate individually based on each input signal and outputs a control signal to the corresponding variable throttles 11 and 12. The flow rate of oil passing through the cooling hole of the ball screw l is adjusted by a variable throttle 11 provided midway through the pipe line 13, and the flow rate of oil passing through the cooling hole of the ball screw 3 is adjusted midway through the pipe line 14. Adjustment takes place by means of a variable diaphragm 12 provided. Therefore, the flow rate is distributed so that a large amount of cooling oil flows to the ball mesh that generates a large amount of heat, and a small amount of cooling oil flows to the ball mesh that generates a small amount of heat.

尚、可変絞り11.12は最高に絞り込まれた状態で、
流量をゼロにすることができる形式のものを使用すれば
、発熱のないボールねしは冷却油が流れないようにする
こともできる。
In addition, when the variable aperture 11.12 is stopped down to its maximum,
If you use a type that can reduce the flow rate to zero, you can also prevent cooling oil from flowing in a ball cage that does not generate heat.

また、温度センサは、ボールねじナツト2,4に取付け
られるものと限定する必要はなく、ボールねし支持部等
ボールねじの発熱状況を検知することのできる場所であ
ればすべて取付けることができる。
Further, the temperature sensor is not limited to being attached to the ball screw nuts 2 and 4, and can be attached to any location where the state of heat generation of the ball screw can be detected, such as the ball screw support.

発明の効果 本発明は上述のとおり構成されているので、次に記載す
る効果を奏する。
Effects of the Invention Since the present invention is configured as described above, it produces the following effects.

ボールねじの発熱状況を温度センサにより検出し、制御
装置により温度センサの値から最適流量が得られる絞り
量を算出して可変絞りを制御し、発熱状況に対応した流
量の冷却液を流して過不足のない冷却をするようにした
ので、ボールねじの熱変位を減少させることが可能とな
り、軸送り精度が向上する。また熱変位の減少によりボ
ールねじの支持軸受にかかる荷重の変動を軽減すること
ができ支持軸受寿命が延びる。
The heat generation state of the ball screw is detected by a temperature sensor, and the control device calculates the amount of throttling that will obtain the optimum flow rate from the value of the temperature sensor, controls the variable throttle, and flows the coolant at a flow rate that corresponds to the heat generation state. Since sufficient cooling is provided, it is possible to reduce thermal displacement of the ball screw and improve shaft feeding accuracy. Further, due to the reduction in thermal displacement, fluctuations in the load applied to the support bearing of the ball screw can be reduced, and the life of the support bearing can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はボールねし冷却方法の構造説明図である。 FIG. 1 is an explanatory diagram of the structure of the ball net cooling method.

Claims (1)

【特許請求の範囲】[Claims] (1)ボールねじ(1、3)の発熱状況を温度センサ(
5、6)により検知し、該検知した値により発熱量に応
じた冷却液の最適流量が得られるような絞り量を制御装
置(17)により算出して可変絞り(11、12)を自
動調整し、常時最適流量配分された冷却液によりボール
ねじの冷却を行うことを特徴とするボールねじの冷却方
法。
(1) The temperature sensor (
5, 6), and based on the detected value, the control device (17) calculates the throttle amount that will provide the optimum flow rate of the coolant according to the calorific value, and automatically adjusts the variable throttle (11, 12). A method for cooling a ball screw, characterized in that the ball screw is cooled by a cooling liquid with an optimum flow rate distributed at all times.
JP7288189A 1989-03-24 1989-03-24 Cooling method for ball screw Pending JPH02250746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7288189A JPH02250746A (en) 1989-03-24 1989-03-24 Cooling method for ball screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7288189A JPH02250746A (en) 1989-03-24 1989-03-24 Cooling method for ball screw

Publications (1)

Publication Number Publication Date
JPH02250746A true JPH02250746A (en) 1990-10-08

Family

ID=13502121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7288189A Pending JPH02250746A (en) 1989-03-24 1989-03-24 Cooling method for ball screw

Country Status (1)

Country Link
JP (1) JPH02250746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516266U (en) * 1991-07-04 1993-03-02 株式会社新潟鐵工所 Injection molding equipment
US11105403B2 (en) 2019-09-05 2021-08-31 Hiwin Technologies Corp. Ball screw

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851052A (en) * 1982-09-06 1983-03-25 Nippon Seiko Kk Control device for thermal expansion of ball screw
JPS6062438A (en) * 1983-09-12 1985-04-10 Shiyouun Kosakusho:Kk Cooling device for ball-and-screw shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851052A (en) * 1982-09-06 1983-03-25 Nippon Seiko Kk Control device for thermal expansion of ball screw
JPS6062438A (en) * 1983-09-12 1985-04-10 Shiyouun Kosakusho:Kk Cooling device for ball-and-screw shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516266U (en) * 1991-07-04 1993-03-02 株式会社新潟鐵工所 Injection molding equipment
US11105403B2 (en) 2019-09-05 2021-08-31 Hiwin Technologies Corp. Ball screw

Similar Documents

Publication Publication Date Title
JP4786960B2 (en) Machine tool temperature control method and apparatus
US5476137A (en) Ultra-precision temperature control system for machine tool and control method therefor
US3066578A (en) Temperature control of machine tool
CN101784367A (en) Mover cooling method and device for machine tool
CN111130271A (en) Automatic circulation heat dissipation type linear motor motion control platform and control method
CN103246300A (en) Layered independent multipoint temperature control device applicable to machine tool temperature field differential control
JP4264847B1 (en) Machine tool cooling system
JPH02250746A (en) Cooling method for ball screw
JP2008221361A (en) Temperature controller of machine tool
JPH0335060B2 (en)
JPH11114749A (en) Double housing machine tool
CN212572457U (en) High-precision numerical control horizontal coordinate boring servo motor temperature active control device
JP2000257800A (en) Liquid circulation device
JP2003136367A (en) Spindle cooling method, and processing device
JP2004338034A (en) Method and apparatus for cooling main spindle of machine tool, and method of balancing the main spindle
JP7187618B1 (en) Machine tool temperature controller
JPH09300173A (en) Method and system of cooling main spindle of machine tool
TW202141214A (en) Temperature control system
CN111786614A (en) Active temperature control device and method for high-precision coordinate boring servo motor
JPH0579458B2 (en)
JP2001289245A (en) Bearing device
JPH03104535A (en) Cooling device for smoothing lubrication oil
JPS6157144B2 (en)
JPH0537443U (en) Ball screw cooling system
JPS62152643A (en) Highly accurate machining device