CN111786614A - High-precision coordinate boring servo motor temperature active control device and control method - Google Patents
High-precision coordinate boring servo motor temperature active control device and control method Download PDFInfo
- Publication number
- CN111786614A CN111786614A CN202010742014.6A CN202010742014A CN111786614A CN 111786614 A CN111786614 A CN 111786614A CN 202010742014 A CN202010742014 A CN 202010742014A CN 111786614 A CN111786614 A CN 111786614A
- Authority
- CN
- China
- Prior art keywords
- temperature
- servo motor
- control
- cooling
- motor body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000001816 cooling Methods 0.000 claims abstract description 60
- 238000007664 blowing Methods 0.000 claims abstract description 17
- 238000012544 monitoring process Methods 0.000 claims abstract description 16
- 238000011161 development Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract 10
- 239000000112 cooling gas Substances 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/12—Arrangements for cooling or lubricating parts of the machine
- B23Q11/126—Arrangements for cooling or lubricating parts of the machine for cooling only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/007—Arrangements for observing, indicating or measuring on machine tools for managing machine functions not concerning the tool
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
技术领域technical field
本发明涉及高精度数控卧式坐标镗床技术领域,特别涉及高精度坐标镗伺服电机温度主动控制装置及其控制方法。The invention relates to the technical field of high-precision numerical control horizontal coordinate boring machines, in particular to a high-precision coordinate boring servo motor temperature active control device and a control method thereof.
背景技术Background technique
高精度数控卧式坐标镗床对使用环境温度、环境温度场及机床自身旋转发热部件的温度上高量及温度升高速度有着极其苛刻的要求。若环境温度、环境温度场、机床自身旋转发热部件的温度有大幅扰动或持续性变化,会极大的影响机床实际使用性能,最终影响机床综合切削精度,严重的会使得所加工的工件位置度产生偏差造成工件的报废。High-precision CNC horizontal coordinate boring machines have extremely strict requirements on the use of ambient temperature, ambient temperature field, and the high temperature and temperature rise speed of the machine tool's own rotating heating parts. If the ambient temperature, ambient temperature field, and the temperature of the rotating heating parts of the machine tool are greatly disturbed or continuously changed, it will greatly affect the actual performance of the machine tool, and ultimately affect the comprehensive cutting accuracy of the machine tool, which will seriously affect the position of the workpiece to be processed. Deviations result in the scrapping of the workpiece.
传统高精度数控卧式坐标镗床的使用环境均为恒温车间,由于对外部环境温度及温度场的严格控制,外部温度场的波动对机床的性能影响较小。同时机床本体也独立配置有多种旋转发热部件温度控制系统,如进给轴丝杠配置为中心水冷丝杠,丝杠座及轴承配置水冷装置,主轴配置有循环油冷或水冷系统,严格控制机床自身各旋转发热部件在运动过程中所产生的热量。针对各进给轴还配置有被动式温度补偿装置,用于补偿由于温度和温度场变化所引起的坐标漂移量,从而保证机床的定位与重复定位精度。但在各类温度控制中没有对进给轴及主轴的伺服电机在使用过程中产生的热量进行有效的主动控制,放任其在运行过程中产生的热量对机床性能产生的影响,这就必须对其进行有效的闭环控制减轻并最终消除影响。The traditional high-precision CNC horizontal coordinate boring machine is used in a constant temperature workshop. Due to the strict control of the external ambient temperature and temperature field, the fluctuation of the external temperature field has little effect on the performance of the machine tool. At the same time, the machine body is also independently equipped with a variety of temperature control systems for rotating heating components. For example, the feed shaft screw is equipped with a central water-cooled screw, the screw seat and bearing are equipped with a water-cooling device, and the spindle is equipped with a circulating oil-cooling or water-cooling system, which is strictly controlled. The heat generated by the rotating heating parts of the machine tool itself during the movement. A passive temperature compensation device is also configured for each feed axis to compensate for the coordinate drift caused by temperature and temperature field changes, so as to ensure the positioning and repeated positioning accuracy of the machine tool. However, in all kinds of temperature control, there is no effective active control of the heat generated by the servo motor of the feed axis and spindle during use, and the heat generated during operation is allowed to have an impact on the performance of the machine tool. It performs effective closed-loop control to mitigate and ultimately eliminate the effects.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的不足,本发明的目的在于提供高精度坐标镗伺服电机温度主动控制装置及其控制方法,将处于不同状态下的伺服电机温度按不同控制方法与环境温度进行温度融合,并加速融合伺服电机周围微观环形温度场,最终控制电机的温升量与温升速度,大幅减少因电机温升引起的机床热变形,从而保证机床的加工精度。In order to overcome the deficiencies of the above-mentioned prior art, the object of the present invention is to provide a high-precision coordinate boring servo motor temperature active control device and a control method thereof, and the temperature of the servo motor in different states is fused with the ambient temperature according to different control methods, And accelerate the fusion of the microscopic annular temperature field around the servo motor, and finally control the temperature rise and speed of the motor, greatly reducing the thermal deformation of the machine tool caused by the temperature rise of the motor, thereby ensuring the machining accuracy of the machine tool.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
高精度坐标镗伺服电机温度主动控制装置,包括伺服电机本体1,所述的伺服电机本体1外侧设置有可调节式安装支架2,所述的可调节式安装支架2上设置有控制比例阀3,控制比例阀3设置在冷却气路总出口处,控制比例阀3后部连接环形气路4,用于形成冗余式冷却管路,所述的可调节式安装支架2上设置有可调试吹气口6,方向可调试吹气口6的后端连接气体流量监测元件5,气体流量监测元件5用于检测各冷却口实际气流量,气体流量监测元件5通过管道连接至总环形气路4,冷却气流通过控制比例阀3输出至环形气路4,所述的方向可调试吹气口6对伺服电机本体1进行覆盖式冷却。The high-precision coordinate boring servo motor temperature active control device includes a
所述的可调节式安装支架2为L型,设置有四个,通过可调节的螺栓及螺帽固定安装在伺服电机本体1上。The
所述的四个L型可调节式安装支架2的拐角处分别设置四个方向可调试吹气口6。The corners of the four L-shaped
高精度数控卧式坐标镗伺服电机温度主动控制方法,包括以下步骤;A high-precision numerical control horizontal coordinate boring servo motor temperature active control method, comprising the following steps;
当机床上电时,伺服电机本体1通过电机控制电缆将伺服电机本体1的实际温度值传输至驱动模块,并将此数据存储于数控系统驱动参数R35中,二次开发系统参数连数据能块并调用PLC程序功能块通过NC驱动总线读取此数据并存储至PLC数据区内,通过布置于伺服电机本体1附近的电机室温监测传感器,将伺服电机本体1所处位置的微观温度场环境温度通过模拟量信号电缆输入至模拟量输入模块中;此时PLC程序对采集到的电机温度与室温数据进行分析判断;When the machine tool is powered on, the
若此时伺服电机本体1温度低于室温则再次判断伺服电机本体1温度是否低于室温2℃,此时若伺服电机本体1温度低于室温2℃则由PLC程序进行运算并通过控制总线控制模拟量输出模块发出与程序对应的控制电压,通过模拟量控制电缆控制控制比例阀3,使其状态为不接通或关闭,使得环形气路4无冷却气流流通,连接至安装于可调节式安装支架2上的方向可调试吹气口6无冷却气流输出;若伺服电机本体1温度低于室温但不低于室温2℃,此时由PLC程序控制通过模拟量输出模块1输出设定的最低冷却量电压值,通过模拟量控制电缆控制控制比例阀3为设定的最小冷却开启状态,并通过环形气路4连接至安装于可调节式安装支架2上的方向可调试吹气口6无冷却气流输出,进行持续预冷却,若此时伺服电机本体1温度高于室温则再次判断电机温度是否高于室温2℃,若伺服电机本体1温度不高于室温2℃则PLC程序将使用PID控制模式对控制比例阀3的输出电压进行实时调节,最终控制方向可调试吹气口6的冷却流量;若伺服电机本体1温度高于室温2℃则PLC程序将控制控制比例阀3完全开启,使用强冷却气流对电机进行强制冷却,在短时间内将电机温度下降至可控范围内。If the temperature of the
本发明的有益效果:Beneficial effects of the present invention:
伺服电机温度主动控制装置结合传统丝杆冷却、轴承冷却、被动式温度补偿共同作用,可以全方位的对高精度卧式数控坐标镗床精度进行保障。是结合了机械设计、电气控制、气动控制的系统集成技术。区别于传统放任电机温度升高再对变化量进行补偿的控制方式,伺服电机温度主动控制可以钳制电机的温升量及温升速度并事先进行对温度的预处理,同时在机床各进给轴及主轴电机安装的环境中通过冷却气流扰动加速微观温度场达到均衡,从根源上缓解电机温度升高造成的影响。The active temperature control device of the servo motor combined with the traditional screw cooling, bearing cooling and passive temperature compensation can fully guarantee the accuracy of the high-precision horizontal CNC coordinate boring machine. It is a system integration technology that combines mechanical design, electrical control, and pneumatic control. Different from the traditional control method of letting the temperature of the motor rise and then compensating for the change, the active temperature control of the servo motor can clamp the temperature rise and speed of the motor and preprocess the temperature in advance. And in the environment where the spindle motor is installed, the microscopic temperature field is accelerated to achieve equilibrium through the disturbance of cooling airflow, and the influence caused by the increase of motor temperature is alleviated from the root cause.
伺服电机温度主动控制装置已在本公司TGK46系列、THM46系列、TGK65系列等多个高精度数控卧式坐标镗系列产品中推广运用,提升了机床的使用性,取得了良好的社会和经济效益。同时这种冷却控制方式可推广运用至丝杆及轴承冷却,替代传统冷却方式。但由于伺服电机温度主动控制装置大量使用了模拟量信号需配置相当数量的模拟量输入输出模块使得制造成本过高,在使用精度不是十分苛刻的普通数控机床中可以不使用检测及控制元件,仅配置冷却装置本体,也可实现良好的电机温升钳制效果。Servo motor temperature active control device has been popularized and applied in the company's TGK46 series, THM46 series, TGK65 series and many other high-precision CNC horizontal coordinate boring series products, which has improved the usability of the machine tool and achieved good social and economic benefits. At the same time, this cooling control method can be applied to screw and bearing cooling instead of the traditional cooling method. However, because the servo motor temperature active control device uses a large number of analog signals, it needs to configure a considerable number of analog input and output modules, which makes the manufacturing cost too high. In ordinary CNC machine tools whose use accuracy is not very strict, the detection and control components can not be used. Equipped with the cooling device body, it can also achieve a good effect of clamping the temperature rise of the motor.
附图说明Description of drawings
图1为本发明整体结构示意图。FIG. 1 is a schematic diagram of the overall structure of the present invention.
图2为本发明伺服电机温度主动控制装置电气控制互联图。FIG. 2 is an interconnection diagram of the electrical control of the active temperature control device of the servo motor according to the present invention.
图3为本发明伺服电机温度主动控制装置PLC控制流程图。Fig. 3 is the PLC control flow chart of the active temperature control device of the servo motor according to the present invention.
图4为可调节式安装支架2示意图。FIG. 4 is a schematic diagram of the
图5为可调试吹气口6示意图。FIG. 5 is a schematic diagram of the adjustable
图6为气体流量监测元件5示意图。FIG. 6 is a schematic diagram of the gas flow monitoring element 5 .
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
如图1所示:包括四块组合连接的可调节式安装支架2,并用可调节的螺栓及螺帽固定安装在伺服电机本体1上,根据实际电机尺寸大小调整可调节式安装支架2的安装尺寸,以连接稳定可靠,控制比例阀3安装于冷却气路总出口处,固定于可调节式安装支架2上,其后部连接环形气路4,用于形成冗余式冷却管路,在四个L型可调节式安装支架2的拐角处分别设置四个方向可调试吹气口6,方向可调试吹气口6的后端连接气体流量监测元件5用于检测各冷却口实际气流量,气体流量监测元件5通过管道连接至总环形气路4。冷却气流通过控制比例阀3输出至环形气路4,通过气体流量监测元件5的检测反馈,最终由方向可调试吹气口6对伺服电机进行覆盖式冷却。As shown in Figure 1: It includes four
在伺服电机本体上配置可依据电机外形尺寸大小自由调节的安装支架,以适应不同数控系统所配置的任意种类伺服电机。整个支架分为四块用螺栓进行连接,根据具体不同数控系统所配置的实际电机外形尺寸,用连接螺栓进行调节,可靠的固定与伺服电机外侧。在安装支架四个顶点处配置可自由调节冷却方向的冷却输出口,用于输出冷却气流对伺服电机进行全方位覆盖式冷却。各冷却输出口间的连接采用冗余设计,形成环形管路连接,以防止单点管路堵塞后造成的不能正常吹气冷却。各冷却输出口处配置安装气体流量监测元件,用于实时监控各冷却输出口压力空气流量,以形成对气路的闭环监控。在总气路输出口处配置比例阀,由PLC程序对各状态进行状态读取后依据设定的控制模型输出相应控制信号对比例阀的开启状态进行控制。The servo motor body is equipped with a mounting bracket that can be freely adjusted according to the size of the motor to adapt to any type of servo motor configured by different numerical control systems. The whole bracket is divided into four parts and connected with bolts. According to the actual size of the motor configured by different CNC systems, it is adjusted with connecting bolts, which can be reliably fixed to the outside of the servo motor. The four vertices of the mounting bracket are equipped with cooling output ports that can freely adjust the cooling direction, which are used to output the cooling airflow for all-round coverage cooling of the servo motor. The connection between each cooling outlet adopts a redundant design to form a ring-shaped pipeline connection to prevent the normal blowing and cooling caused by the blockage of the single-point pipeline. A gas flow monitoring element is installed at each cooling outlet to monitor the pressure air flow of each cooling outlet in real time to form a closed-loop monitoring of the gas circuit. The proportional valve is arranged at the output port of the total gas path. The PLC program reads the state of each state and outputs the corresponding control signal according to the set control model to control the opening state of the proportional valve.
如图2所示:一套伺服电机温度主动控制装置配置有一件模拟量温度传感器、四件模拟量气体流量传感器、一件模拟量控制比例阀,机床所有伺服电机均配置一套电机温度主动控制装置将会大量使用到模拟量输入输出模块。将单一装置上配置的四件模拟量气体流量传感器使用屏蔽电缆连接至一块模拟量输入模块中;将所有装置配置的总共六件用于检测室温的模拟量温度传感器使用屏蔽电缆分别连接至两块模拟量输入模块;将所有装置配置的总共六件用于控制冷却流量的模拟量控制比例阀使用屏蔽电缆分别连接至两块模拟量输出模块;这样可大幅节省模块的使用。As shown in Figure 2: a set of servo motor temperature active control device is equipped with one analog temperature sensor, four analog gas flow sensors, and one analog control proportional valve. All servo motors of the machine tool are equipped with a set of motor temperature active control The device will use a lot of analog input and output modules. Connect four analog gas flow sensors configured on a single device to one analog input module using shielded cables; connect a total of six analog temperature sensors configured on all devices to detect room temperature to two using shielded cables Analog input modules; connect a total of six analog control proportional valves for controlling cooling flow in all unit configurations to two analog output modules using shielded cables; this can significantly save the use of modules.
由NC驱动总线联接至各轴驱动模块,再由电机控制电缆及反馈电缆联接至各进给轴及主轴伺服电机,在PLC程序控制中读取借用数控系统中由驱动器从伺服电机内部温度传感器采集到的温度信号,不再进行电机温度传感器布置。It is connected to each axis drive module by the NC drive bus, and then connected to each feed axis and spindle servo motor by the motor control cable and feedback cable. It is read in the PLC program control and borrowed from the numerical control system. The driver collects data from the internal temperature sensor of the servo motor. The received temperature signal is no longer arranged for the motor temperature sensor.
如图3所示:使用PLC程序对伺服电机温度主动控制装置进行控制可精准控制伺服电机温度升高量及升高速度,有效缓解因伺服电机运行产生的热量对机床产生的影响。将伺服电机温度主动控制装置PLC控制算法分为4种模式进行讨论:As shown in Figure 3: Using the PLC program to control the active temperature control device of the servo motor can precisely control the temperature rise and the speed of the servo motor, and effectively alleviate the influence of the heat generated by the operation of the servo motor on the machine tool. The PLC control algorithm of the servo motor temperature active control device is divided into 4 modes for discussion:
模式1:当电机温度低于室温,温差大于等于2℃时,比例阀关闭。Mode 1: When the motor temperature is lower than room temperature and the temperature difference is greater than or equal to 2°C, the proportional valve is closed.
模式2:当电机温度低于室温,温差小于2℃时,比例阀按设定最小冷却量开启。Mode 2: When the temperature of the motor is lower than room temperature and the temperature difference is less than 2°C, the proportional valve opens according to the set minimum cooling amount.
模式3:当电机温度高于室温,温差小于2℃时,比例阀按PID控制模式实时控制。Mode 3: When the motor temperature is higher than room temperature and the temperature difference is less than 2℃, the proportional valve is controlled in real time according to the PID control mode.
模式4:当电机温度高于室温,温差大于2℃时,比例阀完全打开,开启强冷模式。Mode 4: When the motor temperature is higher than room temperature and the temperature difference is greater than 2°C, the proportional valve is fully opened, and the forced cooling mode is turned on.
机床在正常冷态状态下开始运行时,首先读取伺服电机内部温度和实际机床工况环境温度并将两温度值进行比较,判断当前电机温度是否低于室温;此时因前期机床处于断电停机状态,检测出的电机温度与室温相同,在无外部冷却状态下不会低于室温;此时比PLC程序按设定的最低冷却流量输出比例阀控制信号,对伺服电机进行温度升高钳制,提前对电机温升进行预防控制。若此时机床任然处于通电静止状态,任何进给轴及主轴都没有进行移动,则电机温度不会进一步升高,反而电机温度会随着冷却的运行低于室温,当PLC检测到电机温度低于室温2℃时则关闭比例阀输出切断冷却,因为电机温度低于室温过多也会影响机床本体性能。When the machine tool starts to run in a normal cold state, it first reads the internal temperature of the servo motor and the ambient temperature of the actual machine tool, and compares the two temperature values to determine whether the current motor temperature is lower than the room temperature; at this time, the machine tool was powered off earlier. In the shutdown state, the detected motor temperature is the same as the room temperature, and will not be lower than the room temperature without external cooling; at this time, the PLC program outputs the proportional valve control signal according to the set minimum cooling flow to clamp the temperature rise of the servo motor. , and prevent and control the temperature rise of the motor in advance. If the machine tool is still energized and static at this time, and any feed axis and spindle do not move, the motor temperature will not increase further, but the motor temperature will be lower than room temperature with the cooling operation. When the PLC detects the motor temperature When the temperature is 2°C lower than the room temperature, the proportional valve output is closed and the cooling is cut off, because the motor temperature is too much lower than the room temperature, which will also affect the performance of the machine tool.
若机床启动后并不是一直处于静止状态而是进行了加工切削运动,电机温度有所升高但未超过室温2℃时PLC程序在OB35组织块中使用FB58“TCONT_CP”功能块,控制连续信号的温度处理过程,将FB58功能块GAIN设定为负值进行纯粹的冷却操作,同时启用PID运算依据实际电机温度与室温作为输入变量控制比例阀的开启状态位置进行精确控制。若此时检测到电机温升过大,电机温度超过了室温2℃,则关闭PID调节功能,并将比例阀控制量设定为最大值,完全开启冷却对电机进行强冷,在短时间内控制电机温升,使电机温度回归至受控范围。这样在不同工况下采取不同的控制模式才能使得伺服电机的工况温度保持在一定范围内,从而缓解因电机温升所引起的机床自身局部温度场持续变化,同时由于冷却气流的作用使得机床自身局部温度场达到快速均衡的效果保证机床性能一致性。If the machine tool is not in a static state but performs machining and cutting motion after starting, and the motor temperature rises but does not exceed the room temperature by 2 °C, the PLC program uses the FB58 "TCONT_CP" function block in the OB35 organization block to control the continuous signal. In the temperature processing process, the FB58 function block GAIN is set to a negative value for pure cooling operation, and PID operation is enabled at the same time to control the opening state position of the proportional valve according to the actual motor temperature and room temperature as input variables for precise control. If it is detected that the motor temperature rise is too large and the motor temperature exceeds the room temperature by 2 °C, the PID adjustment function will be turned off, and the proportional valve control value will be set to the maximum value, and the cooling will be fully turned on to force the motor. Control the temperature rise of the motor to return the motor temperature to the controlled range. In this way, by adopting different control modes under different working conditions, the working condition temperature of the servo motor can be kept within a certain range, so as to alleviate the continuous change of the local temperature field of the machine tool itself caused by the temperature rise of the motor. Its local temperature field achieves a rapid equilibrium effect to ensure the consistency of machine tool performance.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010742014.6A CN111786614A (en) | 2020-07-22 | 2020-07-22 | High-precision coordinate boring servo motor temperature active control device and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010742014.6A CN111786614A (en) | 2020-07-22 | 2020-07-22 | High-precision coordinate boring servo motor temperature active control device and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111786614A true CN111786614A (en) | 2020-10-16 |
Family
ID=72766492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010742014.6A Pending CN111786614A (en) | 2020-07-22 | 2020-07-22 | High-precision coordinate boring servo motor temperature active control device and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111786614A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114161225A (en) * | 2021-12-10 | 2022-03-11 | 上海诺倬力机电科技有限公司 | Five first intelligent feedback devices and machine tool |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202150764U (en) * | 2011-07-09 | 2012-02-22 | 内蒙古鹿王羊绒有限公司 | Motor radiator |
CN105917179A (en) * | 2013-10-09 | 2016-08-31 | 江森自控科技公司 | Motor housing temperature control system |
CN107160237A (en) * | 2017-07-14 | 2017-09-15 | 西安交通大学 | A kind of real-time cooling system of the electro spindle of flow automatic regulation and control method |
CN110601442A (en) * | 2019-09-09 | 2019-12-20 | 珠海格力电器股份有限公司 | Motor cooling assembly, control method, control device and electrical equipment |
CN212572457U (en) * | 2020-07-22 | 2021-02-19 | 沈机集团昆明机床股份有限公司 | High-precision numerical control horizontal coordinate boring servo motor temperature active control device |
-
2020
- 2020-07-22 CN CN202010742014.6A patent/CN111786614A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202150764U (en) * | 2011-07-09 | 2012-02-22 | 内蒙古鹿王羊绒有限公司 | Motor radiator |
CN105917179A (en) * | 2013-10-09 | 2016-08-31 | 江森自控科技公司 | Motor housing temperature control system |
CN107160237A (en) * | 2017-07-14 | 2017-09-15 | 西安交通大学 | A kind of real-time cooling system of the electro spindle of flow automatic regulation and control method |
CN110601442A (en) * | 2019-09-09 | 2019-12-20 | 珠海格力电器股份有限公司 | Motor cooling assembly, control method, control device and electrical equipment |
CN212572457U (en) * | 2020-07-22 | 2021-02-19 | 沈机集团昆明机床股份有限公司 | High-precision numerical control horizontal coordinate boring servo motor temperature active control device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114161225A (en) * | 2021-12-10 | 2022-03-11 | 上海诺倬力机电科技有限公司 | Five first intelligent feedback devices and machine tool |
CN114161225B (en) * | 2021-12-10 | 2024-04-26 | 上海诺倬力机电科技有限公司 | Five spindle nose intelligent feedback devices and machine tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN212572457U (en) | High-precision numerical control horizontal coordinate boring servo motor temperature active control device | |
CN111273605B (en) | CNC Machine Tool Intelligent Electric Spindle System | |
CN111786614A (en) | High-precision coordinate boring servo motor temperature active control device and control method | |
TWI453557B (en) | Tooling machine intelligent adaptive load cutting control method and system | |
CN107608284B (en) | Metal additive manufacturing system and its online real-time tracking and monitoring system | |
CN112147507A (en) | Motor brake state detection method and system based on closed-loop control | |
JP4025999B2 (en) | Automatic machine control device | |
CN113515088A (en) | A method for optimizing workpiece machining by using high temperature infrared thermal imaging | |
CN209380018U (en) | A kind of 360 degree of Float principal axis deburring machines of air-cylinder type adjusting torque | |
CN210716977U (en) | Multi-branch circulating water reliability improving system | |
CN113478496A (en) | Lathe and robot integrated application system | |
CN218938231U (en) | A portable VOC monitoring devices for environmental monitoring | |
CN204155114U (en) | Small-sized deep hole drilling machine digital control system | |
CN215946756U (en) | Hydrogen purification control system based on automation technology | |
CN113325803A (en) | Device for realizing optimized processing of workpiece by utilizing high-temperature infrared thermal imaging | |
CN215748132U (en) | Aviation part machining center provided with dual temperature feedback control systems | |
CN105538320A (en) | Robot milling system | |
CN220958824U (en) | Production workshop air pipe air quantity regulation and control system | |
CN116241343B (en) | System for optimizing operation control and adjusting security of steam turbine | |
CN105446386A (en) | Temperature control device applicable to differentiated control of temperature field of machine tool | |
CN221728178U (en) | A high temperature intelligent motor controller with fault protection function | |
CN211900704U (en) | Steam turbine signal monitoring system | |
CN216759188U (en) | Thermal elongation compensation structure for machine tool lead screw | |
CN221270120U (en) | Automatic adjust circle and weld area size mechanism | |
CN219085312U (en) | Two-stage expander regulation control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: No.23, Ciba Road, Panlong District, Kunming, Yunnan 650203 Applicant after: General technology Group Kunming Machine Tool Co.,Ltd. Address before: No.23, Ciba Road, Panlong District, Kunming, Yunnan 650203 Applicant before: SHENJI GROUP KUNMING MACHINE TOOL Co.,Ltd. |