JPH0463660A - Main spindle temperature control method for machine tool and device - Google Patents

Main spindle temperature control method for machine tool and device

Info

Publication number
JPH0463660A
JPH0463660A JP17022090A JP17022090A JPH0463660A JP H0463660 A JPH0463660 A JP H0463660A JP 17022090 A JP17022090 A JP 17022090A JP 17022090 A JP17022090 A JP 17022090A JP H0463660 A JPH0463660 A JP H0463660A
Authority
JP
Japan
Prior art keywords
spindle
temperature
control valve
cooling capacity
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17022090A
Other languages
Japanese (ja)
Inventor
Keizo Uchiumi
内海 敬三
Hiroyuki Fujita
藤田 啓之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP17022090A priority Critical patent/JPH0463660A/en
Publication of JPH0463660A publication Critical patent/JPH0463660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PURPOSE:To perform the delicate control of the main spindle temperature by changing the reference opening of a proportional control valve based on memory to change the basic cooling capacity of a liquid temperature regulator so that the cooling capacity compensating the estimated heat generation quantity by the new rotating speed is obtained when the rotating speed of a main spindle is changed. CONSTITUTION:The relation between the rotating speed of a main spindle and the cooling capacity required to compensate the heat corresponding to it and the relation between the opening of a proportional control valve 11 and a liquid temperature regulator A are stored in a memory 26 in advance. The reference opening of the proportional control valve 11 is changed by the first control means 27 based on memory to change the basic cooling capacity of the liquid temperature regulator A so that the cooling capacity compensating the estimated heat generation quantity by the new rotating speed is obtained when the rotating speed of the main spindle is changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、運転中の工作機械の主軸の発熱を循環する冷
却液によって吸収し、主軸の温度を目標値と一致するよ
うに制御する方法とこれを実現するための装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for absorbing heat generated in the spindle of a machine tool during operation by a circulating coolant and controlling the temperature of the spindle to match a target value. and a device for realizing this.

〔従来の技術〕[Conventional technology]

一般に、工作機械は主軸の回転速度やワークの切削抵抗
等の加工条件に応じて発熱し、主軸頭とこれを支持して
いる機台部との温度に差を生じる。
Generally, machine tools generate heat depending on machining conditions such as the rotational speed of the spindle and the cutting resistance of the workpiece, resulting in a temperature difference between the spindle head and the machine base that supports it.

これによって工作機械の各部に熱歪みを生じ、加工精度
の低下を招(ので、これを防止するために主軸頭に冷却
液を循環させて発熱を吸収し、主軸温度と機台部の温度
との差を常に一定値に維持するようにフィードバック制
御する冷却システムが設けられている。
This causes thermal distortion in various parts of the machine tool, leading to a decrease in machining accuracy (therefore, to prevent this, a coolant is circulated around the spindle head to absorb the heat generation, and the temperature of the spindle and the machine base are adjusted. A cooling system is provided that performs feedback control to maintain the difference between the two at a constant value.

従来の主軸温度の制御方式は、例えば特公昭48379
7号公報に開示されているように、主軸の予想最大発熱
量を充分に冷却し得る能力を有する冷却機を具え、主軸
温度と基準温度(大気温度又は機台温度)との差が所定
値を越えて上昇した場合には、冷却機を作動させて冷却
液を冷却し、低温となった冷却液を循環させて主軸温度
を低下させ、これが所定の値にまで低下すると冷却機の
作動を停止するように構成されている。又、この系では
冷却液の温度を上昇させる必要がある場合に具えてヒー
ターも設けられている。
The conventional spindle temperature control method is, for example, Japanese Patent Publication No. 48379.
As disclosed in Publication No. 7, it is equipped with a cooler capable of sufficiently cooling the expected maximum heat generation amount of the spindle, and the difference between the spindle temperature and the reference temperature (atmospheric temperature or machine stand temperature) is a predetermined value. If the temperature rises above the specified value, the cooler is operated to cool the coolant, the cooled coolant is circulated to lower the main shaft temperature, and when this drops to a predetermined value, the cooler is stopped. Configured to stop. This system also includes a heater in case it is necessary to raise the temperature of the coolant.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この方式においては、大量の冷却液を栄、速に
冷却/加熱する必要があるため、ヒーター並びに冷却機
甚大容量のものとならざるを得ない。
However, in this method, it is necessary to quickly cool/heat a large amount of cooling liquid, so the heater and cooling machine must have extremely large capacities.

従って、これらのヒーター並びに冷却機がオン・オフ作
動するとかなりのヒートショックが工作機械に加わり、
かえって加工精度に悪影響を及ぼしている。
Therefore, when these heaters and coolers turn on and off, a considerable heat shock is applied to the machine tool.
On the contrary, it has a negative effect on machining accuracy.

主軸の発熱量はその回転速度と正の相関を有することは
周知である。例えば、第7図に示すように、主軸を支持
するベアリングの発熱量は、主軸回転速度のほぼ二乗に
比例して増大する。このため、主軸回転速度が高速域か
ら低速域まで広い範囲にわたって変化する加ニブログラ
ムに従って作業が行われる工作機械の場合、前述の系に
おいては、冷却機やヒーターは主軸の最高回転時の発熱
量に対応する非常に大規模なものとなり、オン・オフ時
のヒートショックは益々増大する傾向にある。
It is well known that the amount of heat generated by the spindle has a positive correlation with its rotation speed. For example, as shown in FIG. 7, the amount of heat generated by a bearing that supports the main shaft increases approximately in proportion to the square of the main shaft rotational speed. For this reason, in the case of machine tools where work is performed according to a machine program in which the spindle rotational speed varies over a wide range from high to low speeds, in the system described above, the cooler and heater are designed to reduce the amount of heat generated at the maximum rotation of the spindle. This has resulted in a very large scale, and the heat shock during on/off times tends to increase more and more.

本発明は、このような従来技術の問題点を解決し、低速
域から高速域まで広い範囲にわたる主軸回転速度に対応
可能で、しかも機械に与えるヒートショックの少ない主
軸温度制御方法並びにこれを実現するための装置を提供
することを目的とする。
The present invention solves the problems of the conventional technology, and provides a spindle temperature control method that can handle a wide range of spindle rotational speeds from low to high speeds, and that causes less heat shock to the machine, and also realizes the same. The purpose is to provide a device for

〔課題を解決するための手段〕[Means to solve the problem]

この目的は、工作機械の主軸装置に冷却液を循環させる
循環回路の途中に、比例制御弁を通じて冷媒ガスの流量
を調節することにより前記冷却液の液温を調節可能な液
温調節機を設け、検出された前記主軸の主軸温度に基づ
いて前記比例制御弁の開度を調節するフィードバック制
御1;よ、って、前記主軸温度を目標値に維持するよう
にした工作機械の主軸温度制御方法イあ、て、前記主軸
回転速度とこれに対応する発熱を補償するのに必要な冷
却容量との関係並びに前記比例制御弁の開度と前記液温
調節機の冷却容量との関係を予め記憶しておき、主軸の
回転速度が変化した時点で、新たな回転速度による予想
発生熱量を補償する冷却容量となるように前記記憶に基
づいて前記比例制御弁の基準開度を変更して、前記液温
調節機の基本冷却容量を、変更することを特徴とする工
作機械の主軸温度制御方法によって達成される。
The purpose of this is to install a liquid temperature regulator that can adjust the temperature of the coolant by adjusting the flow rate of the coolant gas through a proportional control valve in the middle of the circulation circuit that circulates the coolant to the spindle device of the machine tool. , Feedback control 1 for adjusting the opening degree of the proportional control valve based on the detected spindle temperature of the spindle; Ah, the relationship between the spindle rotational speed and the cooling capacity required to compensate for the corresponding heat generation, as well as the relationship between the opening degree of the proportional control valve and the cooling capacity of the liquid temperature controller, are stored in advance. Then, when the rotational speed of the main shaft changes, the reference opening degree of the proportional control valve is changed based on the memory so that the cooling capacity compensates for the expected amount of heat generated due to the new rotational speed. This is achieved by a method for controlling the main shaft temperature of a machine tool, which is characterized by changing the basic cooling capacity of a liquid temperature controller.

又、この方法を実行するための装置として、工作機械の
主軸装置に冷却液を循環させ、前記主軸装置の主軸温度
を目標値に維持するようにした工作機械の主軸温度制御
装置において、前記冷却液の循環路の途中に設けられた
開度の調節によって冷媒ガスの流量を制御可能な比例制
御弁を具えた液温調節機と、主軸の回転速度とこれに対
応する発熱を補償するのに必要な冷却容量との関係並び
に前記比例制御弁の開度と前記液温調節機の冷却容量と
の関係を予め記憶する記憶手段と、主軸回転速度が変化
した際に、前記記憶手段に記憶されている関係に基づい
て、新たな主軸回転速度に対応する冷却容量が得られる
ように前記液温調節機の比例制御弁の基準開度を調節す
る第1制御手段と、主軸の温度を検出する温度検出手段
と、該温度検出手段によって検出された主軸温度が前記
目標値と一致するように前記液温調節機を作動させる第
2制御手段とを具えたことを特徴とする工作機械の主軸
温度制御装置も提供される。
Further, as a device for carrying out this method, there is provided a spindle temperature control device for a machine tool which circulates a cooling fluid through a spindle device of a machine tool to maintain the spindle temperature of the spindle device at a target value. A liquid temperature regulator equipped with a proportional control valve that can control the flow rate of refrigerant gas by adjusting the opening degree provided in the middle of the liquid circulation path, and a liquid temperature controller that compensates for the rotational speed of the main shaft and the corresponding heat generation. storage means for storing in advance the relationship between the required cooling capacity and the relationship between the opening degree of the proportional control valve and the cooling capacity of the liquid temperature controller; a first control means for adjusting a reference opening degree of a proportional control valve of the liquid temperature regulator so as to obtain a cooling capacity corresponding to a new spindle rotational speed based on the relationship between the first and second spindles; Spindle temperature of a machine tool, characterized in that it comprises a temperature detection means, and a second control means for operating the liquid temperature regulator so that the spindle temperature detected by the temperature detection means coincides with the target value. A control device is also provided.

〔作 用] 工作機械が一定の主軸回転速度で運転されている間は、
検出手段によって検出された主軸温度に基づいて、これ
が目標値に一致するように液温調節機の比例制御弁の開
度が第2制御手段からの指令によって調節されるフィー
ドバック制御が行われる。加ニブログラムによって主軸
の回転速度が変更されると、このフィードバック制御と
は無関係に、前記記憶手段に記憶されている主軸回転速
度とこれに対応する必要冷却容量との関係並びに比例制
御弁の開度と冷却容量との関係に基づいて、前記第1制
御手段は直ちに比例制御弁に指令を発してその基準開度
を変更し、液温調節機の基本冷却容量を新たな主軸回転
速度による予想発熱量に対応可能な値に修正する。そし
て、再び主軸回転速度が変更されるまで、この基準開度
を中心とする比例制御弁の開度の調節によるフィードバ
ック制御が行われる。
[Function] While the machine tool is operated at a constant spindle speed,
Based on the main shaft temperature detected by the detection means, feedback control is performed in which the opening degree of the proportional control valve of the liquid temperature regulator is adjusted by a command from the second control means so that the main shaft temperature matches the target value. When the rotational speed of the main shaft is changed by the rotation program, the relationship between the rotational speed of the main shaft and the corresponding required cooling capacity and the opening degree of the proportional control valve stored in the storage means are changed regardless of this feedback control. Based on the relationship between and the cooling capacity, the first control means immediately issues a command to the proportional control valve to change its standard opening, and adjusts the basic cooling capacity of the liquid temperature controller to the expected heat generation due to the new spindle rotation speed. Correct the value to accommodate the amount. Then, feedback control is performed by adjusting the opening degree of the proportional control valve around this reference opening degree until the main shaft rotational speed is changed again.

本発明によれば、主軸回転速度の変更に即応して比例制
御弁の基準開度を変更し、液温調節機の基本冷却容量を
新たな主軸回転速度による発熱量に対応するように調整
するので、従来のフィードバック制御のみによる方式に
比して、制御対象である主軸温度のオーバーシュートや
アンダーシュートが少ない、精度のよい制御が可能にな
る。
According to the present invention, the standard opening degree of the proportional control valve is changed in immediate response to a change in the spindle rotation speed, and the basic cooling capacity of the liquid temperature controller is adjusted to correspond to the amount of heat generated by the new spindle rotation speed. Therefore, compared to the conventional method using only feedback control, it is possible to perform highly accurate control with less overshoot and undershoot of the spindle temperature, which is the controlled object.

以下、図面に示す好適実施例に基づいて、本発明を更に
詳細に説明する。
Hereinafter, the present invention will be explained in more detail based on preferred embodiments shown in the drawings.

〔実施例〕〔Example〕

第1図は、本発明にかかる工作機械の主軸温度制御の原
理を示す模式図である。
FIG. 1 is a schematic diagram showing the principle of spindle temperature control of a machine tool according to the present invention.

工作機械の主軸装置1には、回転時の発熱を冷却するた
めに、その軸受2の領域に対して循環路3を通じてタン
ク4内の冷却液がポンプ5によって供給されている。
In the spindle device 1 of the machine tool, a pump 5 supplies cooling fluid in a tank 4 to the region of the bearing 2 through a circulation path 3 in order to cool down heat generated during rotation.

この循環路3の途中には液温調節機Aが配置されている
。この液温調節機Aは、冷凍圧縮機9によって冷却され
た冷媒ガスを、冷媒ガス循環路IOを通じて前記熱交換
機8に供給し、ここを通る循環路3内の冷却液を冷却す
る機能を有する。この液温m節機Aの冷却容量は、冷媒
ガス循環路10の途中に設けられている比例制御弁11
の開度を調節することによって変更可能となっている。
A liquid temperature regulator A is disposed in the middle of this circulation path 3. This liquid temperature regulator A has a function of supplying the refrigerant gas cooled by the refrigeration compressor 9 to the heat exchanger 8 through the refrigerant gas circulation path IO, and cooling the coolant in the circulation path 3 passing therethrough. . The cooling capacity of this liquid temperature moderator A is determined by the proportional control valve 11 provided in the middle of the refrigerant gas circulation path 10.
It can be changed by adjusting the opening degree.

これについて、第2図に基づいて更に詳しく説明すると
、この比例制御弁11は、冷媒ガスの循環路10にそれ
ぞれ接続された入口12と出口13を有するバルブ本体
14を有する。バルブ本体14内には入口12側からハ
ウジング15が入り込み、該ハウジング15の側壁を上
下に貫通して流量制御開口16が設けられている。この
構成によって、循環路10を流れる冷媒ガスは入口12
からバルブ本体14内に導入され、流量制御開口16を
経て出口13から排出される。
To explain this in more detail with reference to FIG. 2, the proportional control valve 11 has a valve body 14 having an inlet 12 and an outlet 13, each connected to a refrigerant gas circulation path 10. A housing 15 enters into the valve body 14 from the inlet 12 side, and a flow control opening 16 is provided vertically penetrating the side wall of the housing 15. With this configuration, the refrigerant gas flowing through the circulation path 10 is
is introduced into the valve body 14 through the flow control opening 16 and discharged from the outlet 13.

前記流量制御開口16には制御ロッド17が垂直方向に
可動に貫通し、その上下の位置によって流量制御開口1
6を通過する冷媒ガスの流量を制御するように構成され
ている。
A control rod 17 movably passes through the flow rate control opening 16 in the vertical direction, and the flow rate control opening 1 is controlled depending on the vertical position of the control rod 17.
6 is configured to control the flow rate of refrigerant gas passing through the refrigerant gas.

この制御ロッド17の上方のバルブケーシング内には中
心に垂直貫通孔20を有する電磁石18が設置され、そ
の貫通孔20内にはピストンロッド19が上下動可能に
設置されている。そしてピストンロッド19の下端は前
記制御ローラド17の上端に固定されている。制御ロッ
ド17はスプリング21によって上方に付勢されており
、電磁石18による反発力が作用していない場合には最
高位置を占めて、その弁体22は流量制御開口16から
遠(離れるので、該制御開口16は最大の開度となって
いる。
An electromagnet 18 having a vertical through hole 20 at its center is installed in the valve casing above the control rod 17, and a piston rod 19 is installed in the through hole 20 so as to be movable up and down. The lower end of the piston rod 19 is fixed to the upper end of the control roller 17. The control rod 17 is urged upward by a spring 21, and when the repulsion force by the electromagnet 18 is not acting, it occupies the highest position, and its valve body 22 is far away from the flow control opening 16, so that it is in the highest position. The control opening 16 is at its maximum opening.

tfa石18のコイルにケーブル35から電力が供給さ
れると反発力が発生し、ピストンロッド19はスプリン
グ21の上方付勢力に打ち勝って下降し、これと共に制
御ロッド17゛も下がって、その弁体22は制御開口1
6に接近してその開度を小さくする。電磁石18の反発
力はコイルに印加される電圧の値に応じて変化するので
、印加電圧の制御によって流量制御間ロ160開度を比
例的に制御可能である。
When power is supplied to the coil of the TFA stone 18 from the cable 35, a repulsive force is generated, and the piston rod 19 overcomes the upward biasing force of the spring 21 and descends. Along with this, the control rod 17 also descends, and its valve body 22 is control opening 1
6 and reduce its opening. Since the repulsive force of the electromagnet 18 changes depending on the value of the voltage applied to the coil, the opening degree of the flow rate control valve 160 can be controlled proportionally by controlling the applied voltage.

循環路10内を流れる冷媒ガスの流量が減少すれば液温
調節機Aの冷却容量は減少し、逆に冷媒ガスの流量が増
大すれば冷却容量は増加することは明らかであろう。従
って、印加電圧の制御によって液温調節機の冷却容量を
比例制御可能である。
It is obvious that if the flow rate of the refrigerant gas flowing through the circulation path 10 decreases, the cooling capacity of the liquid temperature controller A decreases, and conversely, if the flow rate of the refrigerant gas increases, the cooling capacity increases. Therefore, the cooling capacity of the liquid temperature regulator can be controlled proportionally by controlling the applied voltage.

本発明の主軸温度の制御方式によれば、定常運転時、即
ち一定の主軸回転速度での工作機械の運転時には、タン
ク4に戻る直前の冷却液の温度が、主軸温度の代表値と
して温度検出器23によって検出され、コンピュータ2
4に内蔵された第2制御手段25にリアルタイムで人力
される。第2制御手段25には予め主軸温度の目標値が
記憶されており、検出された主軸温度はこの目標値と比
較され、差がある場合には電磁石18に印加されている
電圧が調節される。これによって比例制御弁11の開度
が修正されて液温調節機Aの冷却容量が微調節されて、
主軸温度が目標値に接近する。
According to the spindle temperature control method of the present invention, during steady operation, that is, when the machine tool is operated at a constant spindle rotation speed, the temperature of the coolant immediately before returning to the tank 4 is detected as the representative value of the spindle temperature. detected by the computer 23,
4 is manually controlled in real time by the second control means 25 built into the second control means 25. A target value for the spindle temperature is stored in advance in the second control means 25, and the detected spindle temperature is compared with this target value, and if there is a difference, the voltage applied to the electromagnet 18 is adjusted. . As a result, the opening degree of the proportional control valve 11 is corrected, and the cooling capacity of the liquid temperature regulator A is finely adjusted.
The spindle temperature approaches the target value.

この定常運転時のフィードバック制御に際しては、比例
制御弁11に対して基準開度を中心に目標温度と検出温
度との差に応じて比例的に開度の調節が行われる。この
基準開度は、定常状態における通常のフィードバック制
御においては、成る程度の時間が経過すれば第3図に示
すような主軸回転速度とこれによる主軸の発熱量を打ち
消すのに必要な冷却容量との関係に応じて、必然的に一
定の値に収斂してくるが、主軸の回転速度がステップ状
に急激に変化するような加ニブログラムの場合には、主
軸回転速度の変更に伴って新たな基準開度が自然に定ま
るまでかなり長い時間がかかり、その間、制御結果にか
なりのオーバーシュートやアンダーシュートが生じる傾
向がある。
In this feedback control during steady operation, the opening degree of the proportional control valve 11 is proportionally adjusted around the reference opening degree according to the difference between the target temperature and the detected temperature. In normal feedback control in a steady state, this standard opening degree is determined by the cooling capacity required to cancel out the spindle rotational speed and the resulting heat generation amount of the spindle as shown in Figure 3 after a certain amount of time has passed. will inevitably converge to a constant value depending on the relationship between It takes a considerable amount of time for the standard opening to settle naturally, and during that time there is a tendency for significant overshoot or undershoot to occur in the control results.

本発明においては、こうした主軸回転速度の急激な変更
があった場合には、−旦このフィードバック制御を打切
り、直ちに液温調節機Aの冷却容量が新たな主軸回転速
度によって発生が予想される熱量を補償するのに必要な
値となるように、前記比例制御弁11の基準開度を変更
する。この基準開度の調節指令は、コンピュータ24の
メモリ26に予め記憶されている第3図に示すような主
軸の回転速度とこれに応じて予測される発生熱量を冷却
するのに必要な冷却容量との関係、並びに第4図に示す
ような比例制御弁の電磁石に印加される電圧とこれによ
る液温調節機Aの冷却容量との関係により、前記コンピ
ュータ24に内蔵されている第1制御手段27から比例
制御弁11の操作回路28に対して発せられる。
In the present invention, when there is such a sudden change in the spindle rotation speed, - this feedback control is immediately discontinued, and the cooling capacity of the liquid temperature controller A is immediately adjusted to the amount of heat expected to be generated due to the new spindle rotation speed. The reference opening degree of the proportional control valve 11 is changed so that it becomes a value necessary to compensate for. This reference opening degree adjustment command is based on the rotational speed of the main shaft as shown in FIG. The first control means built in the computer 24 is determined by the relationship between the voltage applied to the electromagnet of the proportional control valve and the cooling capacity of the liquid temperature controller A as shown in FIG. 27 to the operating circuit 28 of the proportional control valve 11.

この新たな基準開度の設定が終了した後、再び主軸温度
の計測とこれに基づく比例制御弁11の開度の調節によ
る前述のフィードバック制御が復活する。
After the setting of this new reference opening degree is completed, the above-described feedback control by measuring the main shaft temperature and adjusting the opening degree of the proportional control valve 11 based on the measurement is resumed.

上述の本発明による制御を第5図に示す流れ図で説明す
ると、符号30で示すように、NC装置に内蔵されてい
る加ニブログラムから主軸の回転速度変更指令が発せら
れると、符号31に示すように新たに設定された主軸回
転速度が第1制御手段27に入力される。そして第1制
御手段27はメモリ26に記憶されている主軸回転速度
と必要冷却容量との関係並びに比例制御弁11の電磁石
18に印加される電圧と液温調節機の冷却容量との関係
から、新たな主軸回転速度に対応する冷却容量を得るた
めに比例制御弁の電磁石に印加すべき基準電圧を選定し
、符号32に示すようにこれを指令信号として比例制御
弁11の操作回路28に発する。これによって比例制御
弁11の基準開度が新たに設定され、液温調節機Aの冷
却容量が主軸回転速度の変更に即応して調整される。
The control according to the present invention described above will be explained with reference to the flowchart shown in FIG. 5. As shown in the flowchart shown in FIG. The newly set spindle rotation speed is input to the first control means 27. Based on the relationship between the spindle rotation speed and the required cooling capacity stored in the memory 26, and the relationship between the voltage applied to the electromagnet 18 of the proportional control valve 11 and the cooling capacity of the liquid temperature regulator, the first control means 27 calculates the following: In order to obtain a cooling capacity corresponding to the new spindle rotation speed, a reference voltage to be applied to the electromagnet of the proportional control valve is selected, and as shown by reference numeral 32, this is sent as a command signal to the operation circuit 28 of the proportional control valve 11. . As a result, the standard opening degree of the proportional control valve 11 is newly set, and the cooling capacity of the liquid temperature regulator A is adjusted in immediate response to the change in the spindle rotation speed.

系全体が安定するまでの符号33で示す僅かな時間経過
の後、符号34で示すフィードバック制御が復活し、検
出された主軸温度と目標温度との差に基づいて前記基準
電圧を加減して比例制御弁11の開度を調節する比例制
御が続行される。
After a short period of time, indicated by reference numeral 33, elapses until the entire system stabilizes, the feedback control indicated by reference numeral 34 is restored, and the reference voltage is adjusted proportionally based on the difference between the detected spindle temperature and the target temperature. Proportional control to adjust the opening degree of control valve 11 continues.

第6図(a)は、本発明の制御システムによる主軸回転
速度の変更時における主軸温度の制御結果を示す。これ
を第6図(b)に示すフィードバックのみによる制御結
果と比べれば、本発明の効果は更に明瞭になるであろう
FIG. 6(a) shows the control result of the spindle temperature when changing the spindle rotational speed by the control system of the present invention. If this is compared with the control result using only feedback shown in FIG. 6(b), the effects of the present invention will become even clearer.

〔発明の効果〕 以上、詳述したように、本発明によれば、液温調節機の
比例制御弁の開度の調節による主軸温度のフィードバッ
ク制御に際し、主軸回転速度が変更された場合には一旦
フイードバック制御を中断して、直ちに比例制御弁の基
準開度を新たな主軸回転速度に対応して変更し、以て予
測される主軸の発熱を補償するのに必要な冷却容量を出
力できるように液温調節機の設定を変更し、その後、新
たな基準開度を中心として再び前記フィードバック制御
を続行するようにしたので、従来のオン・オフ式のフィ
ードバック制御において生じやすかった、主軸回転速度
変更時の制御のオーバーシュートやアンダーシュートが
減少し、きめの細かい主軸温度の制御が可能となる。
[Effects of the Invention] As detailed above, according to the present invention, when the spindle rotation speed is changed during feedback control of the spindle temperature by adjusting the opening degree of the proportional control valve of the liquid temperature controller, Once the feedback control is interrupted, the standard opening of the proportional control valve is immediately changed in accordance with the new spindle rotation speed, so that the cooling capacity necessary to compensate for the predicted spindle heat generation can be output. The setting of the liquid temperature controller was changed in 2015, and the feedback control was continued again based on the new standard opening, so the spindle rotation speed, which was likely to occur with conventional on-off feedback control, was reduced. Control overshoot and undershoot during changes are reduced, allowing fine-grained spindle temperature control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による工作機械の主軸温度制御システム
の構成を示す冷却液循環路の模式図、第2図は本発明に
利用される比例制御弁の構成を示す側断面図、 第3図は主軸の回転速度とこれによる発熱を補償するの
に要する冷却容量との関係図、第4図は比例制御弁の電
磁石に印加される電圧とこれによる液温調節機Aの冷却
容量との関係図、第5図は本発明の制御手順を示す流れ
図、第6図(a)、(b)は本発明による主軸温度の制
御結果と従来の方式による制御結果とを示す実験データ
のグラフ図、 第7図は主軸の回転速度とこれによる主軸軸受の発熱量
との関係図である。 A・・−液温調節機 l・・−主軸装置 3−冷却液循環路 1〇−冷媒ガス循環路 比例制御弁 流量制御開口 電磁石 一温度検出器 コンピュータ 第2制御手段 メモリ ・−第1制御手段
FIG. 1 is a schematic diagram of a coolant circulation path showing the configuration of a spindle temperature control system for a machine tool according to the present invention, FIG. 2 is a side sectional view showing the configuration of a proportional control valve used in the present invention, and FIG. Figure 4 shows the relationship between the rotational speed of the main shaft and the cooling capacity required to compensate for the heat generated by it, and Figure 4 shows the relationship between the voltage applied to the electromagnet of the proportional control valve and the resulting cooling capacity of liquid temperature controller A. 5 is a flowchart showing the control procedure of the present invention, and FIGS. 6(a) and 6(b) are graphs of experimental data showing the control results of the spindle temperature according to the present invention and the control results according to the conventional method. FIG. 7 is a diagram showing the relationship between the rotational speed of the main shaft and the amount of heat generated by the main shaft bearing. A...-Liquid temperature controller l...-Main shaft device 3-Cooling liquid circulation path 10-Refrigerant gas circulation path Proportional control valve Flow rate control opening Electromagnet-Temperature detector Computer Second control means Memory--First control means

Claims (1)

【特許請求の範囲】 1、工作機械の主軸装置に冷却液を循環させる循環回路
の途中に、比例制御弁を通じて冷媒ガスの流量を調節す
ることにより前記冷却液の液温を調節可能な液温調節機
を設け、検出された前記主軸の主軸温度に基づいて前記
比例制御弁の開度を調節するフィードバック制御によっ
て、前記主軸温度を目標値に維持するようにした工作機
械の主軸温度制御方法であって、前記主軸回転速度とこ
れに対応する発熱を補償するのに必要な冷却容量との関
係並びに前記比例制御弁の開度と前記液温調節機の冷却
容量との関係を予め記憶しておき、主軸の回転速度が変
化した時点で、新たな回転速度による予想発生熱量を補
償する冷却容量となるように前記記憶に基づいて前記比
例制御弁の基準開度を変更して、前記液温調節機の基本
冷却容量を変更することを特徴とする工作機械の主軸温
度制御方法。 2、工作機械の主軸装置に冷却液を循環させ、前記主軸
装置の主軸温度を目標値に維持するようにした工作機械
の主軸温度制御装置において、前記冷却液の循環路の途
中に設けられた開度の調節によって冷媒ガスの流量を制
御可能な比例制御弁を具えた液温調節機と、主軸の回転
速度とこれに対応する発熱を補償するのに必要な冷却容
量との関係並びに前記比例制御弁の開度と前記液温調節
機の冷却容量との関係を予め記憶する記憶手段と、主軸
回転速度が変化した際に、前記記憶手段に記憶されてい
る関係に基づいて、新たな主軸回転速度に対応する冷却
容量が得られるように前記液温調節機の比例制御弁の基
準開度を調節する第1制御手段と、主軸の温度を検出す
る温度検出手段と、該温度検出手段によって検出された
主軸温度が前記目標値と一致するように前記液温調節機
を作動させる第2制御手段とを具えたことを特徴とする
工作機械の主軸温度制御装置。
[Scope of Claims] 1. A liquid temperature control valve in which the temperature of the coolant can be adjusted by adjusting the flow rate of the coolant gas through a proportional control valve in the middle of a circulation circuit that circulates the coolant to the spindle device of the machine tool. A spindle temperature control method for a machine tool, wherein a regulator is provided and the spindle temperature is maintained at a target value by feedback control that adjusts the opening degree of the proportional control valve based on the detected spindle temperature of the spindle. The relationship between the spindle rotational speed and the cooling capacity required to compensate for the corresponding heat generation, and the relationship between the opening degree of the proportional control valve and the cooling capacity of the liquid temperature regulator are stored in advance. Then, when the rotational speed of the main shaft changes, the reference opening degree of the proportional control valve is changed based on the memory so that the cooling capacity compensates for the expected amount of heat generated due to the new rotational speed, and the liquid temperature is changed. A method for controlling the spindle temperature of a machine tool, characterized by changing the basic cooling capacity of a controller. 2. In a spindle temperature control device for a machine tool, which circulates a coolant through a spindle device of a machine tool and maintains the spindle temperature of the spindle device at a target value, the device is provided in the middle of the circulation path for the coolant. A liquid temperature controller equipped with a proportional control valve that can control the flow rate of refrigerant gas by adjusting the opening, and the relationship between the rotational speed of the main shaft and the cooling capacity necessary to compensate for the corresponding heat generation, and the proportional control valve. A storage means stores in advance the relationship between the opening degree of the control valve and the cooling capacity of the liquid temperature regulator, and when the spindle rotation speed changes, a new spindle is set based on the relationship stored in the storage means. a first control means for adjusting the reference opening degree of the proportional control valve of the liquid temperature regulator so as to obtain a cooling capacity corresponding to the rotational speed; a temperature detection means for detecting the temperature of the main shaft; A spindle temperature control device for a machine tool, comprising: second control means for operating the liquid temperature regulator so that the detected spindle temperature matches the target value.
JP17022090A 1990-06-29 1990-06-29 Main spindle temperature control method for machine tool and device Pending JPH0463660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17022090A JPH0463660A (en) 1990-06-29 1990-06-29 Main spindle temperature control method for machine tool and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17022090A JPH0463660A (en) 1990-06-29 1990-06-29 Main spindle temperature control method for machine tool and device

Publications (1)

Publication Number Publication Date
JPH0463660A true JPH0463660A (en) 1992-02-28

Family

ID=15900900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17022090A Pending JPH0463660A (en) 1990-06-29 1990-06-29 Main spindle temperature control method for machine tool and device

Country Status (1)

Country Link
JP (1) JPH0463660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074055A (en) * 1999-09-06 2001-03-23 Matsuura Machinery Corp Device of controlling rotary shaft cooling
JP2011031329A (en) * 2009-07-31 2011-02-17 Citizen Holdings Co Ltd Fluid supply device and machine tool equipped with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283841A (en) * 1987-05-14 1988-11-21 Kamui Sangyo Kk Liquid circulating device
JPS6451253A (en) * 1987-08-21 1989-02-27 Makino Milling Machine Spindle temperature controlling method and device for machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283841A (en) * 1987-05-14 1988-11-21 Kamui Sangyo Kk Liquid circulating device
JPS6451253A (en) * 1987-08-21 1989-02-27 Makino Milling Machine Spindle temperature controlling method and device for machine tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074055A (en) * 1999-09-06 2001-03-23 Matsuura Machinery Corp Device of controlling rotary shaft cooling
JP4553422B2 (en) * 1999-09-06 2010-09-29 株式会社松浦機械製作所 Cooling control device for rotating shaft
JP2011031329A (en) * 2009-07-31 2011-02-17 Citizen Holdings Co Ltd Fluid supply device and machine tool equipped with the same

Similar Documents

Publication Publication Date Title
US5476137A (en) Ultra-precision temperature control system for machine tool and control method therefor
KR950024289A (en) Temperature controller and method using recycle coolant
JP2007038329A (en) Temperature control method and device of machine tool
US20200055158A1 (en) Temperature control system and method thereof
JP3600160B2 (en) Cooling system
JPH0728545Y2 (en) Liquid temperature controller
JP5020664B2 (en) Temperature control device for machine tools
JPH0463660A (en) Main spindle temperature control method for machine tool and device
KR900006223B1 (en) Electric spark machining apparatus
JP2001300834A (en) Temperature control method and device of machine tool
JP2529905B2 (en) Machine tool temperature control method
JP2018079520A (en) Temperature adjustment device of machine tool
KR920010738B1 (en) Temperature control method for cooling device
JP2741447B2 (en) Cooling structure of rotating shaft
JPH07302747A (en) Driving device
JPH0775814B2 (en) Method and device for controlling spindle temperature of machine tool
JP7541841B2 (en) Temperature Control System
JPH0579458B2 (en)
KR101326563B1 (en) Apparatus for cooling machine tool
JPH0335060B2 (en)
JPH0418984B2 (en)
JP3701868B2 (en) Fluid supply device
JP3225546B2 (en) Liquid temperature control device
JP2006200814A (en) Freezer
JP6795840B2 (en) A method for controlling the temperature of the heat medium for temperature control, and a device for supplying the heat medium for temperature control using the method.