JPS6156310B2 - - Google Patents

Info

Publication number
JPS6156310B2
JPS6156310B2 JP2697681A JP2697681A JPS6156310B2 JP S6156310 B2 JPS6156310 B2 JP S6156310B2 JP 2697681 A JP2697681 A JP 2697681A JP 2697681 A JP2697681 A JP 2697681A JP S6156310 B2 JPS6156310 B2 JP S6156310B2
Authority
JP
Japan
Prior art keywords
steel
content
resistance
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2697681A
Other languages
Japanese (ja)
Other versions
JPS57143467A (en
Inventor
Shuzo Ueda
Masaaki Ishikawa
Juji Kusuhara
Iwao Shiraishi
Fumio Hataya
Masakyo Izumitani
Yoshikuni Ooshima
Koichi Akutsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Ltd
Priority to JP2697681A priority Critical patent/JPS57143467A/en
Priority to US06/351,752 priority patent/US4529454A/en
Priority to DE19823207032 priority patent/DE3207032A1/en
Priority to SE8201211A priority patent/SE459664B/en
Publication of JPS57143467A publication Critical patent/JPS57143467A/en
Publication of JPS6156310B2 publication Critical patent/JPS6156310B2/ja
Priority to US07/071,709 priority patent/USRE33006E/en
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 湿り蒸気下の使途に供される新規な低C−低Si
−Cr−Mo鋼に関してこの明細書では、とくに原
子力発電設備用給水加熱器または類似物の用途に
て特有なエロージヨン・コロージヨン(E.C.と
略す)のアタツクを受ける環境中でも適切に使用
することができるように成分組成を調整した、上
記種類の鋼に係る開発研究の成果を提案しようと
するものである。 ここに通常250℃以下の、湿り蒸気および高温
凝縮水、あるいは高温凝縮水自体につき単に、語
“湿り蒸気”で一括してあらわすこととして、こ
れら高温の気液二相流又は高温水流の高速流動に
より、たとえば軽水炉のごとき原子力発電設備用
給水加熱器のような密閉容器の胴体内表面が、
E.C.によるアタツクを受けた場合、E.C.による
腐食生成物が、原子炉系統内を循環することによ
る系統全体の放射化弊害や、給水加熱器自体の
E.C.損傷に由来した信頼性低下が懸念される。 これらの問題を排除する手段として、まず設計
面からは、系統内全体の流体の低流速化、すなわ
ち給水加熱器胴体径および配管系統口径の増大に
よる流体の低流速化、そして材料面から耐E.C.
性のより優れた鋼種の採用が考えられる。 前者の系統内流体の低流速化は設備の大型化に
つながり、鋼材使用量の増加、ひいては材料費、
建設費の増加を招くため、むしろ、材料面でこの
種の弊害を未然に防止することが要請される。 (従来の技術) E.C.に関する従来の数多くの知見、研究の成
果が解析、検討された結果、第1表に示すJIS
G4109、SCMV−3(通称11/4%Cr−1/2%Mo
−3/4%Si鋼)の化学組成、熱処理(焼ならし焼
もどし(以下N−Tと略記する)と焼なまし(以
下Aと略記する)との二種類)および機械的性質
(N−T鋼およびA鋼について、それそれ高強度
レベルおよび低強度レベル)の規格範囲のうち、
C含有量をとくに、規格上限近傍の0.15〜0.17%
に規制し、熱処理もN−Tに限定した高強度レベ
ルの11/4%Cr−1/2%Mo−3/4%Si鋼こそ、給水
加熱器に適するすぐれた耐E.C.性をもつ鋼であ
るとの結論に従い、その特性が実際にも実験で確
認され、かようにしてこの高C−11/4%Cr−1/
2%Mo−3/4%Si鋼が、原子力発電設備のより高
い安全性強化策とし我国で独自に、前記給水加熱
器用鋼材として採用されるに至つたのである。
(Industrial application field) New low C-low Si for use under wet steam
- With regard to Cr-Mo steels, this specification specifies that they can be used appropriately even in environments subject to attack by erosion and corrosion (abbreviated as EC), especially in applications such as feed water heaters for nuclear power plants or similar applications. This paper attempts to propose the results of research and development related to the above-mentioned types of steel, whose composition has been adjusted accordingly. Wet steam and high-temperature condensed water, or high-temperature condensed water itself, which are usually below 250°C, are collectively referred to here as "wet steam", and these high-temperature gas-liquid two-phase flows or high-speed flows of high-temperature water flows are collectively referred to as "wet steam". For example, the inner surface of the body of a closed container such as a feed water heater for nuclear power generation equipment such as a light water reactor,
When attacked by EC, corrosion products caused by EC circulate within the reactor system, resulting in radiation damage to the entire system and damage to the feedwater heater itself.
There is a concern that reliability may decrease due to EC damage. As a means to eliminate these problems, first of all, from a design perspective, the flow velocity of the fluid throughout the system should be lowered by increasing the diameter of the feed water heater body and the diameter of the piping system, and from the viewpoint of materials, it should be
It is conceivable to adopt a steel grade with better properties. In the former case, lowering the flow rate of fluid in the system leads to larger equipment, increasing the amount of steel used, and ultimately reducing material costs.
Rather, it is required to prevent this type of damage from the material standpoint, since this will lead to an increase in construction costs. (Conventional technology) As a result of analyzing and examining a large amount of conventional knowledge and research results regarding EC, the JIS standard shown in Table 1 was
G4109, SCMV-3 (commonly known as 11/4%Cr-1/2%Mo
-3/4%Si steel), heat treatment (two types: normalizing and tempering (hereinafter abbreviated as N-T) and annealing (hereinafter abbreviated as A)) and mechanical properties (N - For T steel and A steel, within the standard range of high strength level and low strength level respectively:
In particular, the C content is 0.15 to 0.17%, which is near the upper limit of the standard.
The high-strength 11/4%Cr-1/2%Mo-3/4%Si steel with heat treatment limited to N-T is the steel with excellent EC resistance suitable for feed water heaters. In accordance with the conclusion that there is a
2% Mo-3/4% Si steel was uniquely adopted in Japan as a steel material for the feed water heater as a measure to enhance the safety of nuclear power generation equipment.

【表】 ここでC含有量が0.15%以上のこの種鋼が適用
される理由は、一つに耐E.C.性の確保のため鋼
に硬さを付与するのに必要であるということに主
として由来し、これに加えてSCMV−3のうちと
くにN−T鋼の規格、すなわち高い引張強度(例
えば引張強さ53Kgf/mm2上)を、保証することにあ
つた。 しかるに今日原子力発電設備用給水加熱器の耐
E.C.性向上策として我国では、専ら材料面で対
処すべく高級な高C−11/4%Cr−1/2%Mo−3/
4%Si鋼を採用するすう勢にあるとは言え、その
一方で上記のような高C−11/4%Cr−1/2%Mo
−3/4%Si鋼の使用は次に示すとおり溶接施工性
がわるいため数多くの問題を抱えている。 つまり前記給水加熱器は、直径約2m、長さ約
10mに及ぶ巨大な容器状である。先ず胴板は鋼板
を曲げ加工により円筒状として長手方向を溶接
し、この円筒状のものを数個、円周溶接でつな
ぎ、この円筒内部にさらに管板、管および各種部
材が溶接などにより組込まれた後、両端に鏡板を
溶接して組み立てられる。かかる溶接組立にあた
つて、高C−11/4%Cr−1/2%Mo−3/4%Si鋼
は、 溶接硬化性指数、C当量(C+Si/24+Mn/
6+Ni/40+Cr/5+Mo/4+V/14)が例え
ば0.72%、 また溶接われ感受性指数、PCM値(C+Si/30
+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B)が例えば0.32% であることからも明らかなように、溶接われを起
こし易い鋼であるので、溶接に際しては溶接われ
などの回避のため予熱、後熱をことさらに入念に
行うと同時に溶接後の応力除去焼きなまし(通常
Stress Relieving、略してSRと呼ばれる。)も極
力高温で長時間行う必要がある。 しかしここに入念な予熱とは、例えば通常ガス
バーナで溶接予定箇所を250℃程度の温度に上げ
ることであり、従つて溶接作業環境をわるくする
ばかりか溶接能率を落とし、ガスバーナによるエ
ネルギー消費も著しいなど、多大の不利を生ず
る。 (発明が解決しようとする問題点) このようにして現在の原子力発電設備用給水加
熱器の建設に対して、省エネルギーや作業環境、
能率などの改善のためには、溶接われ感受性の低
いCr−Mo鋼の開発はきわめて重要である。 ここに湿り蒸気に対する耐E.C.性を具備して
いること、給水加熱器に適する強度およびじん性
をもつことが不可欠の条件である。なお、この耐
E.C.性に関し、これまで使用されていた高C−
11/4%Cr−1/2%Mo−3/4%Si鋼は決して完壁で
はなく、容器の寿命、操業の安全性を考慮し、さ
らに少しでもより改善されることもまた切望され
ている。 すなわち、この発明の目的は溶接性がよく、し
かも湿り蒸気下での耐E.C.性にすぐれた鋼組成
を提供することにある。 まず溶接性を改良するにはC含有量を低減すれ
ばよいことは前記C当量、PCM値などの計算式か
ら明白であるが、そうした場合、鋼の硬さは当然
低下するので耐E.C.性は劣化することが通常推
定される。 ここに耐E.C.性を損なわずに溶接性を改善す
るというより、むしろ耐E.C.をさらに向上さ
せ、しかも溶接性も改善させることが望まれてい
るわけで、耐E.C.性の向上に対してC含有量の
低減は元来不適切と考えるのが当業技術者の一般
常識であり、事実C含有量の低減によつて耐E.
C.性の改良を試みた事例は見出せない。 そして一方でこの課題は、現在の技術水準の下
では経済性を考慮すると克服不可能な難題である
と考えられ、前述したようないわば妥協を余儀な
くしていたのが実情である。 (問題点を解決するための手段) 発明者らはかような難題につき、敢えてより有
利な解決を目指してとくにこの鋼種におけるC含
有量および微量合金元素が耐E.C.性、溶接性、
機械的性質に及ぼすべき関係の本質を、系統的、
基礎的に鋭意研究を進めた結果、意外な事実、即
ちこの種Cr−Mo鋼では耐E.C.性は、 C含有量を0.14%以下に低減させる方がより
すぐれるようになること、 Si含有量の少ない方がすぐれるようになるこ
と、 さらに微量のCuおよびNiの同時添加に加え
てVの添加によつて顕著に改善されること、 、、の各場合とも強度レベルが低くて
も優れた性能が実現されること、 などを発見した。 かような事実は何れもこれまでの関係技術上の
常識ないしは学術的概念とは相反する予想外の知
見といえる。 発明者らはこれらの知見事実を前記給水加熱器
のごとき湿り蒸気下で使用される鋼に応用し、か
ような用途において上述のように難題とされた、
耐E.C.性ならびに溶接性の両面的な改善を一挙
に成し遂げたものである。 この発明は、C:0.02〜0.14重量%(以下単に
%で示す)、Si:0.45%未満、Mn:0.30〜0.80
%、Cr:0.70〜1.60%及びMo:0.40〜0.70%を含
み残余は不可避不純物を除き実質的にFeの組成
を基本成分として、これに主として固溶体硬化で
強度上昇に寄与するとともに耐E.C.性を向上さ
せる元素であるCu及びNiをそれぞれ0.02〜0.5%
で同時に含有させ、さらにV:0.005〜0.08%と
Al:0.005〜0.08%を含有させ、Vの析出硬化に
よる強度上昇により、C含有量を低減できること
で耐E.C.性及び溶接性の改善を達成した。 なお上記したところのうちの重要成分であるC
含有量をとくに0.02〜0.13%、同じくCu及びNi含
有量につきそれぞれ0.16〜0.30%を、この各発明
で初期した効果を一層高める領域として限定した
実施態様を包含する。 (作 用) さて上記成分範囲の限定理由はつぎのとおりで
ある。 C含有量はこの発明で最重要な要件であり、溶
接硬化性および溶接われ感受性を低減させ溶接の
予熱温度の低下、後熱の省略、そして応力除去焼
きなまし温度の低下、さらにはすぐれた耐E.C.
性をとくに在来観念を打破して実現するために
は、0.14%以下に限定されなければならない。溶
接性の点ではC量はもとより低ければ低いほどよ
いが、原子力発電設備用給水加熱器などの湿り蒸
気下での使途に供用する鋼として要求されるよう
な、常温並びに約250℃までの温度域における強
度およびじん性を得るには少なくとも0.02%は必
要であるので下限を0.02%とする。 とくにこの発明に従う組成のCr−Mo鋼はC含
有量を極く微量ではあつても上記のように低減さ
せると、溶接われ感受性が著しく改善されるとこ
ろに顕著な特徴をあらわし、さらにこのC含有量
の上限0.14%から0.13%への低下により強度レベ
ルの大きな低下を招くことなく溶接われ感受性を
著しく改善することができ従つて各発明の実施態
様の面でC含有量は好ましくは0.13%、より好ま
しくは0.11%までとするのが良い。 次にSiは常温およびに高温における強度の増加
に有効な元素であり、従来はCが0.15〜0.17%の
高い値であることに加えて一般にSiも0.45〜0.90
%含有されていた。 しかしこの含有量を0.45%未満に限定すること
により低C化とあいまつて耐E.C.性が著しく向
上することが見い出されたためにこの発明ではSi
含有量を0.45%未満に限定するものであり、この
限定もまた重要な要件のひとつであるが、ここに
他の強化元素であるMn、Cr、Moなどの強化効果
により必要な強度が確保できることは後述のとお
りである。 Mnは鋼に強度と延性を与えるために0.30%以
上を必要とする反面、この発明の組成の鋼では強
度確保に対してむしろCrおよびMoが大きく寄与
するため、強度の点でMnを大量に使用する必要
はなくむしろ0.80%を超えると却つて溶接硬化性
が上昇し問題を生じるので0.30〜0.80%に限定す
る。 CrおよびMoはともに高い流速の湿り蒸気によ
るE.C.に対する抵抗を増す重要な元素である。
原子力発電設備用給水加熱器などの用途ですぐれ
た耐E.C.性を付与するには、この発明の組成の
鋼ではCrおよびMoはそれぞれ少なくとも0.70%
および0.40%必要である。CrおよびMoは耐E.C.
性の向上の目的に照らして多ければその効果も大
きいが、Crは1.60%を超えると、またMoは0.70
%を超えると何れも加工性、溶接性の低下が懸念
される。従つて、Cr含有量は0.70〜1.60%に、ま
たMoは0.40〜0.70%にそれぞれ限定される。な
おCrはそもそも焼入性を向上させる元素として
高強度組織の形成に寄与するのみならず固溶体強
化作用を有するものであり、一方Moは析出硬化
型元素であり、焼もどし処理時に炭化物を微細に
析出して何れも強度の上昇にも寄与し、その結果
として上述の効果がそれぞれの制限範囲内で適切
に発揮される。 次にCu:0.02〜0.5%、Ni:0.02〜0.5%で両者
を同時に含有させる理由は、高い流速の湿り蒸気
に対する耐E.C.性がさらに著しく改善できるこ
とにある。耐E.C.性の改善の点ではCuおよびNi
は多ければ多いほどよいがいずれか一方が0.5%
を超えると溶接性を著しく低下させるのでこれら
の各含有量の上限を0.5%とした。 CuおよびNiは元来固溶体強化作用をもち焼入
性を向上させる元素であり、これらを複合で含有
させることにより強度は大きく上昇する。かよう
にCuおよびNiにより強度が向上できるので、強
度面でのC含有量の低減が可能になるわけで、ひ
いてはCu、Niの含有が耐E.C.性の改善にも役立
つわけである。すなわちCuとNiは合わせ含有さ
れるとそれら自身が耐E.C.性を改善するととも
に高強度化に役立ち、その高強度化はC含有量の
低減を可能にするのでこの点でも耐E.C.性の向
上に二重に寄与することになる。 この発明の実施態様においてはCをすでにのべ
たようにして0.02〜0.13%に限定するがこれとと
もにCuおよびNiにつきいずれも0.16〜0.30%とさ
らに限定するのは、CuおよびNiの同時添加が耐
E.C.性の向上に対しては、おのおの0.16%以上あ
ることが好ましく、多ければ多いほど効果は大き
いが、これら自身溶接われ感受性に関してはむし
ろ少ない方がよく、おのおの0.30%以下であるこ
とが望まれる。つまり耐E.C.性と感受性を最高
にするには、Cを0.13%以下に限定し、かつ0.16
〜0.30%でCuおよびNiの両者を含有させること
が実施上望ましい。 またV:0.005〜0.08%を含有させるのは、
0.005%以上で析出硬化により鋼の強化に寄与す
る元素であり、これにより強度上昇を図り、その
結果強度面でC含有量の低減が可能となり、ひい
ては溶接硬化性、溶接われ感受性、耐E.C.性を
改善するように作用する。しかし、Vは0.08%を
超えると逆に溶接部の再熱われ感受性を助長し、
また溶接熱影響部のじん性も劣化させるので0.08
%以下に限定する。 Alを0.005〜0.08%の範囲で含有させるのは、
AINを形成することによる細粒化作用に基づい
て、とくにじん性の向上に役立つからで、その効
果は、0.005%以上で明瞭に発現されて増量とと
もに最初は著しくなるが、約0.08%で飽和するの
で、0.005〜0.08%に限定する。 この発明の実施態様においてはCをすでにのべ
たようにして0.02〜0.13%に限定するがこれとと
もにCuおよびNiにつきいずれも0.16〜0.30%とさ
らに限定するのは、CuおよびNiの同時添加が耐
E.C.性の向上に対しては、おのおの0.16%以上あ
ることが好ましく、多いほどその効果は大きい
が、これら自身溶接われ感受性に関してはむしろ
少ない方がよく、おのおの0.30%以下であること
が望まれる。つまり耐E.C.性と溶接性を最高に
するには、Cを0.13%以下に限定し、かつ0.16〜
0.30%でCuおよびNiの両者を含有させることが
実施上望ましいわけである。 この発明において通常の製鋼工程で含有される
程度の不可避的な混入不純物は許容できる。すな
わち、その一般的な限度はSおよびPについては
溶接部の高温われ感受性を高くするためいずれも
0.025%以下にすることが好ましい。一方Nは通
常の製鋼工程で含有される0.0020〜0.0150%は許
容されるが、0.0150%を超えるとブローホールな
どの発生により鋼塊性状がわるくなるとともに溶
接性も劣化するので上記の範囲であることが好ま
しい。 さらに上記組成の鋼は湿り蒸気下で使用する部
材に用いて前述のとおり耐E.C.性、溶接性、強
度、じん性等を兼備し、これらの特性が要求され
る上記用途に充当してこそ価値があり、経済的で
ある。換言すればこの発明は上記用途へ使用され
た場合に限つて品質、経済性の両面で効果を発揮
する。 以上、この発明の鋼組成、用途等の各限定理由
を説明したが、この各発明の鋼は前述のような成
分調整の下に溶製したのち、常法による圧延又は
鍛造工程を経てから焼ならしおよび引続き焼もど
しを施すか又は焼なましを施すことにより鋼材と
して製造され、ここに熱処理は上記の2種類に限
定される。 なおここでいう焼ならしとはAc3点以上に加熱
後空冷(例えば板厚100mm未満では単なる空冷、
100mm以上の極厚材では空冷または強制冷却)す
る処理であり、焼もどしとはAc1点以下に加熱後
空冷する処理であり、また焼なましとはAc3点以
上に加熱後徐冷する処理である。焼ならし焼もど
し材は通常フエライト・パーライト組織であり、
ベイナイトを含むこともある。焼なまし材は通常
フエライト+パーライト組織である。 湿り蒸気下で使用される機器の代表例として原
子力発電設備用給水加熱器について念のために述
べれば、この各発明の熱処理が給水加熱器用鋼に
はれまで採用された事例のない“焼なまし”でも
よいということは大きな特長であり、次に述べる
ようにとくに高い価値をもつ。 すなわち焼なましの熱処理を受けた鋼は焼なら
し焼もどしの処理を受けたものに比べ、溶接後の
応力除去焼なまし等の熱サイクルに鈍感であり組
織および機械的性質の変動も少ない。 従つて大型溶接構造物の応力除去焼なましのよ
うに相当の温度のばらつきが予想されるような場
合、構造物の各部の品質をできるだけ均一にする
ためには、その構造物には焼ならし焼もどし鋼よ
りむしろ焼なまし鋼を用いる方がより望ましいと
いえる。 焼なまし鋼にこのような特徴があるにもかかわ
らず、原子力発電設備用給水加熱器には従来焼な
らし焼もどし鋼のみが用いられ、これまで焼なま
し鋼を用いようとする動きは全くなかつたのであ
り、その大きな理由は焼なまし鋼は焼もどし鋼に
比べ強度が低く、耐E.C.性が著しく劣ると思わ
れていたからである。しかし発明者らは従来の固
定観念にとらわれることなく鋭意研究の結果、こ
の各発明に従う成分において焼なましの熱処理を
施しても耐E.C.性は頗る大きく、低C化も可能
で溶接性も充分改善でき、その上、原子力発電設
備用給水加熱器用鋼として適切な強度、じん性を
もつことを確認した。 (実施例) さて以上述べたようなこの各発明の構成要件を
さらに明瞭にしこの各発明による特別の効果を具
体的に示すため以下実施例について説明する。 供試鋼の化学組成を第2表に示す。 表中の記号No.1〜4がこの発明に従う鋼であ
り、記号No.5、6は我国において湿り蒸気下で
使用される機器の代表例として原子力発電設備用
給水加熱器にこれまで使用されてきた市販の高C
−11/4%Cr−1/2%Mo−3/4%Si鋼であり、いわ
ゆる従来鋼に相当し、C含有量がこの発明の上限
値0.14%を大きく上廻つて0.16〜0.17%である。 また記号No.7、8については、耐E.C.性の改
良効果が不十分なことを示す比較鋼であり、その
うち記号No.9は溶接性試験に充当した比較鋼で
ある。
[Table] The reason why this type of steel with a C content of 0.15% or more is applied is mainly because it is necessary to impart hardness to the steel in order to ensure EC resistance. In addition to this, we also ensured the specifications of SCMV-3, especially the N-T steel, that is, high tensile strength (for example, tensile strength of 53 Kgf/mm 2 or higher). However, today the durability of feedwater heaters for nuclear power generation equipment is
In Japan, as a measure to improve EC properties, we use high-grade high C-11/4%Cr-1/2%Mo-3/ to deal exclusively with materials.
Although there is a tendency to adopt 4%Si steel, on the other hand, high C-11/4%Cr-1/2%Mo steel as mentioned above
The use of -3/4%Si steel has many problems due to its poor weldability, as shown below. In other words, the feed water heater has a diameter of approximately 2 m and a length of approximately
It is a huge container-like object that is 10 meters long. First, the body plate is made by bending a steel plate into a cylindrical shape and welding the longitudinal direction. Several pieces of this cylindrical shape are connected by circumferential welding, and tube plates, pipes, and various other parts are further assembled inside this cylinder by welding. After that, the mirror plates are welded to both ends and assembled. In such welding assembly, high C-11/4%Cr-1/2%Mo-3/4%Si steel has a weld hardenability index, C equivalent (C+Si/24+Mn/
6+Ni/40+Cr/5+Mo/4+V/14) is, for example, 0.72%, and the welding susceptibility index, P CM value (C+Si/30
+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B) is, for example, 0.32%, making it a steel that is prone to welding cracks. Therefore, when welding, preheating and postheating must be carried out very carefully to avoid welding cracks. Stress relief annealing after welding (usually
It is called Stress Relieving, or SR for short. ) must also be carried out at extremely high temperatures for a long period of time. However, careful preheating here usually means using a gas burner to raise the temperature of the area to be welded to about 250℃, which not only makes the welding work environment worse, but also reduces welding efficiency and consumes significant energy by the gas burner. , resulting in great disadvantages. (Problems to be Solved by the Invention) In this way, energy saving, working environment,
In order to improve efficiency, it is extremely important to develop Cr-Mo steel with low weld susceptibility. The essential conditions are that it has EC resistance against wet steam, and that it has strength and toughness suitable for use in feed water heaters. In addition, this resistance
Regarding EC properties, the high C-
11/4%Cr-1/2%Mo-3/4%Si steel is by no means perfect, and there is a strong desire for further improvements, taking into account the lifespan of the container and operational safety. There is. That is, an object of the present invention is to provide a steel composition that has good weldability and excellent EC resistance under wet steam. First, it is clear from the calculation formulas for the C equivalent and P CM value mentioned above that in order to improve weldability, it is sufficient to reduce the C content, but in that case, the hardness of the steel naturally decreases, so the EC resistance It is usually assumed that the Rather than improving weldability without impairing EC resistance, it is desired to further improve EC resistance and also improve weldability. It is common knowledge among those skilled in the art that reducing the amount of C is inherently inappropriate, and in fact, reducing the amount of C can improve resistance to E.
C. There are no examples of attempts to improve sex. On the other hand, this problem was considered to be an insurmountable problem in terms of economic efficiency under the current state of technology, and the reality was that the compromises mentioned above had to be made. (Means for Solving the Problems) The inventors have purposely tried to find a more advantageous solution to the above-mentioned problems, and have particularly focused on improving the C content and trace alloying elements of this steel type to improve its EC resistance, weldability, and
The essence of the relationships that should affect mechanical properties can be systematically
As a result of intensive basic research, we discovered an unexpected fact: EC resistance of this type of Cr-Mo steel becomes better when the C content is reduced to 0.14% or less, and the Si content In addition, the addition of trace amounts of Cu and Ni at the same time as well as the addition of V can significantly improve the strength of the steel. They discovered that performance can be achieved. All of these facts can be said to be unexpected findings that contradict conventional technical common sense or academic concepts. The inventors applied these findings to steel used under wet steam conditions, such as in the feed water heater, and solved the above-mentioned challenges in such applications.
This achieved improvements in both EC resistance and weldability all at once. This invention has C: 0.02 to 0.14% by weight (hereinafter simply expressed as %), Si: less than 0.45%, Mn: 0.30 to 0.80.
%, Cr: 0.70 to 1.60%, and Mo: 0.40 to 0.70%, and the remainder is essentially the basic composition of Fe, excluding unavoidable impurities, which contributes to increased strength mainly through solid solution hardening and improves EC resistance. 0.02 to 0.5% each of Cu and Ni, which are elements that improve
and further contain V: 0.005 to 0.08%.
By containing Al: 0.005 to 0.08% and increasing the strength due to precipitation hardening of V, it was possible to reduce the C content, thereby achieving improvement in EC resistance and weldability. Furthermore, C, which is an important component among the above-mentioned
The present invention includes embodiments in which the content is particularly limited to 0.02 to 0.13%, and the Cu and Ni contents are respectively limited to 0.16 to 0.30% as areas for further enhancing the effects initialized in each of the inventions. (Function) Now, the reason for limiting the above component range is as follows. The C content is the most important requirement in this invention, and it reduces weld hardenability and weld crack susceptibility, lowers the welding preheating temperature, eliminates postheating, lowers the stress relief annealing temperature, and has excellent EC resistance.
In order to break through conventional notions of gender and realize it, it must be limited to 0.14% or less. From the point of view of weldability, the lower the C content, the better, but it is suitable for use at normal temperatures and temperatures up to approximately 250°C, which is required for steel used in wet steam environments such as feed water heaters for nuclear power generation equipment. Since at least 0.02% is necessary to obtain strength and toughness in the range, the lower limit is set at 0.02%. In particular, the Cr-Mo steel with the composition according to the present invention exhibits a remarkable feature in that when the C content is reduced as described above, even if it is a very small amount, the welding flaw sensitivity is significantly improved. A reduction in the amount from the upper limit of 0.14% to 0.13% can significantly improve weld flaw susceptibility without causing a significant decrease in strength levels, and therefore in each embodiment of the invention the C content is preferably 0.13%. More preferably, it is up to 0.11%. Next, Si is an element that is effective in increasing strength at room and high temperatures, and in addition to the conventional high value of C of 0.15 to 0.17%, Si is also generally 0.45 to 0.90%.
It contained %. However, it was discovered that by limiting this content to less than 0.45%, the EC resistance was significantly improved along with the reduction in carbon content.
The content is limited to less than 0.45%, and this limitation is also an important requirement, but the necessary strength can be secured through the reinforcing effects of other reinforcing elements such as Mn, Cr, and Mo. is as described below. Mn requires 0.30% or more to give strength and ductility to steel, but in steel with the composition of this invention, Cr and Mo make a large contribution to ensuring strength. It is not necessary to use it; in fact, if it exceeds 0.80%, the weld hardening property increases and problems arise, so it is limited to 0.30 to 0.80%. Both Cr and Mo are important elements that increase the resistance to EC due to high flow rates of wet steam.
To provide excellent EC resistance for applications such as feed water heaters for nuclear power generation equipment, the steel with the composition of this invention must contain at least 0.70% each of Cr and Mo.
and 0.40% required. Cr and Mo are EC resistant
Considering the purpose of improving sexual performance, the higher the amount, the greater the effect, but when Cr exceeds 1.60%, and Mo exceeds 0.70%.
%, there is a concern that workability and weldability may deteriorate. Therefore, the Cr content is limited to 0.70 to 1.60%, and the Mo content is limited to 0.40 to 0.70%. Note that Cr not only contributes to the formation of a high-strength structure as an element that improves hardenability but also has a solid solution strengthening effect, while Mo is a precipitation-hardening element and is used to finely form carbides during tempering. Both of these precipitates also contribute to an increase in strength, and as a result, the above-mentioned effects are appropriately exhibited within their respective limited ranges. Next, the reason why Cu: 0.02 to 0.5% and Ni: 0.02 to 0.5% are contained simultaneously is that the EC resistance against wet steam at a high flow rate can be further significantly improved. Cu and Ni in terms of improved EC resistance
The more the better, but either one is 0.5%
If the content exceeds 0.5%, the weldability will be significantly reduced, so the upper limit of each of these contents was set at 0.5%. Cu and Ni are elements that originally have a solid solution strengthening effect and improve hardenability, and by including them in combination, the strength is greatly increased. Since strength can be improved by Cu and Ni in this way, it is possible to reduce the C content in terms of strength, and the inclusion of Cu and Ni is also useful for improving EC resistance. In other words, when Cu and Ni are contained together, they themselves improve EC resistance and help increase strength, and their increased strength makes it possible to reduce C content, which also improves EC resistance. This will make a double contribution. In the embodiment of this invention, C is limited to 0.02 to 0.13% as already mentioned, but Cu and Ni are further limited to 0.16 to 0.30%, because the simultaneous addition of Cu and Ni is resistant.
In order to improve EC properties, it is preferable that each content is 0.16% or more, and the higher the content, the greater the effect, but in terms of welding susceptibility, it is better to have less, and each content is preferably 0.30% or less. . Therefore, for maximum EC resistance and susceptibility, limit C to 0.13% or less, and 0.16
It is practically desirable to contain both Cu and Ni at ~0.30%. Also, V: 0.005 to 0.08% is contained because
It is an element that contributes to the strengthening of steel through precipitation hardening at 0.005% or more, thereby increasing the strength.As a result, it is possible to reduce the C content in terms of strength, which in turn improves weld hardenability, weld crack susceptibility, and EC resistance. It acts to improve. However, when V exceeds 0.08%, it increases the reheating susceptibility of the weld.
It also deteriorates the toughness of the weld heat affected zone, so 0.08
% or less. Containing Al in the range of 0.005 to 0.08% is
This is because it is particularly useful for improving toughness based on the particle refining effect caused by the formation of AIN, and this effect is clearly expressed at 0.005% or higher and becomes noticeable at first as the amount increases, but saturates at about 0.08%. Therefore, it is limited to 0.005 to 0.08%. In the embodiment of this invention, C is limited to 0.02 to 0.13% as already mentioned, but Cu and Ni are further limited to 0.16 to 0.30%, because the simultaneous addition of Cu and Ni is resistant.
For improving EC properties, it is preferable that each content is 0.16% or more, and the higher the content, the greater the effect, but in terms of welding susceptibility, it is better to have less, and each content is preferably 0.30% or less. In other words, to maximize EC resistance and weldability, limit C to 0.13% or less, and from 0.16 to
It is practically desirable to contain both Cu and Ni at 0.30%. In the present invention, unavoidable impurities included in a normal steel manufacturing process are acceptable. In other words, the general limit for both S and P is to increase the susceptibility to high temperature cracking of the weld zone.
The content is preferably 0.025% or less. On the other hand, N content of 0.0020% to 0.0150% is permissible in the normal steelmaking process, but if it exceeds 0.0150%, the properties of the steel ingot will deteriorate due to the occurrence of blowholes, etc., and weldability will also deteriorate, so it should be within the above range. It is preferable. Furthermore, steel with the above composition can be used in parts that are used under wet steam, and as mentioned above, it has EC resistance, weldability, strength, toughness, etc., and it is valuable only when it is applied to the above applications that require these properties. It is economical. In other words, this invention exhibits effects in terms of both quality and economy only when used for the above-mentioned purposes. The reasons for limiting the steel composition, uses, etc. of the present invention have been explained above, but the steel of each invention is produced by melting with the above-mentioned composition adjustment, then subjected to a rolling or forging process by a conventional method, and then sintered. It is produced as a steel material by conditioning and subsequently tempering or annealing, the heat treatment being limited to the two types mentioned above. Note that normalizing here refers to air cooling after heating to Ac 3 points or higher (for example, if the plate thickness is less than 100 mm, simply air cooling,
For extra-thick materials of 100 mm or more, it is a process of air cooling or forced cooling. Tempering is a process of heating to Ac 1 point or less and then air cooling, and annealing is a process of heating to Ac of 3 points or more and then slowly cooling. It is processing. Normalized and tempered materials usually have a ferrite/pearlite structure,
It may also contain bainite. Annealed materials usually have a ferrite + pearlite structure. To be sure, we mention feedwater heaters for nuclear power generation equipment as a typical example of equipment used under wet steam. The fact that it can be used even if it is "better" is a major feature, and has particularly high value as described below. In other words, steel that has undergone annealing heat treatment is less sensitive to thermal cycles such as stress relief annealing after welding, and has less variation in structure and mechanical properties than steel that has undergone normalizing and tempering treatments. . Therefore, in cases where considerable temperature variations are expected, such as during stress relief annealing of large welded structures, it is necessary to It is more desirable to use annealed steel rather than tempered steel. Despite these characteristics of annealed steel, conventionally only normalized and tempered steel has been used in feed water heaters for nuclear power generation equipment, and there has been no movement to use annealed steel until now. The main reason for this was that annealed steel had lower strength than tempered steel and was thought to have significantly lower EC resistance. However, as a result of intensive research without being bound by conventional fixed ideas, the inventors found that the components according to each of the inventions have extremely high EC resistance even after annealing heat treatment, low C is possible, and weldability is sufficient. It was confirmed that the steel could be improved and had appropriate strength and toughness as steel for feed water heaters for nuclear power generation equipment. (Examples) Now, in order to further clarify the constituent elements of each of the inventions as described above and specifically demonstrate the special effects of each invention, examples will be described below. The chemical composition of the test steel is shown in Table 2. Symbols No. 1 to 4 in the table are steels according to the present invention, and symbols No. 5 and 6 are steels that have been used in feed water heaters for nuclear power generation equipment as representative examples of equipment used under wet steam in Japan. Commercially available high C
-11/4%Cr-1/2%Mo-3/4%Si steel, which corresponds to so-called conventional steel, and has a C content of 0.16 to 0.17%, which is much higher than the upper limit of 0.14% of this invention. . Symbols No. 7 and 8 are comparison steels showing that the improvement effect on EC resistance is insufficient, and among them, symbol No. 9 is a comparison steel suitable for the weldability test.

【表】 これらの鋼は市販のものを用いた記号No.5及
び7の従来鋼を除き、すべて小型高周波誘導加熱
式真空溶解炉を用いて溶製した100Kg鋼塊を、小
型圧延機により板厚30mmに熱間圧延したものであ
る。 圧延後の熱処理は原子力発電設備用給水加熱器
用鋼材に従来施されていた焼ならし焼もどし処理
に限定することなく焼なましも行つた。 なおここでいう焼ならし処理は930℃の加熱炉
に装入、1時間保持後抽出し大気中で放冷するも
のである。焼もどし処理条件は660℃×1hとし
た。 また焼なましの熱処理は930℃の加熱炉に装
入、1時間保持後炉中で鋼板の冷却速度が800〜
400℃間の平均で0.8℃/分にあるよう調節して徐
冷させるものである。 鋼板は溶接組立てを行つた後必ず応力除去焼な
ましを受けるので焼ならし焼もどし材、焼ならし
材ともさらに645℃×1hの応力除去焼なまし
(SR)が付与され試験に供された。ただし溶接性
試験に対しては応力除去焼なましを行つていない
試験材が充当されていることは説明するまでもな
い。 これらの供試材料を用いて、まず発明鋼が原子
力発電設備用給水加熱器に用いられる鋼として妥
当な強度、じん性を有することを常温並びに250
℃における引張試験およびV−シヤルピー衝撃試
験をおこなうことにより験証した。なおここでい
う妥当な強度、じん性とは、例えば引張強さにつ
いて言えば常温でおよそ40Kgf/mm2以上であればよ
く、給水加熱器が150℃程度に加熱されることを
考慮しそれより高めの250℃でも同様に40Kgf/mm2
以上が維持されることが望まれ、0℃における吸
収エネルギーについて言えば使用条件を考慮する
とおよそ2.1Kgf・m以上であればよいというこ
とになる。 引張試験には直径6mm、平行部30mm、ゲージ長
25mmの丸棒試片を、また衝撃試験には2mmVノツ
チヤルピー試片を用いた。 また代表的供試材を用いてこの発明の主目的で
ある溶接性の改善効果を調べた。溶接性試験には
JIS Z 3158に定められた斜めY形溶接われ試験
法を用い、われ阻止予熱温度を明らかにした。 次に代表的試験材について行つた高速高温水に
よるE.C.試験の方法を述べる。試験片は第1図
に示すように直径9mm、厚さ10mmの円板に幅3
mm、深さ5mmの溝を十字に切込んだものである。
試験は溝の交叉部に上部より直径1mmのノズルを
通し150℃、酸素5ppb以下の原子炉水を模擬した
高温高圧水を10m/sの高流速で500時間吹きつ
け、E.C.による試験片の重量減を調べることに
よつて行つた。 以上の試験方法に基づく試験結果を第3表に示
す。
[Table] Except for conventional steels with symbols No. 5 and 7, which are commercially available steels, all of these steels are made from 100Kg steel ingots melted using a small high-frequency induction heating vacuum melting furnace, and then rolled into sheets using a small rolling machine. It is hot rolled to a thickness of 30mm. The heat treatment after rolling was not limited to the normalizing and tempering treatments conventionally applied to steel materials for feed water heaters for nuclear power generation equipment, but annealing was also performed. Note that the normalizing treatment referred to here involves charging the material into a heating furnace at 930°C, holding it for one hour, extracting it, and allowing it to cool in the atmosphere. The tempering treatment conditions were 660°C x 1h. In addition, for annealing heat treatment, the steel plate is charged into a heating furnace at 930°C, and after being held for 1 hour, the cooling rate of the steel plate in the furnace is 800°C.
The temperature is gradually cooled at an average rate of 0.8°C/min over 400°C. Steel plates always undergo stress relief annealing after welding and assembly, so both normalized and normalized materials were further subjected to stress relief annealing (SR) at 645°C for 1 hour before being subjected to testing. Ta. However, it goes without saying that the weldability test used test materials that had not been subjected to stress relief annealing. Using these test materials, we first confirmed that the invented steel has appropriate strength and toughness as steel used in feedwater heaters for nuclear power generation equipment at room temperature and at 250°C.
This was verified by conducting a tensile test at 0.degree. C. and a V-Sharpie impact test. In addition, the appropriate strength and toughness mentioned here, for example, in terms of tensile strength, should be about 40Kgf/mm 2 or more at room temperature, and considering that the feed water heater is heated to about 150℃, it should be more than 40Kgf/mm2 at room temperature. 40Kgf/mm 2 even at a higher temperature of 250℃
It is desired that the above is maintained, and in terms of absorbed energy at 0° C., it is sufficient if it is approximately 2.1 Kgf·m or more, considering the usage conditions. For tensile testing, diameter 6mm, parallel part 30mm, gauge length
A 25 mm round bar specimen was used, and a 2 mm V-notched lube specimen was used for the impact test. Furthermore, the effect of improving weldability, which is the main objective of this invention, was investigated using representative test materials. For weldability testing
Using the diagonal Y-shaped welding test method specified in JIS Z 3158, we determined the preheating temperature to prevent cracking. Next, we will describe the method of EC testing using high-speed, high-temperature water on representative test materials. The test piece was a disk with a diameter of 9 mm and a thickness of 10 mm, with a width of 3 mm as shown in Figure 1.
mm, with a 5 mm deep groove cut in a cross shape.
In the test, high-temperature, high-pressure water simulating reactor water at 150℃ and less than 5 ppb of oxygen was sprayed at a high flow rate of 10 m/s for 500 hours through a nozzle with a diameter of 1 mm from the top at the intersection of the grooves, and the weight of the test piece was determined by EC. This was done by examining the decrease. Table 3 shows the test results based on the above test method.

【表】 第3表によればいずれの発明鋼も上記使途に適
合して充分に高い常温および250℃における引張
強さとじん性を示し、耐E.C.性および溶接性の
改善のためC含有量を低減させても強度の点で全
く問題がないことが明らかである。また従来給水
加熱器用鋼に施されていた焼ならし焼もどし処理
を、強度のでにくい焼なまし処理に変更しても強
度の点ではC含有量を従来に比べて著しく低減で
きるということで得られた全く新規なものであ
る。 次に溶接われ感受性とC含有量の関係について
は、この発明の上限値を超えたC含有量を有する
従来鋼の記号No.5、6及び比較鋼の記号No.8の
われ阻止予熱温度は150〜200℃であるのに反し、
この発明に従いC含有量を0.14%以下に限定する
と上記予熱温度を100℃以下に低下できるのであ
る。 つまり溶接のわれ阻止するには従来鋼では少な
くとも150〜200℃の高い温度に予熱する必要があ
つたのに対し、この発明による鋼では、せいぜい
100℃程度に予熱すればよく、溶接施工上飛躍的
改良ということができる。 また、耐E.C.性については比較鋼No.7、8の
ごとく、従来鋼並みのC含有量(0.15〜0.17%)
でSi含有量のみ0.45%未満にした場合に従来鋼
No.6に対する耐E.C.性の改善はわずかであるの
に反し、低C化と低Si化の両者を組合せCu、
Ni、V及びAlを添加した発明鋼No.1〜4は、耐
E.C.性が著しく改善されることが明らかであ
る。 即ち給水加熱器用鋼としてC含有量を0.14%以
下に、またSi含有量を0.45%未満に限定すること
に加えて微量のCuおよびNiの同時添加、好まし
くは各々が0.16%〜0.30%の添加に加え、さらに
Vの添加により著しく耐E.C.性を改善し得るこ
とが見出されたわけである。 (発明の効果) 以上詳細に述べたようにこの発明によれば溶接
に当たつての予熱温度を100℃程度またはそれよ
りもかなり低い温度にすることができ、作業環境
を損なう恐れが少ないとともに溶接時の予熱に要
するエネルギーも少なくても済むためエネルギー
コストも低下でき、しかももちろん湿り蒸気に対
する耐E.C.性が格段にすぐれているため容器の
長寿命化が達成できるなど、各種の効果を得るこ
とができる。とくにこの各発明は原子力発電設備
用給水加熱器のごときに使用して、顕著な効果を
あげることができる。
[Table] According to Table 3, all the invented steels exhibit sufficiently high tensile strength and toughness at room temperature and 250°C to be suitable for the above uses, and C content is required to improve EC resistance and weldability. It is clear that even if it is reduced, there is no problem in terms of strength. In addition, even if the normalizing and tempering treatments conventionally applied to steel for feed water heaters are changed to annealing treatments that do not increase strength, the C content can be significantly reduced compared to the conventional method, which is advantageous in terms of strength. It is completely new. Next, regarding the relationship between weld crack susceptibility and C content, the crack prevention preheating temperature of conventional steels No. 5 and 6 and comparative steel No. 8, which have a C content exceeding the upper limit of this invention, is Although it is 150-200℃,
According to this invention, if the C content is limited to 0.14% or less, the preheating temperature can be lowered to 100°C or less. In other words, while conventional steel required preheating to a high temperature of at least 150 to 200°C to prevent welding cracks, the steel of this invention requires preheating to a high temperature of at least 150 to 200°C.
It only needs to be preheated to about 100℃, which can be said to be a dramatic improvement in welding work. In addition, regarding EC resistance, comparative steel No. 7 and 8 have C content (0.15 to 0.17%) comparable to conventional steel.
Conventional steel when only the Si content is less than 0.45%
Although the improvement in EC resistance over No. 6 is slight, the combination of low C and low Si
Invention steels No. 1 to 4 containing Ni, V, and Al have high resistance to
It is clear that EC properties are significantly improved. That is, in addition to limiting the C content to 0.14% or less and the Si content to less than 0.45% as steel for feed water heaters, trace amounts of Cu and Ni are simultaneously added, preferably 0.16% to 0.30% of each. In addition to this, it has been found that the addition of V can significantly improve the EC resistance. (Effects of the Invention) As described in detail above, according to the present invention, the preheating temperature for welding can be reduced to about 100°C or considerably lower, and there is less risk of damaging the working environment. Since less energy is required for preheating during welding, energy costs can be lowered, and of course, it has much better EC resistance against wet steam, so it can achieve various effects such as extending the life of the container. I can do it. In particular, each of these inventions can be used with remarkable effects, such as in feed water heaters for nuclear power generation equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はE.C.試験片の斜視図である。 FIG. 1 is a perspective view of an E.C. test piece.

Claims (1)

【特許請求の範囲】 1 C:0.02〜0.14重量% Si:0.45重量%未満 Mn:0.30〜0.80重量% Cr:0.70〜1.60重量% Mo:0.40〜0.70重量% Cu:0.02〜0.5重量% Ni:0.02〜0.5重量% Al:0.005〜0.08重量%及び V:0.005〜0.08重量% を含有し、残余は不可避不純物を除き実質的に
Feの組成になり、耐E.C.性及び溶接性に優れる
ことを特徴とする、湿り蒸気下で使用する低C−
低Si−Cr−Mo鋼。 2 C含有量が0.13重量%以下でCu及びNi含有
量がそれぞれ0.16〜0.30重量%である、特許請求
の範囲1に記載した低C−低Si−Cr−Mo鋼。
[Claims] 1 C: 0.02 to 0.14% by weight Si: Less than 0.45% by weight Mn: 0.30 to 0.80% by weight Cr: 0.70 to 1.60% by weight Mo: 0.40 to 0.70% by weight Cu: 0.02 to 0.5% by weight Ni: Contains 0.02 to 0.5% by weight Al: 0.005 to 0.08% by weight and V: 0.005 to 0.08% by weight, and the remainder is substantially free except for inevitable impurities.
It has a Fe composition and is characterized by excellent EC resistance and weldability.
Low Si-Cr-Mo steel. 2. The low C-low Si-Cr-Mo steel according to claim 1, wherein the C content is 0.13% by weight or less, and the Cu and Ni contents are each 0.16 to 0.30% by weight.
JP2697681A 1981-02-27 1981-02-27 Low c-low si-cr-mo steel used in wet vapor Granted JPS57143467A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2697681A JPS57143467A (en) 1981-02-27 1981-02-27 Low c-low si-cr-mo steel used in wet vapor
US06/351,752 US4529454A (en) 1981-02-27 1982-02-24 Low C-Cr-Mo steel used under wet steam
DE19823207032 DE3207032A1 (en) 1981-02-27 1982-02-26 STEELS WITH LOW C, CR AND MO CONTENT
SE8201211A SE459664B (en) 1981-02-27 1982-02-26 APPLICATION OF A CR-MO STEEL TO A FEED WATER HEATER
US07/071,709 USRE33006E (en) 1981-02-27 1987-07-08 Feed-water heater comprising low C-Cr-Mo steel components used under wet steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2697681A JPS57143467A (en) 1981-02-27 1981-02-27 Low c-low si-cr-mo steel used in wet vapor

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP7755186A Division JPS6250443A (en) 1986-04-05 1986-04-05 Low c-low si-cr-mo steel used under wet steam condition
JP7755086A Division JPS6250439A (en) 1986-04-05 1986-04-05 Low c-low si-cr-mo steel used under wet steam condition
JP7755286A Division JPS6250440A (en) 1986-04-05 1986-04-05 Low c-low si-cr-mo steel used under wet steam condition

Publications (2)

Publication Number Publication Date
JPS57143467A JPS57143467A (en) 1982-09-04
JPS6156310B2 true JPS6156310B2 (en) 1986-12-02

Family

ID=12208182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2697681A Granted JPS57143467A (en) 1981-02-27 1981-02-27 Low c-low si-cr-mo steel used in wet vapor

Country Status (1)

Country Link
JP (1) JPS57143467A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139650A (en) * 1984-12-10 1986-06-26 Hitachi Ltd Turbine diaphragm
JPS61291948A (en) * 1985-06-20 1986-12-22 Kawasaki Steel Corp Production of metallic material for nuclear reactor
JPH02250941A (en) * 1989-03-24 1990-10-08 Sumitomo Metal Ind Ltd Low carbon chromium-molybdenum steel and its manufacture
JP4781767B2 (en) * 2005-10-05 2011-09-28 三菱重工業株式会社 Manufacturing method of structure for high temperature

Also Published As

Publication number Publication date
JPS57143467A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
JP4609138B2 (en) Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
JP4561834B2 (en) Low alloy steel
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
CN105543704A (en) High-strength, shock-resistant, fire-proof and corrosion-proof steel plate and manufacturing method
JP4816642B2 (en) Low alloy steel
CN105369149B (en) A kind of H grades of alitizing is modified steel for sucker rod and its body of rod manufacture method
US6464802B1 (en) High Cr steel pipe for line pipe
JPS6156310B2 (en)
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JPS6151009B2 (en)
JPS6254062A (en) Low c-cr-mo steel used under damp steam
JP2659813B2 (en) Manufacturing method of high strength low alloy heat resistant steel
JPH0247526B2 (en)
JPS6156309B2 (en)
JPH0377848B2 (en)
JPH0254414B2 (en)
JPS6250439A (en) Low c-low si-cr-mo steel used under wet steam condition
JPS6254065A (en) Low c-cr-mo steel used under damp steam
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPS6250440A (en) Low c-low si-cr-mo steel used under wet steam condition
JP4010017B2 (en) Method for producing martensitic stainless steel pipe with excellent SSC resistance
JP2659814B2 (en) Manufacturing method of high strength low alloy heat resistant steel
JP2006193816A (en) Steel sheet superior in workability and producibility, and manufacturing method therefor
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPH1161267A (en) Manufacture of high chromium martensitic seamless steel tube for line pipe