JPS6254065A - Low c-cr-mo steel used under damp steam - Google Patents

Low c-cr-mo steel used under damp steam

Info

Publication number
JPS6254065A
JPS6254065A JP7755486A JP7755486A JPS6254065A JP S6254065 A JPS6254065 A JP S6254065A JP 7755486 A JP7755486 A JP 7755486A JP 7755486 A JP7755486 A JP 7755486A JP S6254065 A JPS6254065 A JP S6254065A
Authority
JP
Japan
Prior art keywords
steel
resistance
weight
content
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7755486A
Other languages
Japanese (ja)
Other versions
JPH0254415B2 (en
Inventor
Fumio Hataya
幡谷 文男
Masakiyo Izumitani
泉谷 雅清
Yoshikuni Oshima
大島 義邦
Koichi Akutsu
圷 耕一
Shuzo Ueda
上田 修三
Masaaki Ishikawa
正明 石川
Yuji Kusuhara
楠原 祐司
Iwao Shiraishi
巌 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Ltd
Priority to JP7755486A priority Critical patent/JPS6254065A/en
Publication of JPS6254065A publication Critical patent/JPS6254065A/en
Publication of JPH0254415B2 publication Critical patent/JPH0254415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled low C-Cr-Mo steel excellent in EC resistance and welability and having moderate strength and toughness by specifhing a composition consisting of C, Si, Mn, Cr, Mo, Cu, Ni and Fe. CONSTITUTION:The low C-Cr-Mo steel excellent in weldability and showing superior EC resistance when used under damp steam of a feed water heater for nuclear power plant or the like can be obtained by providing a composition consisting of, by weight, 0.02-0.14% (preferably <=0.13%) C, 0.45-0.90% Si, 0.30-0.80% Mn, 0.70-1.60% Cr, 0.40-0.70% Mo, 0.02-0.5% (preferably 0.16-0.30%) Cu, 0.02-0.5% (preferably 0.16-0.30%) Ni and the balance essentially Fe except inevitable impurities and further containing, if necessary, 0.005-0.08% Al. The above steel is refined after regulation into prescribed components and is subjected to rolling, forging, etc., by the ordinary method, to which normalizing-and-tempering or annealing treatment is applied to form a steel material.

Description

【発明の詳細な説明】 (産業上の利用分野) 湿り蒸気下の使途に供される新規な低C−Cr−Mo鋼
に関してこの明細書では、とくに原子力発電設備用給水
加熱器または類似物の用途にて特有なエロージョン・コ
ロ−ジョン(B、 C,と略す)のアタツクを受ける環
境中でも適切に使用することができるように成分組成を
調整した、上記種類の鋼に係る開発研究の成果を提案し
ようとするものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This specification relates to a new low C-Cr-Mo steel for use in wet steam applications, particularly in feed water heaters for nuclear power generation equipment or similar applications. We present the results of our research and development on the above-mentioned types of steel, whose chemical compositions have been adjusted so that they can be used appropriately even in environments where they are attacked by erosion and corrosion (abbreviated as B and C), which are unique to the application. This is what I am trying to propose.

ここに通常250℃以下の、湿り蒸気および高温凝縮水
、あるいは高温凝縮水自体につき単に、語゛′湿り蒸気
”で一括してあられすこととして、これら高温の気液二
相流又は高温水流の高速流動により、たとえば軽水炉の
ごとき原子力発電設備用給水加熱器のような密閉容器の
胴体内表面が、B。
Wet steam and high-temperature condensed water, or high-temperature condensed water itself, which are usually below 250°C, are simply collectively referred to as "wet steam", and these high-temperature gas-liquid two-phase flows or high-temperature water flows are collectively referred to as "wet steam". Due to high-speed flow, the inner surface of the body of a closed vessel such as a feedwater heater for nuclear power generation equipment such as a light water reactor becomes B.

C0によるアタックを受けた場合、B、 C1による腐
食生成物が、原子炉系統内を循環することによる系統全
体の放射化弊害や、給水加熱器自体のE、C,損傷に由
来した信頼性低下が懸念される。  。
When attacked by C0, the corrosion products caused by B and C1 circulate within the reactor system, resulting in the activation of the entire system, and the reduction in reliability due to E, C, and damage to the feed water heater itself. There are concerns. .

これらの問題を排除する手段として、まず設計面からは
、系統内金体の流体の低流速化、すなわち給水加熱器胴
体径および配管系統口径の増大による流体の低流速化、
そして材料面から耐B、 C1性のより優れた鋼種の採
用が考えられる。
As a means to eliminate these problems, first from a design perspective, the flow velocity of the fluid in the metal body in the system should be lowered by increasing the diameter of the feed water heater body and the diameter of the piping system.
From a material standpoint, it is conceivable to use steel types with better B and C1 resistance.

前者の系統向流体の低流速化は設備の大型化につながり
、鋼材使用量の増加、ひいては材料費、建設費の増加を
招くため、むしろ、材料面でこの種の弊害を未然に防止
することが要請される。
In the former case, lowering the flow velocity of the system fluid leads to larger equipment, which leads to an increase in the amount of steel used, which in turn leads to an increase in material and construction costs, so it is better to prevent this kind of harm from the material perspective. is requested.

(従来の技術) E、 C,に関する従来の数多くの知見、研究の成果が
解析、検討された結果、第1表に示すJIS G410
G4109SC(通称11/4%Cr−1/2%Mo−
3/4%S1鋼)の化学組成、熱処理(焼ならし焼もど
しく以下N−Tと略記する)と焼なましく以下Aと略記
する)との二種類)および機械的性質(N−T鋼および
A鋼について、それぞれ高強度レベルおよび低強度レベ
ル)の規格範囲のうち、C含有量をとくに、規格上限近
傍の0.15〜0.17%に規制し、熱処理もN−Tに
限定した高強度レベルの高C−11/4%Cr−1/2
%Mo−3/4 XSi鋼こそ、給水加熱器に適するす
ぐれた耐0、C1性をもつ鋼であるとの結論に従い、そ
の特性が実際にも実験で確認され、かようにしてこの高
C−11/4%Cr−1/2%Mo−3/4%S1鋼が
、原子力発電設備のより高い安全性強化策とし我国で独
自に、前記給水加熱器用鋼材として採用されるに至った
のである。
(Prior art) As a result of analyzing and examining a large number of conventional knowledge and research results regarding E and C, JIS G410 shown in Table 1 was developed.
G4109SC (commonly known as 11/4%Cr-1/2%Mo-
3/4% S1 steel), heat treatment (normalizing and tempering, hereinafter abbreviated as N-T) and annealing, hereinafter abbreviated as A), and mechanical properties (N- For T steel and A steel, within the standard range of high strength level and low strength level, respectively, the C content is specifically regulated to 0.15 to 0.17%, which is near the upper limit of the standard, and heat treatment is also restricted to N-T. High C-11/4%Cr-1/2 with limited high strength level
Following the conclusion that %Mo-3/4 -11/4%Cr-1/2%Mo-3/4%S1 steel has been uniquely adopted in Japan as the steel material for the feed water heater as a measure to enhance the safety of nuclear power generation equipment. be.

ここでC含有量が0.15%以上のこの種網が適用され
る理由は、一つに耐8.C1性の確保のため鋼に硬さを
付与するのに必要であるということに主として由来し、
これに加えてSCMV−3のうちとくにN−T鋼の規格
、すなわち高い引張強度(例えば引張強さ53kgf/
mm2以上)を、保証することにあった。
One of the reasons why this type of net with a C content of 0.15% or more is applied is that it has a resistance to 8. This is mainly due to the fact that it is necessary to impart hardness to steel to ensure C1 properties.
In addition to this, the standards for SCMV-3, especially N-T steel, are high, such as high tensile strength (for example, tensile strength of 53 kgf/
mm2 or more).

しかるに今日原子力発電設備用給水加熱器の耐E、 C
,性向上策として我国では、専ら材料面で対処すべく高
級な高C−11/4%Cr−1/2%Mo−3/4%S
i鋼を採用するすう勢にあるとは言え、その一方で上記
のような高C−11/4%Cr−1/2%Mo−3/4
%Si鋼の使用は次に示すとおり溶接施工性がわるいた
め数多くの問題を抱えている。
However, today the resistance of feed water heaters for nuclear power generation equipment is E and C.
, In Japan, as a measure to improve the properties, we mainly deal with materials, using high-grade high C-11/4%Cr-1/2%Mo-3/4%S.
Although there is a tendency to adopt i steel, on the other hand, high C-11/4%Cr-1/2%Mo-3/4 as mentioned above
The use of %Si steel has many problems due to its poor weldability as shown below.

つまり前記給水加熱器は、直径約2ms長さ約10mに
及ぶ巨大な容器状である。先ず胴板は鋼板を曲げ加工に
より円筒状として長手方向を溶接し、この円筒状のもの
を数個、円周溶接でつなぐ。この円筒内部にさらに管板
、管および各種部材が溶接などにより組込まれた後、両
端に鏡板を溶接する。かかる溶接組立にあたって、高C
−11/4%Cr−1/2%Mo−3/4%Si鋼は、 溶接硬化性指数、C当量(C+Si/24+Mn/6+
Ni/40+Cr15+Mo/4+V/14)が例えば
0.72%、また溶接われ感受性指数、PCl4値(C
+S i/30+Mn/20+Cu/20+Ni/60
+Cr/20+Mo/15+V/10+5B)が例えば
0.32% であることからも明らかなように、溶接われを起こし易
い鋼であるので、溶接、に際しては溶接われなどの回避
のため予熱、後熱をことさらに入念に行うと同時に溶接
後の応力除去焼きなましく通常5tress Reli
eving、略してSRと呼ばれる。)も極力高温で長
時間行う必要がある。
In other words, the feed water heater is shaped like a huge container with a diameter of about 2 ms and a length of about 10 m. First, the body plate is made by bending a steel plate into a cylindrical shape and welding the longitudinal direction, and then several of these cylindrical pieces are connected by circumferential welding. After the tube plate, tubes, and various other members are further assembled inside this cylinder by welding or the like, end plates are welded to both ends. In such welding assembly, high C
-11/4%Cr-1/2%Mo-3/4%Si steel has a weld hardenability index, C equivalent (C+Si/24+Mn/6+
Ni/40+Cr15+Mo/4+V/14) is, for example, 0.72%, and the welding susceptibility index, PCl4 value (C
+Si/30+Mn/20+Cu/20+Ni/60
+Cr/20+Mo/15+V/10+5B) is, for example, 0.32%, so it is a steel that is prone to welding cracks, so when welding, preheating and postheating should be carried out to avoid welding cracks. Particularly careful and at the same time stress-relieving annealing after welding, usually 5tress Reli
eving, or SR for short. ) must also be carried out at extremely high temperatures for a long period of time.

しかしここに入念な予熱とは、例えば通常ガスバーナで
溶接予定箇所を250℃程度の温度に上げることであり
、従って溶接作業環境をわる(するばかりか溶接能率を
落とし、ガスバーナによるエネルギー消費も著しいなど
、多大の不利を生ずる。
However, careful preheating means raising the temperature of the area to be welded to around 250°C using a gas burner, for example, and therefore not only affects the welding work environment (not only does it reduce welding efficiency, but the energy consumption of the gas burner is also significant). , resulting in great disadvantages.

(発明が解決しようとする問題点) このようにして現在の原子力発電設備用給水加熱器の建
設に対して、省エネルギーや作業環境、能率などの改善
のためには、溶接われ感受性の低いCr−Mo鋼の開発
はきわめて重要である。
(Problems to be Solved by the Invention) In this way, for the construction of current feed water heaters for nuclear power generation equipment, in order to save energy, improve the work environment, and improve efficiency, it is necessary to use Cr- The development of Mo steel is extremely important.

ここに湿り蒸気に対する耐8.C1性を具備しているこ
と、給水加熱器に適する強度およびじん性をもつことが
不可欠の条件である。なお、この耐B。
Resistance to wet steam 8. The essential conditions are that it has C1 properties and has strength and toughness suitable for feed water heaters. In addition, this resistance B.

C0性に関し、これまで使用されていた高C−11/4
%Cr−1/2%Mo−3/4%Si鋼は決して完璧で
はなく、容器の寿命、操業の安全性を考慮し、さらに少
しでもより改善されることもまた切望されている。
Regarding C0 properties, the high C-11/4 that has been used so far
%Cr-1/2%Mo-3/4%Si steel is by no means perfect, and in consideration of the lifespan of the container and the safety of operation, further improvements are desperately needed.

すなわち、この発明の目的は湿り蒸気下での耐E、 C
0性にすぐれ、しかも溶接性にすぐれた鋼組成を提供す
ることにある。
That is, the purpose of this invention is to provide resistance to E and C under wet steam.
It is an object of the present invention to provide a steel composition with excellent zero properties and excellent weldability.

まず溶接性を改良するにはC含有量を低減すればよいこ
とは前記C当量、PGI1値などの計算式から明白であ
るが、そうした場合、鋼の硬さは当然 ・低下するので
耐E、C,性は劣化することが通常推定される。
First, it is clear from the calculation formulas for the C equivalent and PGI1 value mentioned above that in order to improve weldability, it is sufficient to reduce the C content, but in such a case, the hardness of the steel naturally decreases, so the E resistance, C. It is usually assumed that the quality deteriorates.

ここに耐B、 C,性を損なわずに溶接性を改善すると
いうより、むしろ耐B、 C0性をさらに向上させ、し
かも溶接性も改善させることが望まれているわけで、耐
8.C1性の向上に対してC含有量の低減は元来不適切
と考えるのが当業技術者の一般常識であり、事実C含有
量の低減によって耐8.C1性性の改良を試みた事例は
見出せない。
Rather than improving weldability without impairing B, C and resistance, it is desired to further improve B and C0 resistance, and also improve weldability. It is common knowledge among those skilled in the art that reducing C content is inherently inappropriate for improving C1 property, and in fact, reducing C content can improve resistance to 8. There are no examples of attempts to improve C1 properties.

そして一方でこの課題は、現在の技術水準の下では経済
性を考慮すると克服不可能な難題であると考えられ、前
述したようないわば妥協を余儀なくしていたのが実情で
ある。
On the other hand, this problem was considered to be an insurmountable problem in terms of economic efficiency under the current state of technology, and the reality was that the compromises mentioned above had to be made.

(問題点を解決するための手段) 発明者らはかような難題につき、敢えてより有利な解決
を目指してとくにこの鋼種におけるC含有量および微量
合金元素が耐E、C,性、溶接性、機械的性質に及ぼす
べき関係の本質を、系統的、基礎的に鋭意研究を進めた
結果、意外な事実、即ちこの種Cr−Mo鋼では耐B、
 C0性は、■C含有量を0.14%以下に低減させる
方がよりすぐれるようになること、 ■さらに微量のCuおよびNiの同時添加によって顕著
に改善されること、 ■■、■の各場合とも強度レベルが低くても優れた性能
が実現されること、 などを発見した。
(Means for Solving the Problems) The inventors have purposely tried to find a more advantageous solution to the above-mentioned problems, and have particularly focused on improving the C content and trace alloying elements of this steel type in terms of E resistance, C resistance, weldability, As a result of systematic and fundamental research into the essence of the relationships that should affect mechanical properties, we discovered an unexpected fact: this type of Cr-Mo steel has B resistance,
Regarding the C0 property, ■ it becomes better when the C content is reduced to 0.14% or less, ■ it is significantly improved by the simultaneous addition of trace amounts of Cu and Ni, ■■, ■. We discovered that in each case, excellent performance was achieved even at low strength levels.

かような事実は何れもこれまでの関係技術上の常識ない
しは学術的概念とは相反する予想外の知見といえる。
All of these facts can be said to be unexpected findings that contradict conventional technical common sense or academic concepts.

発明者らはこれらの知見事実を前記給水加熱器のごとき
湿り蒸気下で使用される鋼に応用し、かような用途にお
いて上述のように難題とされた、耐ε、C1性ならびに
溶接性の両面的な改善を一挙に成し遂げたのである。
The inventors applied these findings to steels used under wet steam conditions, such as the feedwater heaters mentioned above, and improved the ε resistance, C1 resistance, and weldability, which were considered difficult in such applications as mentioned above. This resulted in improvements in both aspects all at once.

この第1発明は、c:o、 02〜0.14重量% (
以下単に%で示す) 、Si:0.45〜0.90%、
Mn:0.30〜0.80%、Cr:0.70〜1.6
0%及びMo:0.40〜0.70%を含み残余は不可
避不純物を除き実質的にFeの組成を基本成分として、
これに固溶体硬化で強度上昇に寄与する元素であるCu
及びN1をそれぞれ0.02〜0.5%で同時に含有さ
せた組成とすることで、低C化により基本成分で目指す
溶接性および耐8.C6性の改善を達成したものである
This first invention contains c:o, 02 to 0.14% by weight (
(hereinafter simply expressed in %), Si: 0.45 to 0.90%,
Mn: 0.30-0.80%, Cr: 0.70-1.6
0% and Mo: 0.40 to 0.70%, with the remainder excluding inevitable impurities and having a substantially Fe composition as a basic component,
In addition, Cu is an element that contributes to increasing strength through solid solution hardening.
By making the composition contain 0.02 to 0.5% of N1 and N1 at the same time, the weldability and resistance 8. This achieved improvement in C6 properties.

又、この第2発明は、C:0.02〜0.14重量%(
以下単に%で示す) 、Si: 0.45−0.90%
、!+I n :0、30〜0.80%、Cr:0.7
0 〜1.60%、Mo:0.40 〜0.30%、C
u: o、 02〜0.5%、Ni:0.02〜0.5
%及びAl:0.005〜0.08%を含み残余は不可
避不純物を除き実質的にFeの組成とすることで、耐ε
、C8性および溶接性の改善を達成した。
Further, in this second invention, C: 0.02 to 0.14% by weight (
(hereinafter simply expressed in %), Si: 0.45-0.90%
,! +In: 0, 30-0.80%, Cr: 0.7
0 to 1.60%, Mo: 0.40 to 0.30%, C
u: o, 02-0.5%, Ni: 0.02-0.5
% and Al: 0.005 to 0.08%, and the remainder is essentially Fe, excluding inevitable impurities, to improve the ε resistance.
, improved C8 properties and weldability.

なお上記したところのうちの重要成分であるC含有量を
とくに0.02〜0.13%、同じ<Cu及びNi含有
量につきそれぞれ0.16〜0.30%を、この各発明
で所期した効果を一層高める領域として限定した実施態
様を包含する。
In addition, the C content, which is an important component among the above, is particularly set at 0.02 to 0.13%, and the same <Cu and Ni contents are set at 0.16 to 0.30%, respectively, as expected in each of the inventions. The present invention includes embodiments limited to areas where the above effects can be further enhanced.

(イ乍用) さて上記成分範囲の限定理由はつぎのとおりである。(for I) The reasons for limiting the above component ranges are as follows.

C含有量はこの発明で最重要な要件であり、溶接硬化性
および溶接われ感受性を低減させ溶接の予熱温度の低下
、後熱の省略、そして応力除去焼きなまし温度の低下、
さらにはすぐれた耐B、 C0性をとくに在来観念を打
破して実現するためには、0.14%以下に限定されな
ければならない。溶接性の点ではC量はもとより低けれ
ば低いほどよいが、原子力発電設備用給水加熱器などの
湿り蒸気下での使途に供用する鋼として要求されるよう
な、常温並びに約250℃までの温度域における強度お
よびじん性を得るには少なくとも0.02%は必要であ
るので下限を0.02%とする。
The C content is the most important requirement in this invention, reducing weld hardenability and weld crack sensitivity, lowering the preheating temperature of welding, omitting postheating, and lowering the stress relief annealing temperature.
Furthermore, in order to achieve excellent B and C0 resistance, particularly breaking through conventional ideas, the content must be limited to 0.14% or less. From the point of view of weldability, the lower the C content, the better, but it is necessary to use steel at room temperature and temperatures up to about 250°C, which is required for steel used in wet steam environments such as feed water heaters for nuclear power generation equipment. Since at least 0.02% is necessary to obtain strength and toughness in the range, the lower limit is set at 0.02%.

とくにこの発明に従う組成のCr−Mo鋼はC含有量を
極く微量ではあっても上記のように低減させると、溶接
われ感受性が著しく改善されるところに顕著な特徴をあ
られし、さらにこのC含有量の上限0.14%から0.
13%への低下により強度レベルの大きな低下を招くこ
となく溶接われ感受性を著しく改善することができ、従
ってC含有量は好ましくは0.13%、より好ましくは
0.11%までとするのが良い。
In particular, the Cr-Mo steel having the composition according to the present invention has a remarkable feature in that when the C content is reduced as described above, even if it is a very small amount, the welding flaw sensitivity is significantly improved. The upper limit of content is 0.14% to 0.
A reduction to 13% can significantly improve weld susceptibility without causing a significant drop in strength levels, so the C content is preferably up to 0.13%, more preferably up to 0.11%. good.

次にSiは常温およびに高温における強度の増加に有効
な元素である。この発明では所期した効果を充分発揮さ
せるためにC含有量の厳しい制限を余儀なくしているの
でそれに伴う強度低下も予測され、ここに所定の強度を
維持するためには最低のS1含有量は0.45%が必要
であり、強度の点では0.90%までなら多ければ多い
ほどよいが、0.90%を超えると溶接熱影響部のしん
性が劣化するので0.45〜0,90%に限定される。
Next, Si is an element effective in increasing strength at room temperature and at very high temperatures. In this invention, in order to fully exhibit the desired effect, it is necessary to strictly limit the C content, so it is expected that the strength will decrease accordingly, and in order to maintain the specified strength, the minimum S1 content is 0.45% is required, and from the viewpoint of strength, the more the better, up to 0.90%, but if it exceeds 0.90%, the toughness of the weld heat affected zone deteriorates, so 0.45 to 0. Limited to 90%.

Mnは鋼に強度と延性を与えるために0.30%以上を
必要とする反面、この発明の組成の鋼では強度確保に対
してむしろCrおよびMoが大きく寄与するため、強度
の点でMnを大量に使用する必要はなくむしろ0.80
%を超えると却って溶接硬化性が上昇し問題を生じるの
で0.30〜0.80%に限定する。
Mn needs to be 0.30% or more in order to give strength and ductility to steel, but in steel with the composition of this invention, Cr and Mo make a large contribution to ensuring strength, so Mn is not necessary in terms of strength. There is no need to use a large amount, rather 0.80
If it exceeds 0.30% to 0.80%, the welding hardenability will increase and cause problems.

CrおよびMoはともに高い流速の湿り蒸気によるE、
 C0に対する抵抗を増す重要な元素である。原子力発
電設備用給水加熱器などの用途ですぐれた耐ε、C8性
を付与するには、この各発明の組成の鋼ではCrおよび
MOはそれぞれ少なくとも0.70%および0.40%
必要である。CrおよびMoは耐ε、C1性の向上の目
的に照らして多ければその効果も大きいが、Crは1.
60%を超えると、またMoは0.70%を超えると何
れも加工性、溶接性の低下が懸念される。従って、Cr
含有量は0.70〜1.60%に、またMOは0.40
〜0.70%にそれぞれ限定される。なおCrはそもそ
も焼入性を向上させる元素として高強度組織の形成に寄
与するのみならず固溶体強化作用を有するものであり、
一方MOは析出硬化型元素であり、焼もどし処理時に炭
化物を微細に析出して何れも強度の上昇にも寄与し、そ
の結果として上述の効果がそれぞれの制限範囲内で適切
に発揮される。
Both Cr and Mo are treated by E,
It is an important element that increases resistance to C0. In order to provide excellent ε resistance and C8 properties for applications such as feed water heaters for nuclear power generation equipment, the steels with the compositions of these inventions must contain at least 0.70% and 0.40% of Cr and MO, respectively.
is necessary. Considering the purpose of improving ε resistance and C1 property, the larger the amount of Cr and Mo, the greater the effect.
If it exceeds 60%, and if Mo exceeds 0.70%, there is a concern that workability and weldability will deteriorate. Therefore, Cr
The content is 0.70-1.60%, and the MO is 0.40%.
~0.70%, respectively. Note that Cr not only contributes to the formation of a high-strength structure as an element that improves hardenability, but also has a solid solution strengthening effect.
On the other hand, MO is a precipitation-hardening element, which precipitates fine carbides during tempering treatment, both of which also contribute to an increase in strength, and as a result, the above-mentioned effects are appropriately exhibited within their respective limits.

次にCu:0.02〜0.5%、Ni:0.02〜0.
5%で両者を同時に含有させる理由は、高い流速の湿り
蒸気に対する耐B、 C,性がさらに著しく改善できる
ことにある。この効果はCuO,02%以上、Ni0.
02%以上でそれらの各単独の場合に比べて複合するこ
とにより一層著しくなるので併用する必要がある。耐ε
Next, Cu: 0.02-0.5%, Ni: 0.02-0.
The reason for containing both at the same time at 5% is that the B, C, resistance to high flow rate wet steam can be further significantly improved. This effect is due to CuO, 0.02% or more, Ni0.
At 0.02% or more, the effect becomes more pronounced when combined than when each of them is used alone, so it is necessary to use them together. Epsilon resistance
.

C0性の改善の点ではCuおよびNiは多ければ多いほ
どよいがいずれか一方が0.5%を超えると溶接性を著
しく低下させるのでこれらの各含有量の上限を0.5%
とした。CuおよびNiの同時添加による耐B、C。
In terms of improving C0 properties, the more Cu and Ni there are, the better; however, if either one exceeds 0.5%, weldability will be significantly reduced, so the upper limit of each content should be set at 0.5%.
And so. Resistance B and C due to simultaneous addition of Cu and Ni.

性の一層の向上に対しては、おの右の0.16%以上と
することが好ましく、何れも0.5%までなら多ければ
多いほど効果は大きいが、その反面で溶接われ感受性に
関してはむしろ少ない方がよく、おのおの0.30%以
下であることが望まれる。
In order to further improve the welding properties, it is preferable to set it to 0.16% or more, and the higher the amount up to 0.5%, the greater the effect, but on the other hand, in terms of welding susceptibility, In fact, less is better, and each content is preferably 0.30% or less.

つまり耐B、 C1性と溶接性を最高にするには、Cを
0.13%以下に限定し、かつ0.16〜0.30%で
CuおよびNiの両者を含有させることが実施上望まし
い。
In other words, in order to maximize B resistance, C1 properties, and weldability, it is practically desirable to limit C to 0.13% or less, and to contain both Cu and Ni at 0.16 to 0.30%. .

CuおよびNiは元来固溶体強化作用をもち焼入性を向
上させる元素であり、これらを複合で含有させることに
より強度は大きく上昇する。かようにCuおよびNiに
より強度が向上できるので、強度面でのC含有量の低減
が可能になるわけで、ひいてはCu、Niの含有が耐B
、 C0性の改善にも役立つわけである。すなわちCu
とNiは合わせ含有されるとそれら自身が耐ε、C0性
を改善するとともに高強度化に役立ち、その高強度化は
C含有量の低減を可能にするのでこの点でも耐E.C.
性の向上に二重に寄与することになる。
Cu and Ni are elements that originally have a solid solution strengthening effect and improve hardenability, and by including them in combination, the strength is greatly increased. Since strength can be improved by Cu and Ni in this way, it is possible to reduce the C content in terms of strength, and the content of Cu and Ni can improve B resistance.
, it is also useful for improving C0 properties. That is, Cu
When Ni and Ni are contained together, they themselves improve the ε resistance and C0 property and also help increase the strength.The increase in strength makes it possible to reduce the C content, so this also improves the E. C.
This will contribute doubly to improving sexual performance.

更にAlを0.005〜0.08%の範囲で含有させる
のは、AlがAINを形成することによる細粒化作用に
基づいて、とくにしん性の向上に役立つからである。そ
れらの効果は、0.005%以上で明瞭に発現されて増
量とともに最初は著しくなるが約0.08%で飽和する
ので、0.005〜0.08%に限定する。
Furthermore, the reason why Al is contained in the range of 0.005 to 0.08% is that Al is particularly useful for improving toughness based on the grain refining effect by forming AIN. These effects are clearly expressed at 0.005% or more and become significant at first as the amount increases, but they are saturated at about 0.08%, so they are limited to 0.005 to 0.08%.

この各発明において通常の製鋼工程で含有される程度の
不可避的な混入不純物は許容できる。すなわち、その一
般的な限度はSおよびPについては溶接部の高温われ感
受性を高くするためいずれも0.025%以下にするこ
とが好ましい。一方Nは通常の製鋼工程で含有される0
、 0020〜0.0150%は許容されるが、0.0
150%を超えるとブローホールなどの発生により鋼塊
性状がわるくなるとともに溶接性も劣化するので上記の
範囲であることが好ましい。
In each of these inventions, unavoidable impurities contained in a normal steel manufacturing process are acceptable. That is, the general limit for S and P is preferably 0.025% or less in order to increase the susceptibility of the welded part to high temperature cracking. On the other hand, N is contained in the normal steelmaking process.
, 0020-0.0150% is acceptable, but 0.0
If it exceeds 150%, the properties of the steel ingot will deteriorate due to the occurrence of blowholes, etc., and the weldability will also deteriorate, so it is preferably within the above range.

さらに上記組成の鋼は湿り蒸気下で使用する部材に用い
て前述のとおり耐B、 C,性、溶接性、強度、じん性
等を兼備し、これらの特性が要求される上記用途に充当
してこそ価値があり、経済的である。
Furthermore, steel with the above composition is used for parts used under wet steam, and as mentioned above, it has B, C, resistance, weldability, strength, toughness, etc., and is suitable for the above-mentioned applications that require these properties. It is valuable and economical.

換言すればこの発明は上記用途へ使用された場合に限っ
て品質、経済性の両面で効果を発揮する。
In other words, this invention exhibits effects in terms of both quality and economy only when used for the above-mentioned purposes.

以上、この各発明の鋼組成、用途等の各限定理由を説明
したが、この発明の鋼は前述のような成分調整の下に溶
製したのち、常法による圧延又は鍛造工程を経てから焼
ならしおよび引続き焼もどしを施すか又は焼なましを施
すことにより鋼材として製造され、ここに熱処理は上記
の2種類に限定される。
The reasons for limiting the steel composition, uses, etc. of each invention have been explained above, but the steel of this invention is produced by melting with the above-mentioned composition adjustment, and then subjected to a rolling or forging process by a conventional method, and then sintered. It is produced as a steel material by conditioning and subsequently tempering or annealing, the heat treatment being limited to the two types mentioned above.

なおここでいう焼ならしとはAC3点以上に加熱後空冷
(例えば板厚100111+Q未満では単なる空冷、!
00 n++n以上の極厚材では空冷または強制冷却)
する処理であり、焼もどしとはAC,意思下に加熱後空
冷する処理であり、また焼なましとはACI点以上に加
熱後徐冷する処理である。焼ならし焼もどし材は通常フ
ェライト・パーライト組織であり、ベイナイトを含むこ
ともある。焼なまし材は通常フェライト中パーライト組
織である。
Note that normalizing here refers to air cooling after heating to AC 3 points or higher (for example, if the plate thickness is less than 100111+Q, it is just air cooling!
Air cooling or forced cooling for extremely thick materials of 00n++n or more)
Tempering is a process of AC heating and then air cooling, and annealing is a process of heating to a temperature above the ACI point and then slowly cooling. Normalized and tempered materials usually have a ferrite-pearlite structure and may contain bainite. Annealed materials usually have a pearlite-in-ferrite structure.

湿り蒸気下で使用される機器の代表例として原子力発電
設備用給水加熱器について念のために述べれば、この発
明の鋼の熱処理が給水加熱器用鋼にはこれまで採用され
た事例のない′焼なまし”′でもよいということは大き
な特長であり、次に述べるようにと(に高い価値をもつ
To be sure, we will mention feedwater heaters for nuclear power generation equipment as a typical example of equipment used under wet steam. The fact that it can be annealed is a major feature, and has high value as described below.

すなわち焼なましの熱処理を受けた鋼は焼ならし焼もど
しの処理を受けたものに比べ、溶接後の応力除去焼なま
し等の熱サイクルに鈍感であり組織および機械的性質の
変動も少ない。
In other words, steel that has undergone annealing heat treatment is less sensitive to thermal cycles such as stress relief annealing after welding, and has less variation in structure and mechanical properties than steel that has undergone normalizing and tempering treatments. .

従って大型溶接構造物の応力除去焼なましのように相当
の温度のばらつきが予想されるような場合、構造物の各
部の品質をできるだけ均一にするためには、その構造物
には焼ならし焼もどし鋼よりむしろ焼なまし鋼を用いる
方がより望ましいといえる。
Therefore, when considerable temperature variations are expected, such as during stress-relief annealing of large welded structures, it is necessary to It may be more desirable to use annealed steel rather than tempered steel.

焼なまし鋼にこのような特徴があるにもかかわらず、原
子力発電設備用給水加熱器には従来焼ならし焼もどし鋼
のみが用いられ、これまで焼なまし鋼を用いようとする
動きは全くなかったのであり、その大きな理由は焼なま
し鋼は焼もどし鋼に比べ強度が低く、耐E、 C,性が
著しく劣ると思われていたからである。しかし発明者ら
は従来の固定観念にとられれることなく鋭意研究の結果
、この発明に従う成分において焼なましの熱処理を施し
ても耐E、C,性は頗る大きく、低C化も可能で溶接性
も充分改善でき、その上、原子力発電設備用給水加熱器
用鋼として適切な強度、じん性をもつことを確S忍した
Despite these characteristics of annealed steel, conventionally only normalized and tempered steel has been used in feed water heaters for nuclear power generation equipment, and there has been no movement to use annealed steel until now. The main reason for this was that annealed steel had lower strength than tempered steel, and was thought to have significantly lower E, C, and resistance. However, as a result of intensive research without being bound by conventional fixed ideas, the inventors found that even if the composition according to the present invention is subjected to annealing heat treatment, the resistance to E, C, and properties are extremely high, and it is possible to reduce C. Weldability was sufficiently improved, and it was also confirmed that the steel had appropriate strength and toughness as steel for feed water heaters for nuclear power generation equipment.

(実施例) さて以上述べたようなこの各発明の構成要件をさらに明
瞭にしこの各発明による特別の効果を具体的に示すため
以下実施例について説明する。
(Examples) Now, in order to further clarify the constituent elements of each of the inventions as described above and specifically demonstrate the special effects of each invention, examples will be described below.

供試鋼の化学組成を第2表に示す。The chemical composition of the test steel is shown in Table 2.

表中の記号No、 1〜3が第1発明鋼であり、記号N
o、 4〜13は第2発明鋼で、また記号No、14.
15は我国において湿り蒸気下で使用される機器の代表
例として原子力発電設備用給水加熱器にこれまで使用さ
れてきた市販の高C−11/4%Cr−1/2%Mo−
3/4%Si鋼であり、いわゆる従来鋼に相当し、C含
有量がこの発明の上限値0.14%をおおきく上廻って
0.16〜0.17%である。
Symbols No. 1 to 3 in the table are the first invention steels, and symbol N
o, 4 to 13 are the second invention steels, and symbol No. 14.
15 is a commercially available high C-11/4%Cr-1/2%Mo- that has been used in feed water heaters for nuclear power generation equipment as a representative example of equipment used under wet steam in Japan.
This is 3/4% Si steel, which corresponds to so-called conventional steel, and has a C content of 0.16 to 0.17%, which is much higher than the upper limit of 0.14% according to the present invention.

記号No、16〜18についてはあとで示すN−T−3
R材とN−T材及びA−5R材の何れについても耐E.
C.性の改良に対する微量のCuおよびN1によるこの
各発明の効果が、この各発明によるC含有量の上限値0
.14%を超えると得られなくなることを示すいわゆる
比較鋼であり、またそのうち記号Nα16.17は溶接
性試験に充当した比較鋼である。
Symbol No. 16 to 18 will be shown later in N-T-3.
All of R material, N-T material, and A-5R material have E.
C. The effect of the trace amounts of Cu and N1 on improving the properties of each of these inventions is such that the upper limit of the C content according to each of these inventions is 0.
.. This is a so-called comparative steel which shows that it cannot be obtained if it exceeds 14%, and among these, the symbol Nα16.17 is a comparative steel that was used for the weldability test.

さらに記号No、19.20はCr量がこの発明の下限
値に満たず、また記号No、21.22はCr、 Mo
量がともにこの各発明の範囲の上限値を超え、かくして
耐E、C1性または溶接性のいずれかが劣ることを示す
比較鋼である。
Furthermore, symbol No. 19.20 has a Cr content that does not meet the lower limit of this invention, and symbol No. 21.22 has Cr, Mo
These are comparative steels in which both amounts exceed the upper limits of the respective ranges of the present invention, thus exhibiting inferior E resistance, C1 properties, or weldability.

第2表 これらの鋼は市販のものを用いた記号No、14.15
の従来鋼を除いて、小型高周波誘導加熱式真空溶解炉を
用いて溶製した100 kg鋼塊を、小型圧延機により
板厚30mmに熱間圧延したものである。圧延後の熱処
理は原子力発電設備用給水加熱器用鋼材に従来施されて
いた焼ならし焼もどし処理に限定することなく焼なまし
も行った。
Table 2: These steels are commercially available. Symbol No. 14.15
With the exception of the conventional steel, 100 kg steel ingots were melted using a small high-frequency induction heating vacuum melting furnace and hot rolled to a plate thickness of 30 mm using a small rolling mill. The heat treatment after rolling was not limited to the normalizing and tempering treatments conventionally applied to steel materials for feed water heaters for nuclear power generation equipment, but annealing was also performed.

なおここでいう焼ならし処理は930℃の加熱炉に装入
、1時間保持後抽出し大気中で放冷するCのである。焼
もどし処理条件は660℃x1hとした。
Note that the normalizing treatment referred to here is C, which is charged into a heating furnace at 930°C, held for one hour, extracted, and left to cool in the atmosphere. The tempering treatment conditions were 660°C x 1 hour.

また焼なましの熱処理は930℃の加熱炉に装入、1時
間保持後炉中で鋼板の冷却速度が800〜400℃間の
平均で0.8℃/分にあるよう調節して徐冷させるもの
である。
In addition, for annealing heat treatment, the steel plate is charged into a heating furnace at 930°C, held for 1 hour, and then slowly cooled in the furnace by adjusting the cooling rate of the steel plate to an average of 0.8°C/min between 800 and 400°C. It is something that makes you

鋼板は溶接組立てを行った後必ず応力除去焼なましを受
けるので焼ならし焼もどし材、焼ならし材ともさらに6
45℃x1h、ただしNα15とNα16の場合は67
0℃x3h、No、17とNα18の場合は690℃x
11hの応力除去焼なましくSR)が付与され試験に供
された。ただし溶接性試験に対しては応力除去焼なまし
を行っていない試験材が充当されていることは説明する
までもない。
Steel plates always undergo stress relief annealing after welding and assembly, so both normalized and tempered materials and normalized materials undergo an additional 6
45℃ x 1h, however, 67 in the case of Nα15 and Nα16
0°C x 3h, 690°C x for No, 17 and Nα18
A stress relief annealing (SR) of 11 hours was applied and the test was carried out. However, it goes without saying that test materials that have not undergone stress relief annealing were used for the weldability tests.

これらの供試材料を用いて、まず各発明鋼が原子力発電
設備用給水加熱器に用いられる鋼として妥当な強度、じ
ん性を有することを常温並びに250℃における引張試
験およびV−シャルピー衝撃試験をおうこなうことによ
り験証した。なおここでいう妥当な強度、じん性とは、
例えば引張強さについて言えば常温でおよそ40kgf
/mm2以上であればよく、給水加熱器が150℃程度
に加熱されることを考慮しそれより高めの250℃でも
同様に40kgf/mm2以上が維持されることが望ま
れ、0℃における吸収エネルギーについて言えば使用条
件を考慮するとおよそ2.1kgf−m以上であればよ
いということになる。
Using these test materials, we first conducted tensile tests and V-Charpy impact tests at room temperature and 250°C to confirm that each invented steel has appropriate strength and toughness as steel used in feedwater heaters for nuclear power generation equipment. It was verified by doing this. The appropriate strength and toughness mentioned here are:
For example, in terms of tensile strength, it is approximately 40 kgf at room temperature.
/mm2 or more, and considering that the feed water heater is heated to about 150℃, it is desirable to maintain 40kgf/mm2 or more even at 250℃, which is higher than that, and the absorbed energy at 0℃ Considering the usage conditions, approximately 2.1 kgf-m or more is sufficient.

引張試験には直径5mm、平行部30mm、ゲージ長2
5化の丸棒試片を、また衝撃試験には2mmVノツチシ
ャルピー試片を用いた。
For tensile testing, diameter 5mm, parallel part 30mm, gauge length 2
A 2 mm V notch Charpy specimen was used for the impact test.

また代表的供試材を用いてこの各発明の目的のひとつで
ある溶接性の改善効果を調べた。溶接性試験にはJIS
 Z 3158に定められた斜めY形溶接われ試験法を
用い、われ阻止予熱温度を明らかにした。
Furthermore, the effect of improving weldability, which is one of the objectives of each of the inventions, was investigated using representative test materials. JIS for weldability test
Using the diagonal Y-shaped weld warpage test method specified in Z 3158, the warpage prevention preheating temperature was determined.

次に代表的試験材について行った高速高温水によるE、
C0試験の方法を述べる。試験片は第1図に示すように
直径9mm、厚さ10++unの円板に幅3mm。
Next, E with high-speed high-temperature water was carried out on representative test materials.
The method of C0 test will be described. As shown in Fig. 1, the test piece was a disk with a diameter of 9 mm and a thickness of 10++ mm and a width of 3 mm.

深さ5m+nの溝を十字に切込んだものである。試験は
溝の交叉部に上部より直径1mmのノズルを通し150
℃、酸素5 ppb以下の原子炉水を模擬した高温高圧
水をlOm/sの高流速で500時間吹きつけ、E、 
C0による試験片の重量減を調べることによって行った
A groove with a depth of 5m+n is cut in the shape of a cross. In the test, a nozzle with a diameter of 1 mm was passed through the intersection of the grooves from the top.
℃, high-temperature, high-pressure water simulating reactor water containing 5 ppb or less of oxygen was sprayed at a high flow rate of 10m/s for 500 hours, E.
This was done by examining the weight loss of the test piece due to C0.

以上の試験方法に基づく試験結果を第3表、第21及び
第3図に示す。
Test results based on the above test method are shown in Table 3, FIG. 21, and FIG.

第2図はこの第2発明の組成に属する鋼と従来鋼及び比
較鋼を用いて常温における引張強さとC含有量の関係な
らびに溶接時のわれ阻止予熱温度とC含有量の関係を示
したものである。
Figure 2 shows the relationship between tensile strength and C content at room temperature and the relationship between crack prevention preheating temperature during welding and C content using steel belonging to the composition of the second invention, conventional steel, and comparative steel. It is.

第3表によればいずれの各発明鋼も上記使途に適合して
充分に高い常温および250℃における引張強さとじん
性を示し、耐ε、C0性および溶接性の改善のためC含
有量を低減させても強度の点ではまったく問題がないこ
とが明らかである。また従来給水加熱器用鋼に施されて
いた焼ならし焼もどし処理を、強度ので難い焼なまし処
理に変更しても支障がなく、強度の点ではC含有量を従
来に比べて著しく低減できるということの知見は全く新
規なものである。
According to Table 3, each of the invented steels exhibits sufficiently high tensile strength and toughness at room temperature and 250°C to be suitable for the above-mentioned uses, and C content is required to improve ε resistance, C0 property, and weldability. It is clear that even if it is reduced, there is no problem in terms of strength. In addition, there is no problem in changing the normalizing and tempering treatment conventionally applied to steel for feedwater heaters to an annealing treatment that is difficult to increase strength, and in terms of strength, the C content can be significantly reduced compared to the conventional method. This knowledge is completely new.

次にCr、 Mo量がこの第2発明の範囲に入る鋼につ
いて溶接われ感受性とC含有量の関係を第2図に示す。
Next, FIG. 2 shows the relationship between welding susceptibility and C content for steels whose Cr and Mo contents fall within the range of the second invention.

第2図からこの第2発明の上限値を超えたC含有量を有
する従来鋼No、14及びNo、15並びに比較鋼No
、16のわれ阻止予熱温度は150〜200℃であるの
に反し、この第2発明に従いC含有量を0.14%以下
に限定すると上記予熱温度を125℃以下に低下でき、
さらにC量を0.13%以下、Cu及びNiをそれぞれ
0.30%以下に限定すればさらに100℃以下に低下
できるのである。
From FIG. 2, conventional steels No. 14, No. 15, and comparative steel No. 15 having a C content exceeding the upper limit of the second invention are shown.
, 16, the crack prevention preheating temperature is 150 to 200°C, but if the C content is limited to 0.14% or less according to the second invention, the preheating temperature can be lowered to 125°C or less,
Furthermore, if the amount of C is limited to 0.13% or less and the content of Cu and Ni is limited to 0.30% or less, the temperature can be further reduced to 100° C. or less.

記号No、11とNo、6及びNo、12とNo、13
のわれ阻止予熱温度の比較から、この鋼種の場合に一般
的技術水準の下での予想に反して微量のCu及びNiが
溶接われ感受性に大きな影響を及ぼし、それらの含有量
を何れも0.30%以下に限定することにより、われ阻
止予熱温度をそれらが0.30%超0.50%以下であ
る場合に比べ25℃も低下できる。又、第1発明鋼No
、 1〜3のわれ阻止予熱温度も100℃以下である。
Symbol No. 11 and No. 6 and No. 12 and No. 13
A comparison of the welding prevention preheating temperatures reveals that, in the case of this steel type, trace amounts of Cu and Ni have a large effect on welding susceptibility, contrary to expectations under the general state of the art, and that both of their contents are 0. By limiting the content to 30% or less, the crack prevention preheating temperature can be lowered by 25°C compared to the case where the content is more than 0.30% and 0.50% or less. Also, the first invention steel No.
, 1 to 3, the crack prevention preheating temperature is also 100°C or less.

つまり溶接のわれを阻止するには従来鋼では少なくとも
150〜200℃の高い温度に予熱する必要があったの
に対し、せいぜい125℃以下に予熱すればよく、と(
にC量0.13%以下、Cu及びNi量が0.16〜0
.3%の鋼では100℃以下の予熱でもよいということ
で溶接施工上飛躍的改良ということができる。
In other words, in order to prevent weld cracks, conventional steel needed to be preheated to a high temperature of at least 150 to 200°C, but it is only necessary to preheat to a temperature of 125°C or less (
The amount of C is 0.13% or less, and the amount of Cu and Ni is 0.16 to 0.
.. 3% steel can be preheated to 100°C or less, which can be said to be a dramatic improvement in welding work.

次に耐E、C0性とこの第1発明の重要な要件であるC
、 口uおよびN+含有量との関係についても従来鋼の
記号No、14.15との比較から低C化とともにCu
およびNiの複合添加がこの特性の向上に極めて有効で
あることがわかる。この特性の向上にCuおよびNiの
複合添加が有効であり、Cu及びNiは多ければ多いほ
どその効果も大きいが、Cu及びNiにこの特性向上の
効果を発揮させるにはC含有量の0.14%以下の限定
が不可欠であることは比較鋼No、16〜18と比較す
れば明白である。この種Cu−Mo鋼の耐E、 C0性
が低C化、即ち給水加熱器用鋼としてC含有量を0.1
4%以下に限定することにより、また微量のCuおよび
N1の同時添加、好ましくは各々0.16%以上の添加
により著しく改善することが見出されたわけである。
Next, E resistance, C0 resistance and C
, Regarding the relationship with U and N+ content, as well as lower C and Cu
It can be seen that the combined addition of Ni and Ni is extremely effective in improving this property. The combined addition of Cu and Ni is effective in improving this property, and the more Cu and Ni there are, the greater the effect, but in order for Cu and Ni to exhibit this property improvement effect, the C content must be 0. It is clear from comparison with Comparative Steel Nos. 16 to 18 that the limit of 14% or less is essential. This type of Cu-Mo steel has a low C content of 0.1 as the steel for feed water heaters.
It has been found that significant improvement can be achieved by limiting the content to 4% or less, or by simultaneously adding small amounts of Cu and N1, preferably at least 0.16% of each.

更に耐E、 C,性とこの第2発明の重要な要件である
c、 CuおよびN1含有量との関係について第3図を
用いて説明すると、第2発明綱紀号Nα4,5及び9と
従来鋼の記号No、14及び15、比較鋼記号Nα18
との対比から、C量を0.14%以下にした上、Cu及
びNiを複合添加することが耐ε、C1性の向上に有効
であることが明白である。この種Cr −M o鋼の耐
E、 C。
Furthermore, to explain the relationship between E, C and resistance and c, Cu and N1 content which are important requirements of this second invention using FIG. Steel symbol No. 14 and 15, comparative steel symbol Nα18
From the comparison, it is clear that reducing the amount of C to 0.14% or less and adding Cu and Ni in combination is effective in improving the ε resistance and C1 property. The resistance of this type of Cr-Mo steel is E and C.

性が低C化、即ち給水加熱器用鋼としてC含有量を0.
14%以下に限定することにより、また微量のCuおよ
びN1の同時添加、好ましくは各々が0.16%以上の
添加により著しく改善することが見出されたわけである
In other words, as steel for feed water heaters, the C content is reduced to 0.
It has been found that significant improvement can be achieved by limiting the content to 14% or less, or by simultaneously adding trace amounts of Cu and N1, preferably by adding 0.16% or more of each.

さらに第3表において、Cr及び/又はMo量がこの各
発明の範囲外である0、 5Cr−0,5Mo鋼(記号
No、19、 No、20) 、21/4Cr−1Mo
鋼(記号No、21’、  No、22)についてみる
と、前者はCr量が少ないため耐ε、C1性が不十分で
あり、湿り蒸気下で使用する際にE、 C:が問題とな
ること、また後者は溶接われ感受性指数が高<250℃
の予熱を必要とし作業上多大の困難をともなうことがわ
かる。これに対し各発明鋼は前述したごとく耐6.C0
性、溶接性のいずれをも具備し、湿り蒸気下で使用され
る鋼として優れた特性を有している。
Further, in Table 3, 0, 5Cr-0,5Mo steels (symbols No. 19, No. 20), 21/4Cr-1Mo steels whose Cr and/or Mo content is outside the scope of each invention
Looking at steels (symbols No. 21', No. 22), the former has insufficient ε and C1 resistance due to the small amount of Cr, and E and C: become problems when used under wet steam. Also, the latter has a high welding susceptibility index <250℃
It can be seen that this requires preheating, which is accompanied by great difficulty in operation. On the other hand, each invented steel has a resistance of 6. C0
It has excellent properties as a steel used under wet steam conditions.

(発明の効果) 以上詳細に述べたようにこの発明によれば溶接に当たっ
ての予熱温度を125℃程度またはそれよりもかなり低
い温度にすることができ、作業環境を損なう恐れが少な
いとともに溶接時の予熱に要するエネルギーも少なくて
も済むためエネルギーコストが低下でき、しかも、もち
ろん湿り蒸気に対する耐E、 C0性が格段にすぐれて
いるため容器の長寿命化が達成できるなどの効果を得る
ことができる。とくにこの発明は原子力発電設備用給水
加熱器のごときに使用して、顕著な効果をあげることが
できる。
(Effects of the Invention) As described in detail above, according to the present invention, the preheating temperature during welding can be reduced to about 125°C or considerably lower, which reduces the risk of damaging the working environment and Since less energy is required for preheating, energy costs can be reduced, and of course, the E and C0 resistance against wet steam are extremely excellent, so the life of the container can be extended. . In particular, the present invention can be used with remarkable effects in feed water heaters for nuclear power generation facilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はE、C1試験片の斜視図であり、第2図はC含
有量に関してこの発明の鋼組成における引張強さと溶接
の際のわれ阻止に必要な予熱温度の低減効果とを示す比
較グラフ、第3図は耐6.C0性におよぼす鋼中成分の
影響をまとめて示した比較グラフである。
Figure 1 is a perspective view of the E and C1 specimens, and Figure 2 is a comparison showing the tensile strength of the steel composition of the present invention and the effect of reducing the preheating temperature necessary to prevent cracking during welding with respect to C content. The graph, Figure 3, shows resistance to 6. 1 is a comparison graph summarizing the influence of components in steel on C0 property.

Claims (1)

【特許請求の範囲】 1、C:0.02〜0.14重量% Si:0.45〜0.90重量% Mn:0.30〜0.80重量% Cr:0.70〜1.60重量% Mo:0.40〜0.70重量% Cu:0.02〜0.5重量%及び Ni:0.02〜0.5重量% を含有し、 残余は不可避不純物を除き実質的にFeの組成になり、
耐E.C.性及び溶接性に優れることを特徴とする、湿
り蒸気下で使用する低C−Cr−Mo鋼。 2、C含有量が0.13重量%以下でCu及びNi含有
量がそれぞれ0.16〜0.30重量%である、特許請
求の範囲1に記載した低C−Cr−Mo鋼。 3、C:0.02〜0.14重量% Si:0.45〜0.90重量% Mn:0.30〜0.80重量% Cr:0.70〜1.60重量% Mo:0.40〜0.70重量% Cu:0.02〜0.5重量% Ni:0.02〜0.5重量%及び Al:0.005〜0.08重量%を含有し、残余は不
可避不純物を除き実質的にFeの組成になり、耐E.C
.性及び溶接性に優れることを特徴とする湿り蒸気下で
使用する低C−Cr−Mo鋼。 4、C含有量が0.13重量%以下でCu及びNi含有
量が、それぞれ0.16〜0.30重量%である、特許
請求の範囲3に記載した低C−Cr−Mo鋼。
[Claims] 1. C: 0.02-0.14% by weight Si: 0.45-0.90% by weight Mn: 0.30-0.80% by weight Cr: 0.70-1.60 Weight% Mo: 0.40 to 0.70% by weight, Cu: 0.02 to 0.5% by weight, and Ni: 0.02 to 0.5% by weight, and the remainder is substantially Fe except for inevitable impurities. The composition is
Endurance E. C. A low C-Cr-Mo steel that is used under wet steam and is characterized by excellent weldability and weldability. 2. The low C-Cr-Mo steel according to claim 1, wherein the C content is 0.13% by weight or less, and the Cu and Ni contents are each 0.16 to 0.30% by weight. 3. C: 0.02-0.14% by weight Si: 0.45-0.90% by weight Mn: 0.30-0.80% by weight Cr: 0.70-1.60% by weight Mo: 0. Contains 40-0.70% by weight, Cu: 0.02-0.5% by weight, Ni: 0.02-0.5% by weight, and Al: 0.005-0.08% by weight, with the remainder containing unavoidable impurities. Except for this, the composition is essentially Fe, and the E. C
.. A low C-Cr-Mo steel that is used under wet steam and is characterized by excellent strength and weldability. 4. The low C-Cr-Mo steel according to claim 3, wherein the C content is 0.13% by weight or less, and the Cu and Ni contents are each 0.16 to 0.30% by weight.
JP7755486A 1986-04-05 1986-04-05 Low c-cr-mo steel used under damp steam Granted JPS6254065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7755486A JPS6254065A (en) 1986-04-05 1986-04-05 Low c-cr-mo steel used under damp steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7755486A JPS6254065A (en) 1986-04-05 1986-04-05 Low c-cr-mo steel used under damp steam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2697281A Division JPS57143466A (en) 1981-02-27 1981-02-27 Low c-cr-mo steel used in wet vapor

Publications (2)

Publication Number Publication Date
JPS6254065A true JPS6254065A (en) 1987-03-09
JPH0254415B2 JPH0254415B2 (en) 1990-11-21

Family

ID=13637234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7755486A Granted JPS6254065A (en) 1986-04-05 1986-04-05 Low c-cr-mo steel used under damp steam

Country Status (1)

Country Link
JP (1) JPS6254065A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110917A (en) * 1977-03-11 1978-09-28 Nippon Kokan Kk <Nkk> Steel of excellent sr embrittlement resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110917A (en) * 1977-03-11 1978-09-28 Nippon Kokan Kk <Nkk> Steel of excellent sr embrittlement resistance

Also Published As

Publication number Publication date
JPH0254415B2 (en) 1990-11-21

Similar Documents

Publication Publication Date Title
JP4561834B2 (en) Low alloy steel
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
WO2011142285A1 (en) High-strength steel plate and method for producing same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
EP0411515A1 (en) High strength heat-resistant low alloy steels
JP4816642B2 (en) Low alloy steel
JP7070696B2 (en) Electric resistance sewn steel pipe for hollow stabilizer
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JPS6254062A (en) Low c-cr-mo steel used under damp steam
JPS6151009B2 (en)
JPS6156310B2 (en)
JP3661510B2 (en) High strength thick steel plate with excellent strain aging resistance and method for producing the same
JPS6254065A (en) Low c-cr-mo steel used under damp steam
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPS6156309B2 (en)
JPS6250443A (en) Low c-low si-cr-mo steel used under wet steam condition
JPS6254061A (en) Low c-cr-mo steel used under damp steam
JP3716988B2 (en) Cr-Mo steel excellent in strength and low-temperature toughness and manufacturing method thereof
JPH0151526B2 (en)
JPS6250439A (en) Low c-low si-cr-mo steel used under wet steam condition
KR100514813B1 (en) A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS
JPS6250440A (en) Low c-low si-cr-mo steel used under wet steam condition
JPH1161267A (en) Manufacture of high chromium martensitic seamless steel tube for line pipe