JP4781767B2 - Manufacturing method of structure for high temperature - Google Patents

Manufacturing method of structure for high temperature Download PDF

Info

Publication number
JP4781767B2
JP4781767B2 JP2005291829A JP2005291829A JP4781767B2 JP 4781767 B2 JP4781767 B2 JP 4781767B2 JP 2005291829 A JP2005291829 A JP 2005291829A JP 2005291829 A JP2005291829 A JP 2005291829A JP 4781767 B2 JP4781767 B2 JP 4781767B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
mass
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005291829A
Other languages
Japanese (ja)
Other versions
JP2007100168A (en
Inventor
隆之 栗村
裕一 平川
亨治 田中
秀之 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005291829A priority Critical patent/JP4781767B2/en
Priority to CNB2006101420142A priority patent/CN100408813C/en
Publication of JP2007100168A publication Critical patent/JP2007100168A/en
Application granted granted Critical
Publication of JP4781767B2 publication Critical patent/JP4781767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、高温用構造体に関する。特には、本発明は、中温低応力域(使用温度範囲:約450〜550℃、使用応力範囲:約10kg/mm以下)での高いクリープ変形抵抗性を有する高温用構造体に関する。 The present invention relates to a high-temperature structure. In particular, the present invention relates to a structure for high temperature having high creep deformation resistance in an intermediate temperature and low stress region (use temperature range: about 450 to 550 ° C., use stress range: about 10 kg / mm 2 or less).

従来、火力発電用蒸気タービン等に用いられる耐熱鋼の例としては、低合金鋼(CrMoV鋼、2.25CrMo鋼、CrMo鋼)や高Cr鋼(9Cr鋼、12Cr鋼(特許文献1、特許文献2を参照))が専ら使用されてきた。   Conventionally, examples of heat-resistant steel used for a steam turbine for thermal power generation include low alloy steel (CrMoV steel, 2.25CrMo steel, CrMo steel) and high Cr steel (9Cr steel, 12Cr steel (Patent Literature 1, Patent Literature). 2))) has been used exclusively.

このうち、低合金鋼は、高温強度は炭素鋼と高Cr鋼の間にあり、さらに衝撃特性や溶接性に優れており、大型鍛鋼・鋳鋼素材の製造性やコスト競争力にも優れている。このため、特に使用温度範囲が450〜550℃程度の中温域において、タービン構造部材として好ましく使用されてきた。タービン構造部材用の低合金鋼は、従来、鍛造、圧延または鋳造にてニアネット形状の素材に成形後、所定の強度特性を満たすべく適切な調質熱処理を施している。例えば、引張強度特性が要求されるロータ素材では急冷による焼入れ+焼戻し処理を、厚板や主要弁や鋳物部材では空冷による焼ならし+焼戻し処理を施して製造されている。
特開昭60−165359号公報 特開昭62−103345号公報
Among these, low alloy steel has high temperature strength between carbon steel and high Cr steel, and also has excellent impact characteristics and weldability, as well as excellent manufacturability and cost competitiveness for large forged and cast steel materials. . For this reason, it has been preferably used as a turbine structural member, particularly in an intermediate temperature range of about 450 to 550 ° C. Conventionally, low alloy steels for turbine structural members have been subjected to appropriate tempering heat treatment so as to satisfy predetermined strength characteristics after being formed into a near net shape material by forging, rolling or casting. For example, a rotor material that requires tensile strength characteristics is manufactured by quenching and tempering by rapid cooling, and thick plates, main valves, and cast members are subjected to normalizing and tempering by air cooling.
JP-A-60-165359 JP-A-62-103345

上記方法で製造された低合金鋼の厚板または鍛鋼品を、蒸気タービンの蒸気流を整えるための仕切り板として用いた場合に、目的としている中温低応力域(使用温度範囲:約450〜550℃、使用応力範囲:約10kg/mm以下)におけるクリープひずみ量が大きいために、経時的に軸方向のクリープたおれが発生し、その結果、仕切り板とロータとの接触の不具合が生じることがあった。 When the low-alloy steel thick plate or forged steel product produced by the above method is used as a partition plate for adjusting the steam flow of the steam turbine, the intended medium temperature and low stress region (operating temperature range: about 450 to 550) ° C., using stress range: for large creep strain amount at about 10 kg / mm 2 or less), over time I had creep in the axial direction is generated, as a result, that the problem of contact between the partition plate and the rotor is caused there were.

本発明は、上記課題を解決するために、中温低応力領域におけるクリープ変形が低減された高温用構造体を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a high-temperature structure in which creep deformation is reduced in a medium temperature and low stress region.

発明は、高温用構造体の製造方法であって、0.05〜0.17質量%のCと、1.00〜2.50質量%のCrと、0.45〜1.10質量%のMoとを含む低合金鋼を、800〜1000℃に加熱した後に、40℃/時間以下の冷却速度で少なくとも600℃以下まで冷却してなる焼鈍処理を施すことを特徴とする工程とを含む。上記低合金鋼、0.05〜0.15質量%のCと、2.00〜2.50質量%のCrと、0.90〜1.10質量%のMoと、0.30〜0.60質量%のMnと、0〜0.50質量%のSiと、残部とからなり、残部がFeと不可避不純物元素とからなる2.25%Cr1%Mo鋼である。上記高温用構造体は、好ましくは、ベイナイト相の面積率が0〜40%のフェライト/パーライト/ベイナイト組織を有するものである。 The present invention is a method for producing a Atsushi Ko structural material, and 0.05 to 0.17 wt% C, and 1.00 to 2.50 wt% of Cr, from 0.45 to 1.10 mass A low-alloy steel containing% Mo is heated to 800 to 1000 ° C. and then cooled to at least 600 ° C. at a cooling rate of 40 ° C./hour or less. Including . Upper SL low alloy steel, and C 0.05 to 0.15 wt%, and 2.00 to 2.50 wt% of Cr, and 0.90 to 1.10 wt% of Mo, 0.30 to It is a 2.25% Cr 1% Mo steel composed of 0.60% by mass of Mn, 0-0.50% by mass of Si, and the balance, the balance of Fe and inevitable impurity elements . The high-temperature structure preferably has a ferrite / pearlite / bainite structure in which the area ratio of the bainite phase is 0 to 40%.

本発明の高温用構造体は、その金属組織を熱処理により制御しており、中温低応力域におけるクリープ変形を低減することができる。このような構造体を蒸気タービン部材に用いることで、静止部と運動部の接触・焼き付きを防止、勘合部の芯ずれを防止することができるほか、ガスタービン、ボイラー等の部材としても好ましく用いることができる。   The structure for high temperature of the present invention has its metal structure controlled by heat treatment, and can reduce creep deformation in a medium temperature and low stress region. By using such a structure for a steam turbine member, it is possible to prevent contact and seizure between the stationary part and the moving part, prevent misalignment of the fitting part, and also preferably used as a member of a gas turbine, a boiler, etc. be able to.

本発明は、0.05〜0.17質量%のCと、1.00〜2.50質量%のCrと、0.45〜1.10質量%のMoとを含む低合金鋼を用いる。低合金鋼の残部は、実質的に、Feを基本成分とし、通常、不可避不純物元素を含む。低合金鋼としては、中温域(450〜550℃)での高温強度、靱性に優れた2.25%Cr1%Mo鋼を用いるThe present invention uses a low alloy steel containing 0.05 to 0.17% by mass of C, 1.00 to 2.50% by mass of Cr, and 0.45 to 1.10% by mass of Mo. The balance of the low alloy steel substantially contains Fe as a basic component and usually contains an inevitable impurity element. As the low alloy steel, 2.25% Cr 1% Mo steel excellent in high temperature strength and toughness in a medium temperature range (450 to 550 ° C.) is used .

2.25%Cr1%Mo鋼は、好ましくは、0.05〜0.15質量%のCと、2.00〜2.50質量%のCrと、0.90〜1.10質量%のMoと、0.30〜0.60質量%のMnと、0〜0.50質量%のSiと、残部とからなり、残部は、通常、実質的にFeと不可避不純物元素とからなる。不可避不純物元素は、使用原料により異なるが、例えば、0.035質量%以下のP、0.035質量%以下のS、0.4質量%以下のCu、0.4質量%以下のNi、0.03質量%以下のV、0.02質量%以下のNb等が挙げられる。   2.25% Cr 1% Mo steel is preferably 0.05 to 0.15% by mass of C, 2.00 to 2.50% by mass of Cr, and 0.90 to 1.10% by mass of Mo. And 0.30 to 0.60% by mass of Mn, 0 to 0.50% by mass of Si, and the balance, and the balance usually consists essentially of Fe and inevitable impurity elements. The inevitable impurity element varies depending on the raw materials used, but for example, 0.035% by mass or less of P, 0.035% by mass or less of S, 0.4% by mass or less of Cu, 0.4% by mass or less of Ni, 0 0.03 mass% or less of V, 0.02 mass% or less of Nb, or the like.

2.25%Cr1%Mo鋼を鍛造・圧延・鋳造にて成形後、所望の組織を得るために焼鈍処理を行う。焼鈍処理は、温度800〜1000℃で板厚に応じた時間(例えば25mmあたり1時間)保持する。ここで、処理温度は800℃未満ではオーステナイト単相とならず、十分に前組織を崩すことができないので均質な所望の組織を得ることができない。また、1000℃を超えると結晶粒の粗大化が生じ、衝撃特性に悪影響を及ぼす。比較的短時間の間にオーステナイト単相となり、かつ結晶粒の粗大化の懸念がないので、焼鈍処理温度は925℃近傍が特に好ましい。また、熱処理の雰囲気は、大気雰囲気とすることができる。 2. After forming 25% Cr1% Mo steel by forging, rolling and casting, annealing is performed to obtain a desired structure. The annealing treatment is held at a temperature of 800 to 1000 ° C. for a time corresponding to the plate thickness (for example, 1 hour per 25 mm). Here, when the treatment temperature is less than 800 ° C., the austenite single phase is not obtained, and the previous structure cannot be sufficiently destroyed, so that a homogeneous desired structure cannot be obtained. Moreover, when it exceeds 1000 degreeC, the coarsening of a crystal grain will arise and it will have a bad influence on an impact characteristic. Since the austenite single phase is obtained in a relatively short time and there is no concern about the coarsening of crystal grains, the annealing temperature is particularly preferably around 925 ° C. The atmosphere for the heat treatment can be an air atmosphere.

このような焼鈍処理は、所定の温度に設定した炉において実施することができ、使用することができる装置や手順は当業者に既知であるため、ここでは説明を省略する。   Such an annealing process can be performed in a furnace set to a predetermined temperature, and since apparatuses and procedures that can be used are known to those skilled in the art, description thereof is omitted here.

次に、焼鈍処理の冷却条件は、600℃までの平均冷却速度が10℃/分以下の冷却速度で少なくとも600℃以下まで冷却する。これは、600℃までの平均冷却速度が10℃/分以下であればフェライトの析出ノーズと交差し、本実施形態の目的であるフェライト/パーライト組織を一部生成することができるためである。さらにフェライト/パーライト組織の生成量を増大させるためには冷却速度は遅ければ遅い方が好ましく、より好ましくは、炉冷相当の冷却速度である200℃/時間以下、特に好ましくは、後述の実施例に示すように冷却速度を制御して40℃/時間(0.67℃/分)以下で徐冷とし、さらに炉の開放温度を500℃以下にまで下げれば、ベイナイト組織の生成量を極力ゼロに近くまで低減してほぼ全量フェライト/パーライト組織とすることができる。これは、冷却速度を遅くして冷却中のベイナイト相の析出を極力抑制し、かつ工業的に量産設備で実施可能な冷却速度とできる最適な冷却速度という理由からである。なお、焼鈍処理温度から600℃以下まで徐冷する間に、冷却速度が0℃/分となる期間があってもよい。すなわち、所定時間にわたって温度を下げることなく、一定温度に保持しておく期間があってもよい。   Next, as a cooling condition for the annealing treatment, the average cooling rate up to 600 ° C. is cooled to at least 600 ° C. at a cooling rate of 10 ° C./min or less. This is because if the average cooling rate up to 600 ° C. is 10 ° C./min or less, it intersects with the precipitation nose of ferrite and a part of the ferrite / pearlite structure that is the object of this embodiment can be generated. Further, in order to increase the amount of ferrite / pearlite structure produced, the slower the cooling rate is, the more preferable it is, more preferably 200 ° C./hour or less, which is a cooling rate equivalent to furnace cooling, particularly preferably in the examples described later. If the cooling rate is controlled and gradually cooled below 40 ° C./hour (0.67 ° C./min) as shown in FIG. The total amount of ferrite / pearlite structure can be reduced. This is because the cooling rate is slowed to suppress the precipitation of the bainite phase during cooling as much as possible, and the cooling rate can be industrially implemented with mass production equipment. In addition, there may be a period in which the cooling rate is 0 ° C./min during the slow cooling from the annealing temperature to 600 ° C. or less. In other words, there may be a period during which the temperature is kept constant without lowering the temperature over a predetermined time.

所定の冷却速度での徐冷を達成するためには、炉内で温度調節をしながら冷却することができる。   In order to achieve slow cooling at a predetermined cooling rate, cooling can be performed while adjusting the temperature in the furnace.

10℃/分以下の冷却速度で少なくとも600℃以下まで冷却するとは、一旦、600℃まで10℃/分以下の冷却速度で冷却し、600℃以下から常温に達するまでは、季節や実施場所の緯度による気温変動などを考慮し、10℃/分以上の冷却速度で冷却してもよいことをいう。製造効率の観点からは、600℃以下まで10℃/分以下の冷却速度で冷却し、その後、空冷することが好ましい。   To cool to at least 600 ° C. at a cooling rate of 10 ° C./min or less, once cool to 600 ° C. at a cooling rate of 10 ° C./min. Considering temperature fluctuations due to latitude, etc., it may be cooled at a cooling rate of 10 ° C./min or more. From the viewpoint of production efficiency, it is preferable to cool to 600 ° C. or less at a cooling rate of 10 ° C./min or less and then air cool.

このような焼鈍の冷却速度を制御することが重要であるのは、冷却中のベイナイト相の析出を極力抑制し、フェライト/パーライト組織の面積率を高めることができるからである。フェライト相中には微細な針状のMC型炭化物が析出し、これが本発明鋼の使用条件である中温低応力域(使用温度範囲:約450〜550℃、使用応力範囲:約10kg/mm以下)でのクリープ強化に寄与する。したがって、ベイナイト組織よりもフェライト/パーライト組織の方が高いクリープ変形抵抗を有し、ベイナイト相の面積率は極力低い方が好ましい。 The reason why it is important to control the cooling rate of such annealing is that the precipitation of the bainite phase during cooling can be suppressed as much as possible, and the area ratio of the ferrite / pearlite structure can be increased. Fine needle-like M 2 C type carbides are precipitated in the ferrite phase, and this is the medium temperature and low stress range (usage temperature range: about 450 to 550 ° C., use stress range: about 10 kg / day), which is the use condition of the steel of the present invention. Contributes to creep strengthening at 2 mm or less. Therefore, it is preferable that the ferrite / pearlite structure has a higher creep deformation resistance than the bainite structure, and the area ratio of the bainite phase is as low as possible.

本実施形態による高温用構造体は、上記のように焼鈍処理の冷却速度を制御し、本発明鋼の使用条件である中温低応力域(使用温度範囲:約450〜550℃、使用応力範囲:約10kg/mm以下)での使用に適した組織形態となるように制御することを特徴とする。 The structure for high temperature according to the present embodiment controls the cooling rate of the annealing treatment as described above, and the medium temperature and low stress region (use temperature range: about 450 to 550 ° C., use stress range: the use condition of the steel of the present invention). It is characterized by being controlled so as to have a tissue form suitable for use at about 10 kg / mm 2 or less).

本実施形態により得られた高温用構造体は、中温低応力域で変形しにくいフェライト/パーライト組織を有する。本発明の高温構造体において、フェライト/パーライト組織を有するとは、全金属組織中の60%以上がフェライト/パーライト組織で占められ、ベイナイト相の面積率が40%以下であることをいう。なお、ベイナイト相の面積率の測定は、観察倍率100倍で、画像処理により算出する。従来の、焼ならし、焼戻し処理による高温用構造体はベイナイト単相組織を呈しており、硬さや引張強度は高いものの、中温低応力域(使用温度範囲:約450〜550℃、使用応力範囲:約10kg/mm以下)でのクリープ変形が大きいことが問題であったが、本実施形態による高温用構造体はフェライト/パーライト組織を有することで、中温低応力域(使用温度範囲:約450〜550℃、使用応力範囲:約10kg/mm以下)で高いクリープ変形抵抗を有するものとなっている。 The structure for high temperature obtained according to the present embodiment has a ferrite / pearlite structure that is not easily deformed in an intermediate temperature and low stress region. In the high-temperature structure of the present invention, having a ferrite / pearlite structure means that 60% or more of the total metal structure is occupied by the ferrite / pearlite structure and the area ratio of the bainite phase is 40% or less. The area ratio of the bainite phase is calculated by image processing at an observation magnification of 100 times. Conventional high-temperature structures obtained by normalizing and tempering treatments have a bainite single-phase structure, and have high hardness and tensile strength, but medium temperature and low stress range (operating temperature range: about 450 to 550 ° C, operating stress range) : About 10 kg / mm 2 or less), the high temperature structure according to the present embodiment has a ferrite / pearlite structure, so that the medium temperature low stress region (operating temperature range: about 450 to 550 ° C., use stress range: about 10 kg / mm 2 or less) and has high creep deformation resistance.

本発明にかかる高温用構造体は好ましくは蒸気タービン用部材として用いることができる。蒸気タービン用部材としては、例えば、蒸気タービン用仕切り板、蒸気タービン車室、蒸気タービン弁箱、蒸気タービン主蒸気配管が挙げられる。そして、蒸気タービン用仕切り板に適用することで、蒸気タービン用仕切り板の経時的なクリープたおれによるロータとの接触を防止
することができる。また、蒸気タービン車室に適用することにより、蒸気タービン車室のクリープ変形による回転部との接触を防止することができる。また、蒸気タービン弁箱に適用することにより、蒸気タービン弁箱の経時的なクリープ変形による摺動部の焼き付を防止することができる。さらには、蒸気タービン主蒸気配管に適用することにより、蒸気タービン主蒸気配管の経時的なクリープ変形による勘合部の芯ずれを防止することができる。
The high-temperature structure according to the present invention can be preferably used as a member for a steam turbine. Examples of the steam turbine member include a steam turbine partition plate, a steam turbine casing, a steam turbine valve box, and a steam turbine main steam pipe. By applying the steam turbine partition plate to the steam turbine partition plate, it is possible to prevent the steam turbine partition plate from coming into contact with the rotor due to creeping over time. Further, by applying to the steam turbine casing, it is possible to prevent contact with the rotating part due to creep deformation of the steam turbine casing. Moreover, by applying to a steam turbine valve box, seizure of the sliding part due to creep deformation of the steam turbine valve box over time can be prevented. Furthermore, by applying to the steam turbine main steam pipe, it is possible to prevent misalignment of the fitting portion due to creep deformation of the steam turbine main steam pipe over time.

図1に、本発明にかかる構造体を適用した蒸気タービン用仕切り板1と、これを備えた蒸気タービン10の概念図を示す。蒸気タービン10において、仕切り板1がケーシング2に取り付けられ、動翼3がロータ4に取り付けられている。蒸気タービン用仕切り板1は、蒸気流を整えて動翼に送るための部材であり、静翼を外輪及び内輪で結合した構造体である。コンベンショナル火力用の蒸気タービンでは中温低応力域(使用温度範囲:約450〜550℃、使用応力範囲:約10kg/mm以下)で使用される。そして、本発明にかかる構造体を適用した蒸気タービン用仕切り板によれば、かかる条件で約30万時間時間以上にわたってクリープ倒れ変形を生じることなく、高いクリープ耐性を有する。 In FIG. 1, the conceptual diagram of the partition plate 1 for steam turbines which applied the structure concerning this invention, and the steam turbine 10 provided with the same is shown. In the steam turbine 10, the partition plate 1 is attached to the casing 2, and the rotor blade 3 is attached to the rotor 4. The partition plate 1 for a steam turbine is a member for adjusting a steam flow and sending it to a moving blade, and is a structure in which a stationary blade is coupled by an outer ring and an inner ring. A steam turbine for conventional thermal power is used in a medium temperature and low stress region (operating temperature range: about 450 to 550 ° C., operating stress range: about 10 kg / mm 2 or less). And according to the partition plate for steam turbines to which the structure concerning this invention is applied, it has high creep tolerance, without producing a creep collapse deformation | transformation over about 300,000 hours time on these conditions.

また、本発明にかかる高温用構造体は、ガスタービン用部材として用いることができ、ガスタービン用部材としては、例えば、ガスタービン外車室が挙げられる。そして、ガスタービン外車室に適用するにより、ガスタービン外車室の経時的なクリープ変形による回転部との接触を防止することができる。さらに、本発明にかかる高温用構造体はボイラー配管に適用することもできる。そして、ボイラー配管に適用することにより、ボイラー配管の経時的なクリープ変形を防止することができる。   Moreover, the structure for high temperature concerning this invention can be used as a member for gas turbines, and a gas turbine outer casing is mentioned as a member for gas turbines, for example. By applying to the gas turbine outer casing, it is possible to prevent the gas turbine outer casing from coming into contact with the rotating part due to creep deformation over time. Furthermore, the high temperature structure according to the present invention can be applied to boiler piping. Then, by applying to boiler piping, creep deformation of the boiler piping over time can be prevented.

実施例と比較例
表1に示す化学組成の2.25%Cr1%Mo鋼(ASTM A387Gr22鋼)の150mm厚板を用い、表2に示す条件の熱処理を施して、組織およびクリープ特性を調査した。従来から用いている空冷材を比較鋼とし、冷却速度を600℃までは40℃/時間(0.67℃/分)以下で炉冷し、その後炉を開放して空冷したもののうち、冷却速度の早い表層部の試験材を発明鋼−1、冷却速度の遅い中心部の試験材を本発明鋼−2、冷却速度を500℃までは40℃/時間(0.67℃/分)以下で炉冷し、その後炉を開放して空冷したものの表層部を本発明鋼−3とした。
Examples and Comparative Examples A 150 mm thick plate of 2.25% Cr1% Mo steel (ASTM A387Gr22 steel) having the chemical composition shown in Table 1 was subjected to heat treatment under the conditions shown in Table 2, and the structure and creep characteristics were investigated. . The air cooling material conventionally used is a comparative steel, and the cooling rate is 40 ° C./hour (0.67 ° C./min) or less until the cooling rate is 600 ° C., and then the air is cooled by opening the furnace. The test material of the fast surface layer is Invention Steel-1, the test material of the central part having a slow cooling rate is Invention Steel-2, and the cooling rate is up to 500 ° C. at 40 ° C./hour (0.67 ° C./min) or less. The surface layer part of what was cooled in the furnace and then air-cooled by opening the furnace was designated as invention steel-3.

Figure 0004781767
Figure 0004781767

Figure 0004781767
Figure 0004781767

表3に組織観察結果を示す。比較鋼の空冷材はベイナイト単相組織を呈し、本発明鋼ではベイナイト相の面積率は低下して、フェライト/パーライト組織の割合が増大している。600℃で炉を開放した試験材の表層部(本発明鋼1)、中心部(本発明鋼 2)、500℃で炉を開放した試験材の表層部(本発明鋼3)の順にベイナイト相の面積率が減少しており、ベイナイト相の面積率は概ね冷却速度に依存していると考えられる。ベイナイト相を極力ゼロに近くするためには、40℃/時間(0.67℃/分)以下の冷却速度、かつ500℃以下での炉開放とすることが好ましい。   Table 3 shows the structure observation results. The air-cooled material of the comparative steel exhibits a bainite single-phase structure, and in the steel of the present invention, the area ratio of the bainite phase decreases and the ratio of ferrite / pearlite structure increases. Bainitic phase in the order of the surface layer portion of the test material (invention steel 1), the central portion (invention steel 2), and the surface layer portion (invention steel 3) of the test material that opened the furnace at 500 ° C. It is considered that the area ratio of the bainite phase generally depends on the cooling rate. In order to make the bainite phase as close to zero as possible, it is preferable that the cooling rate is 40 ° C./hour (0.67 ° C./min) or less and the furnace is opened at 500 ° C. or less.

Figure 0004781767
Figure 0004781767

図2にクリープ試験結果のうち、最小クリープ速度のラーソンミラーパラメータ(Larson Miller Parameter:LMP)で整理した結果を示す。ラーソンミラーパラメータは、下記式で表される。
LMP=(273+T)×(20−logA)/1000
(式中、Tは温度(単位:℃)であり、Aは最小クリープ速度(単位:mm/mm/Hr)を表す。)
上式より、最小クリープ速度が小さいほどLMPは大きくなることから、図2では右側ほどクリープ変形速度が小さい(クリープひずみが小さい)ことを表している。応力20kg/mm以上の高応力域では比較鋼のクリープ変形速度が小さいが、それ以下の低応力域、特に10kg/mm以下では順序が逆転して本発明鋼の方がクリープ変形速度が小さい。すなわち、ベイナイト組織よりもフェライト/パーライト組織の方が10kg/mm以下の低応力域ではクリープ変形速度が小さく有利であることを示している。本発明鋼の中でも、ベイナイト相の面積率に対応してクリープ速度が変化しており、ベイナイト相の面積率の小さいものほどクリープ変形速度が小さい傾向が認められる。
FIG. 2 shows the results of the creep test results arranged according to the Larson Miller Parameter (LMP) of the minimum creep speed. The Larson Miller parameter is expressed by the following formula.
LMP = (273 + T) × (20−log A) / 1000
(In the formula, T is temperature (unit: ° C.), and A is the minimum creep rate (unit: mm / mm / Hr).)
From the above equation, LMP increases as the minimum creep speed decreases, and FIG. 2 indicates that the creep deformation speed decreases (creep strain decreases) toward the right side. The creep deformation rate of the comparative steel is small in the high stress region where the stress is 20 kg / mm 2 or more, but the order is reversed in the low stress region below that, particularly 10 kg / mm 2 or less, and the creep deformation rate of the steel of the present invention is higher. small. That is, the ferrite / pearlite structure has a smaller creep deformation rate and is more advantageous in the low stress region of 10 kg / mm 2 or less than the bainite structure. Among the steels of the present invention, the creep rate changes corresponding to the area ratio of the bainite phase, and a tendency that the creep deformation rate tends to be smaller as the area ratio of the bainite phase is smaller.

図3に上記クリープデータを用いた3次元クリープ解析による仕切り板の倒れ量の比較を示す。ここで、縦軸にとった相対倒れ量とは、比較鋼の運転300000時間後の倒れ量を1としたときの、相対的な倒れ量を示すものである。
仕切り板の倒れ量(クリープ倒れ量)を図4に示す。仕切り板は外輪が車室に固定された構造であり、蒸気流れ方向に対して下流側にクリープ変形を生じる。この仕切り板の内輪が下流方向に変形した量がクリープ倒れ量である。実機の測定では、下流側の付け根部を変形前の基準点として、内輪内周端後流側の倒れ量を計測した。
本発明鋼は、比較鋼と比べてクリープ倒れ量が小さく、特に経時変化が少ないことがわかった。そして、運転300000時間後の本発明鋼の相対倒れ量は、比較鋼の相対倒れ量の約15%〜46%と大幅に低減されており、この程度にまで低減されておれば、プラント設計寿命内にロータと仕切り板との接触を確実に回避でき、実際の蒸気タービンの連続運転に支障がなくなる。従って、本発明の仕切り板を適用した蒸気タービンは非常に信頼性の高いものとなる。
FIG. 3 shows a comparison of the amount of partition plate collapse by three-dimensional creep analysis using the creep data. Here, the relative fall amount taken on the vertical axis indicates the relative fall amount when the fall amount after 300,000 hours of operation of the comparative steel is 1.
FIG. 4 shows the amount of falling of the partition plate (creep falling amount). The partition plate has a structure in which the outer ring is fixed to the passenger compartment, and creep deformation occurs downstream in the steam flow direction. The amount of deformation of the inner ring of the partition plate in the downstream direction is the creep collapse amount. In the actual measurement, the amount of collapse on the downstream side of the inner ring inner peripheral end was measured using the downstream root as a reference point before deformation.
It was found that the steel according to the present invention has a smaller creep collapse amount than that of the comparative steel, and in particular, little change with time. And the relative fall amount of the present invention steel after 300,000 hours of operation is greatly reduced to about 15% to 46% of the relative fall amount of the comparative steel, and if it is reduced to this level, the plant design life The contact between the rotor and the partition plate can be reliably avoided, and there is no hindrance to the actual continuous operation of the steam turbine. Therefore, the steam turbine to which the partition plate of the present invention is applied is very reliable.

図5に、運転300000時間後の相対倒れ量とベイナイト相の析出量との関係を示す。ベイナイト相の面積率が多いほど相対倒れ量が増大する傾向にあり、目安である比較鋼の半分の相対倒れ量を達成するためには、ベイナイト相の面積率を40%以下(零を含む)に制御すればよいことが分かった。なお、目安である比較鋼の半分の相対倒れ量を達成できれば、プラント設計寿命内のロータと仕切り板との接触を回避でき、安定した蒸気タービンの稼動が可能となる。   FIG. 5 shows the relationship between the amount of relative collapse after 300,000 hours of operation and the amount of precipitation of the bainite phase. As the area ratio of the bainite phase increases, the relative collapse amount tends to increase. To achieve a relative collapse amount of half that of the reference steel, which is a guideline, the area ratio of the bainite phase is 40% or less (including zero). It was found that it should be controlled. If the relative fall amount of half of the comparative steel that is a guideline can be achieved, contact between the rotor and the partition plate within the plant design life can be avoided, and stable operation of the steam turbine becomes possible.

以上より、2.25%Cr1%Mo鋼の焼鈍処理の冷却速度を制御し、ベイナイト相の面積率を40%以下に制御すれば、相対倒れ量を大幅に低減可能となることが実証された。   From the above, it was demonstrated that the relative collapse amount can be greatly reduced by controlling the cooling rate of the annealing treatment of 2.25% Cr1% Mo steel and controlling the area ratio of the bainite phase to 40% or less. .

本発明にかかる構造体を適用した蒸気タービン用仕切り板の概念図である。It is a conceptual diagram of the partition plate for steam turbines which applied the structure concerning this invention. 比較鋼と本発明鋼の最小クリープ速度のラーソンミラーパラメータによる整理結果である。It is the rearrangement result by the Larson Miller parameter of the minimum creep speed of the comparative steel and the steel of the present invention. クリープデータを用いた3次元クリープ解析による比較鋼と本発明鋼の仕切り板の相対的な倒れ量比較を示す図である。It is a figure which shows the relative fall amount comparison of the partition plate of the comparative steel and this invention steel by the three-dimensional creep analysis using creep data. 仕切り板のクリープ倒れ量を示す図である。It is a figure which shows the amount of creep collapse of a partition plate. 相対的な倒れ量とベイナイト相の面積率との相関を示す図である。It is a figure which shows the correlation with the amount of relative collapse and the area ratio of a bainite phase.

符号の説明Explanation of symbols

1 仕切り板
2 ケーシング
3 動翼
4 ロータ
10 蒸気タービン
DESCRIPTION OF SYMBOLS 1 Partition plate 2 Casing 3 Rotor blade 4 Rotor 10 Steam turbine

Claims (2)

0.05〜0.15質量%のCと、2.00〜2.50質量%のCrと、0.90〜1.10質量%のMoと、0.30〜0.60質量%のMnと、0〜0.50質量%のSiと、残部とからなり、該残部が、Feと不可避不純物元素とからな2.25%Cr1%Mo鋼を、800〜1000℃に加熱した後に、40℃/時間以下の冷却速度で少なくとも600℃以下まで冷却してなる焼鈍処理を施すことを特徴とする工程を含む高温用構造体の製造方法。 0.05 to 0.15 mass% C, 2.00 to 2.50 mass% Cr, 0.90 to 1.10 mass% Mo, and 0.30 to 0.60 mass% Mn If, and 0 to 0.50 wt% Si, Ri Do from the rest, said residue portion, a 2.25% Cr1% Mo steel Ru Fe and inevitable impurity elements Toka Rana, after heating to 800 to 1000 ° C. The manufacturing method of the structure for high temperature including the process characterized by performing the annealing process formed by cooling to at least 600 degrees C or less with the cooling rate of 40 degrees C / hour or less. 上記高温用構造体が、ベイナイト相の面積率40%以下のフェライト及びパーライト組織を有する請求項1に記載の高温用構造体の製造方法 The method for producing a high-temperature structure according to claim 1 , wherein the high-temperature structure has a ferrite and pearlite structure having an area ratio of 40% or less of a bainite phase.
JP2005291829A 2005-10-05 2005-10-05 Manufacturing method of structure for high temperature Active JP4781767B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005291829A JP4781767B2 (en) 2005-10-05 2005-10-05 Manufacturing method of structure for high temperature
CNB2006101420142A CN100408813C (en) 2005-10-05 2006-09-30 High temperature structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291829A JP4781767B2 (en) 2005-10-05 2005-10-05 Manufacturing method of structure for high temperature

Publications (2)

Publication Number Publication Date
JP2007100168A JP2007100168A (en) 2007-04-19
JP4781767B2 true JP4781767B2 (en) 2011-09-28

Family

ID=38027391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291829A Active JP4781767B2 (en) 2005-10-05 2005-10-05 Manufacturing method of structure for high temperature

Country Status (2)

Country Link
JP (1) JP4781767B2 (en)
CN (1) CN100408813C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176156A (en) * 2020-08-26 2021-01-05 江阴兴澄特种钢铁有限公司 Production method of SA387Gr22CL2 steel plate for head of pressure-bearing equipment and simulated hot forming method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143467A (en) * 1981-02-27 1982-09-04 Kawasaki Steel Corp Low c-low si-cr-mo steel used in wet vapor
JPH01162724A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Manufacture of high strength cr-mo steel pipe having superior corrosion resistance and weldability
JPH07324601A (en) * 1994-05-31 1995-12-12 Mitsubishi Heavy Ind Ltd Diaphragm structure for steam turbine
US6224689B1 (en) * 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US7416617B2 (en) * 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
JP3879723B2 (en) * 2002-10-01 2007-02-14 住友金属工業株式会社 High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JP2004169055A (en) * 2002-11-15 2004-06-17 Aichi Steel Works Ltd Age hardening type high-strength bainitic steel parts superior in machinability and manufacturing method therefor
JP4266340B2 (en) * 2003-10-30 2009-05-20 株式会社神戸製鋼所 High strength wire for induction hardening with excellent cold workability and impact resistance, and steel parts using this wire

Also Published As

Publication number Publication date
CN1944960A (en) 2007-04-11
CN100408813C (en) 2008-08-06
JP2007100168A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP6562476B2 (en) Ferritic heat resistant steel and its manufacturing method
US20050194073A1 (en) Heat-resistant austenitic stainless steel and a production process thereof
US6030469A (en) Fully martensitic steel alloy
KR100899801B1 (en) High chrome ferrite type heat resisting steel for forging
RU2005127861A (en) FINE MARTENSITAL STAINLESS STEEL AND METHOD OF PRODUCING IT
JP2001073066A (en) LOW Cr FERRITIC HEAT RESISTANT STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS AND ITS PRODUCTION
CN102517507A (en) Steel for blades of turbine of ultra-supercritical fossil power plants and manufacturing method
JP5265325B2 (en) Heat resistant steel with excellent creep strength and method for producing the same
JP4887506B2 (en) Method for producing ferritic heat resistant steel
JP7232910B2 (en) Chromium-molybdenum steel sheet with excellent creep strength and its manufacturing method
JP4781767B2 (en) Manufacturing method of structure for high temperature
EP2439288B1 (en) An alloy steel
JPH1192881A (en) Ferritic heat resistant steel having lath martensitic structure and its production
CN114258435B (en) Chromium steel sheet having excellent creep strength and high temperature ductility and method for manufacturing the same
JP2002294402A (en) Low alloy steel tube for heat resistant boiler with excellent wear resistance
JP2022553970A (en) Chromium steel sheet excellent in high-temperature oxidation resistance and high-temperature strength, and method for producing the same
JPH11350076A (en) Precipitation strengthening type ferritic heat resistant steel
JP4519722B2 (en) High and low pressure integrated steam turbine rotor and its manufacturing method, and high and low pressure integrated steam turbine and its manufacturing method
US20170356070A1 (en) Maraging steel
JP6173956B2 (en) Austenitic heat resistant steel and turbine parts
JP2948324B2 (en) High-strength, high-toughness heat-resistant steel
US20120132325A1 (en) FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME
JP3752523B2 (en) Ferritic heat resistant steel
JP2016065280A (en) Heat resistant steel and steam turbine rotor component part
JP3752524B2 (en) Ferritic heat resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4781767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350