JPS61291948A - Production of metallic material for nuclear reactor - Google Patents

Production of metallic material for nuclear reactor

Info

Publication number
JPS61291948A
JPS61291948A JP13507085A JP13507085A JPS61291948A JP S61291948 A JPS61291948 A JP S61291948A JP 13507085 A JP13507085 A JP 13507085A JP 13507085 A JP13507085 A JP 13507085A JP S61291948 A JPS61291948 A JP S61291948A
Authority
JP
Japan
Prior art keywords
smelting
ratio
added
steel
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13507085A
Other languages
Japanese (ja)
Other versions
JPH0362783B2 (en
Inventor
Akishi Sasaki
佐々木 晃史
Osamu Masuko
増子 修
Tomoo Tanaka
田中 智夫
Kiyohiko Nohara
清彦 野原
Yutaka Oka
裕 岡
Shunichi Yuzuhara
柚原 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp, Kawasaki Steel Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP13507085A priority Critical patent/JPS61291948A/en
Priority to US06/868,789 priority patent/US4744824A/en
Priority to DE19863618887 priority patent/DE3618887A1/en
Priority to FR868608225A priority patent/FR2583065B1/en
Publication of JPS61291948A publication Critical patent/JPS61291948A/en
Publication of JPH0362783B2 publication Critical patent/JPH0362783B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metallic material which can effectively prevent the generation of the creep embrittleness occurring in <10>B of a metallic material for a nuclear reactor which receives thermal neutron irradiation by preliminarily adding B-contg. raw material of which the quantity ratio <11>B(<10>B+<11>B) of the isotope <11>B of B is higher than the natural existence ratio to said material and subjecting the material to de-B refining. CONSTITUTION:The cause for the creep embrittleness by the thermal neutron irradiation lies in that He is generated by the reaction of <10>B in particular among the isotopes of B, i.e., <10>B(n,alpha)<7>Li reaction. In contrast therewith, <11>B is stable and does not induce the nuclear reaction to form He. The <11>B is there upon added positively to the metallic material such as carbon steel, low Cr-Mo steel or ferrite chromium steel in the process for producing such material in this invention. The quantity ratio of the <10>B in the total B(=<10>B+<11>B) contained in the molten metal, i.e., <10>B/(<10>B+<11>B) is thereby decreased and thereafter the molten metal is subjected to the de-B refining. As a result, the generation of the creep embrittleness occurring in the <10>B of the above-mentioned metallic material is effectively prevented.

Description

【発明の詳細な説明】 産業上の利用分界 この発明は、中性子照射を受ける原子炉構成材料、例え
ば高速増殖炉や軽水炉などの炉容器材料として使用され
る金属材料、特に微量の硼素(B)を含有する金属材料
、例えば炭素鋼、低クロム・モリブデン(Cr −Mo
 ) l!!、フェライト系高クロム鋼、ステンレス鋼
、超合金等の金属材料を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to nuclear reactor constituent materials subjected to neutron irradiation, for example, metal materials used as reactor vessel materials such as fast breeder reactors and light water reactors, especially trace amounts of boron (B). metal materials containing, such as carbon steel, low chromium molybdenum (Cr-Mo
) l! ! The present invention relates to a method for producing metal materials such as ferritic high chromium steel, stainless steel, and superalloys.

従来の技術 周知のように原子炉圧力容器用の低炭素鋼としてはPA
えばA S T M 71格のA 533  B  c
lass月1. A308  class 3jgなど
が使用されている。一方、低Cr−MO鋼やフェライト
系高クロム鋼、フェライト系ステンレス鋼は、オーステ
ナイト系ステンレス鋼と比較して安価であることや、オ
ーステナイト系ステンレス鋼よりも特性1優れた点もあ
るため、原子炉用鋼、特に高速増殖炉あるいは核融合炉
への適用が考えられている。さらにインコネルあるいは
インコロイ等の超合金は、優れた耐熱性や耐酸化性を有
することから、原子炉用材料、特に核融合炉への適用が
考えられている。
As is well known in the art, PA is a low carbon steel for reactor pressure vessels.
For example, A S T M 71 case A 533 B c
lass month 1. A308 class 3jg etc. are used. On the other hand, low Cr-MO steel, ferritic high chromium steel, and ferritic stainless steel are cheaper than austenitic stainless steel, and have superior properties than austenitic stainless steel. Application of steel for reactors, especially fast breeder reactors or nuclear fusion reactors, is being considered. Furthermore, since superalloys such as Inconel and Incoloy have excellent heat resistance and oxidation resistance, their application to nuclear reactor materials, particularly nuclear fusion reactors, is being considered.

一方、オーステナイト系ステンレス鋼は、優れた高温強
度と耐食性を有するところから、原子炉における各種構
成材料として従来から使用されており、特に熱中性子照
射を受ける高速増殖炉や軽水炉の炉容器材料としてもそ
の使用が予定されている。
On the other hand, austenitic stainless steel has been traditionally used as various constituent materials in nuclear reactors due to its excellent high-temperature strength and corrosion resistance, and is particularly used as reactor vessel material for fast breeder reactors and light water reactors that are subjected to thermal neutron irradiation. Its use is planned.

ところでオーステナイト系ステンレス鋼においては、例
えば「勅燃伎報Jk50あるいは待間昭53−8849
9号公報などに開示されているように、Bを添加するこ
とによって炭化物を微細化かつ安定化し、炭化物の粒界
析出を抑制して粒界を強化して、強度や延性さらには加
工性を改善する効果が得られることが知られている。
By the way, in the case of austenitic stainless steel, for example, the
As disclosed in Publication No. 9, etc., the addition of B makes carbides finer and more stable, suppresses grain boundary precipitation of carbides, strengthens grain boundaries, and improves strength, ductility, and workability. It is known to have an improving effect.

□ 発明が解決すべき問題点 前述のようにオーステナイト系ステンレス鋼に対するB
の添加は、粒界強化などの点から有効であるが、その反
面法のような問題がある。
□ Problems to be solved by the invention As mentioned above, B for austenitic stainless steel
The addition of is effective from the viewpoint of grain boundary strengthening, but on the other hand, there are problems.

すなわち一般に8は二種の同位元素1013.113に
よって構成され、その自然存在比はTo 3が19.6
%、++ (3が80.4%程度であるが、これらの同
位元素のうち特に+oBは熱中性子吸収が大きく、その
ため熱中性子照射を受ける原子炉容器材などに8を含有
するオーステナイト系ステンレス鋼を用いた場合、10
n/C1r程度の比較的軽度の熱中性子照射でも10B
(n、α)7Li核反応が生じてOBが崩壊し、その結
果Heがスを発生させ、その日eがクリープ亀裂の発生
と伝播を助長し、クリープ脆化を招来する原因となる。
That is, in general, 8 is composed of two types of isotopes 1013.113, and the natural abundance ratio of To 3 is 19.6.
%, ++ (3 is about 80.4%, but among these isotopes, +oB has a particularly large absorption of thermal neutrons, so austenitic stainless steel containing 8 is used in reactor vessel materials etc. that are subjected to thermal neutron irradiation. When using 10
Even with relatively mild thermal neutron irradiation of n/C1r, 10B
(n, α)7Li nuclear reaction occurs and the OB collapses, and as a result, He generates gas, which promotes the generation and propagation of creep cracks and causes creep embrittlement.

またBを積41的に添加しないオーステナイト系ステン
レス鋼においても、通常の製鋼過程を経て得られたオー
ステナイト系ステンレス鋼は少なくとも数CDI程度は
Bを含有しており、その程度の機盤の8を含有する場合
でも熱中性子照射を受ければ前記同様に103(1,α
) 7Li反応に起因してクリープ脆化が生じるおそれ
がある。
Furthermore, even in austenitic stainless steels in which B is not added in a cumulative manner, austenitic stainless steels obtained through normal steelmaking processes contain at least several CDI of B; Even if it contains 103 (1, α
) Creep embrittlement may occur due to the 7Li reaction.

さらに、オーステナイト系ステンレス鋼以外の金属材料
、例えば前述のような炭素鋼、低Cr −Mol、フェ
ライト系高クロム鋼、フェライト系ステンレス鋼、ある
いは超合金簀においても、Bを積穫的に添加しない場合
であっても製錬過程を終えて得られた金属材料には通常
は少なくとも数ppl程度の8を不純物として含有して
おり、また積極的に8を添加した場合にはそれ以上のB
が含有されている。これらの場合も、既にオーステナイ
ト系ステンレス鋼について説明したのと同様に、”B 
(n 、 α)  7Li 核反応により10 [3が
崩壊し、その結果)1eガスを発生させ、その1−18
がクリープ脆化を招く原因となる。
Furthermore, B should not be added to metal materials other than austenitic stainless steel, such as the aforementioned carbon steels, low Cr-Mol, ferritic high chromium steels, ferritic stainless steels, or superalloys. Even in cases where 8 is actively added, the metal material obtained after the smelting process usually contains at least several ppl of 8 as an impurity, and if 8 is actively added, even more B.
Contains. In these cases, as already explained for austenitic stainless steel, "B"
(n, α) 7Li nuclear reaction causes 10 [3 to decay, resulting in) 1e gas to be generated, and its 1-18
causes creep embrittlement.

この発明は以上の事情を背景としてなされたもので、B
を積極的に添加した金属材料あるいはBを単に不純物と
して含有する金属材料を問わず、熱中性子照射を受ける
原子炉構成材料に8を含有する金3材料を使用した場合
に、+oBに起因するクリープ脆化が発生することを有
効に防止し得るようにした金属材料の製造方法を提供す
ることを目的とするものである。
This invention was made against the background of the above circumstances, and B.
Creep caused by +oB occurs when a gold-3 material containing 8 is used as a reactor constituent material that is subjected to thermal neutron irradiation, regardless of whether it is a metal material that actively adds B or simply contains B as an impurity. It is an object of the present invention to provide a method for manufacturing a metal material that can effectively prevent the occurrence of embrittlement.

問題点を解決するための手段 既に述さたように熱中性子照射によるクリープ脆化の原
因は、Bの同位元素のうちでも特にto Bの反応、す
なわち+03(1,α)7Li反応で1−1eを発生す
ることにあり、これに対し++ 3は安定でHe生成核
反応を生じない。そこでこの発明では、炭素鋼、低Cr
 −MOm、フェライト系高クロム鋼、フェライト系ス
テンレス鋼、オースチーナイト系ステンレス鋼、あるい
は超合金などの金属材料の製造過程において、予め安定
なII 39積極的に添加することによって溶患金属中
に含まれる全B (−”B+ ”B )のうちの103
の旦比すなわち”B/ (”B + +IB )を下げ
ておき、しかる後に脱B精錬を行なうことによって、目
標全日量(=+oB++IB)の絶対−は変わらないが
熱中性子照射により問題が生じる10Bの量比が低い金
属材料を得ることが可能となったのである。
Means to Solve the Problem As already mentioned, the cause of creep embrittlement due to thermal neutron irradiation is the reaction of B to B, that is, the 1- 1e, whereas ++3 is stable and does not cause He generation nuclear reaction. Therefore, in this invention, carbon steel, low Cr
- In the manufacturing process of metal materials such as MOm, ferritic high chromium steel, ferritic stainless steel, austinitic stainless steel, or superalloy, stable II 39 can be actively added to the molten metal in advance. 103 out of all B (-”B+”B) included
By lowering the 10B ratio, that is, B/ (B + +IB), and then performing B-refining, the absolute - target total daily amount (=+oB++IB) will not change, but problems will arise due to thermal neutron irradiation. This made it possible to obtain a metal material with a low ratio of .

すなわちこの発明の原子炉用金属材料の製造方法は、熱
中性子照射を受ける環境下で使用される原子炉用の硼素
含有金ぷ材料を製造するにあたり、予めBの同位元素I
+ 13の量比11B/ (’O8+ ”B ’)が自
然存在比より高い―素含有原料を添加しておき、しかる
後1!128t[を行なうことによって金3材料中の1
03含有最を低減することを特徴とするものである。
That is, in the method for producing a metal material for a nuclear reactor of the present invention, when producing a boron-containing gold material for a nuclear reactor used in an environment subjected to thermal neutron irradiation, the isotope I of B is prepared in advance.
+ 13 in the amount ratio 11B/('O8+ ``B'') higher than the natural abundance ratio - element-containing raw material is added, and then 1!
03 content is reduced.

発明の実流のための具体的説明 この発明の方法においては、金属材料の製造直において
、予めII Bの量比、すなわち++ 3 / (+0
3 + ++ 3 )の値が自然存在比よりも高いra
素金含有原料81糧的に添加しておく。すなわち8の同
位元素10[3,、118の自然存在比は、既に述べた
ように108 : 19.6%、II B : 80.
4%であるから、80.4%を越えるo Bを含むBを
含有する硼素含有原料、例えばFe−8合金、硼素酸化
物(8203)、WAR(83803) などの硼素含
有原料を添加する。但し実際の工程においては、Fe 
−B合金などの硼素含有原料中の8の同位元素n Bの
量比は、製造コストおよび熱中性子照射後のクリープ軸
化防止の効果の点から、90%以上とすることが望まし
い。換言すれば90%以上のn Bと10%未角の+o
Bによって構成されるBを含有する硼素含有原料を添加
することが望ましい。
Detailed Description for Practical Flow of the Invention In the method of the present invention, the quantity ratio of II B, that is, ++ 3 / (+0
ra where the value of 3 + ++ 3) is higher than the natural abundance ratio
81 raw materials containing elemental gold are added in advance. That is, the natural abundance ratio of the isotope 10[3,,118 of 8 is, as already mentioned, 108:19.6%, II B: 80.
4%, a boron-containing raw material containing B containing more than 80.4% of B, such as Fe-8 alloy, boron oxide (8203), and WAR (83803), is added. However, in the actual process, Fe
The quantitative ratio of the isotope nB of 8 in the boron-containing raw material such as -B alloy is desirably 90% or more from the viewpoint of manufacturing cost and the effect of preventing creep axis formation after thermal neutron irradiation. In other words, 90% or more of n B and 10% of +o
It is desirable to add a boron-containing raw material composed of B.

このような硼素含有原料は目的とする金属材料の製錬過
程においてI!RBが行なわれるまでの間に添加してお
けば良い。すなわち一般に炭素鋼、低Cr −MOWA
、フェライト系高クロム用、ステンレス鋼、あるいは超
合金の製錬は、溶銑予伺処理による製錬を行ない、次い
で転炉あるいは電気炉によって粗脱炭を行なった後、■
OD炉あるいはRH脱ガス槽、さらにはAOD炉などで
真空脱炭して製造するのが通常であり、また場合によっ
ては上記工程のうち電気炉以降のみを使用することもあ
る。それらの場合、脱Bは脱炭とともに進行するから、
前記硼素含有原料は溶銑予備処理時または転炉や電気炉
における粗脱炭中に添加したりあるいは粗脱炭開始前に
製錬原料または合金原料とともに添加しておけばよく、
また場合によっては真空脱炭前に溶融金属中に添加した
りしても良い。
Such boron-containing raw materials are used in the process of smelting the target metal material. It may be added before RB is performed. That is, generally carbon steel, low Cr-MOWA
For smelting of ferritic high chromium products, stainless steels, or superalloys, smelting is performed by preliminary molten metal treatment, and then rough decarburization is performed in a converter or electric furnace.
It is usually produced by vacuum decarburization in an OD furnace, RH degassing tank, or AOD furnace, and in some cases, only the steps after the electric furnace of the above steps are used. In those cases, B removal proceeds along with decarburization, so
The boron-containing raw material may be added during pretreatment of hot metal, during rough decarburization in a converter or electric furnace, or added together with smelting raw materials or alloy raw materials before the start of rough decarburization,
Further, depending on the case, it may be added to the molten metal before vacuum decarburization.

このようにI+ 3の1比”B/ (”B + ”B 
)が自然存在比よりも高い、Bを含有する111素含有
原料を積極的に添加することによって、溶融金属中に含
まれる全園素量のうちの”B/ (”B+ ”B)の比
率も自然存在比より轟くなる。ここで、添加するW4素
含有原料の添加量は、最終的に得るべき製品としてBの
添加効果を期待しない場合(すなわち不純物としてのみ
Bが残留する場合)には、脱製錬における1laB率に
応じて定めれば良く、また最終的に得るべき製品として
前述のような粒界強化等の8添加効果を期待する場合に
はその目標残JIB量と!!2B製錬における脱81に
応じて定めれば良い。
In this way, the 1 ratio of I + 3 “B/ (”B + ”B
) is higher than the natural abundance ratio, by actively adding B-containing raw materials containing 111 elements, the ratio of ``B/ (``B + ``B)'' to the total amount of elements contained in the molten metal. The amount of the W4 element-containing raw material to be added should be determined when the effect of adding B is not expected in the final product (that is, when B remains only as an impurity). , should be determined according to the 1laB rate in de-smelting, and if the final product is expected to have the effect of adding 8 such as grain boundary strengthening as described above, the target remaining JIB amount and !!2B It may be determined according to removal 81 in smelting.

脱B製錬においては、後述する実施例からも明らかなよ
うに、溶融金属中に残留する全81は減少するものの、
その残留B中の同位元素I+ 3゜10 Bの比率は変
化しない。したがって脱B製n後には、全81が所要濃
度まで低下しておりしかもその残留B中のn Bの量比
”B/’ (”B+ ”B)が自然存在比よりも高い金
属材料を得ることができる。すなわちこの金属材料は、
残留B中の同位元素113,103のうら、熱中性子@
射によって反応してクリープ脆化の原因となる同位元素
+03の量比”B/ (10B+ +IB>が自然存在
比より少なく、したがって全残留B量が同じ従来の金属
材料と比較すれば+oBの含有lが少ないことになり、
その結果熱中性子照射によるクリープ脆化の危険を従来
の金属材料よりも少なくすることができる。
In de-B smelting, as is clear from the examples described later, although the total amount of 81 remaining in the molten metal decreases,
The proportion of isotope I+ 3°10 B in the residual B remains unchanged. Therefore, after B-free production, a metal material is obtained in which all 81 has been reduced to the required concentration and the amount ratio of B in the residual B is higher than the natural abundance ratio "B/'("B + "B)". In other words, this metal material can be
Behind isotopes 113 and 103 in residual B, thermal neutrons @
The amount ratio of the isotope +03, which reacts with radiation and causes creep embrittlement, is lower than the natural abundance ratio, so compared to conventional metal materials with the same total residual B content, the content of This means that l will be less.
As a result, the risk of creep embrittlement due to thermal neutron irradiation can be reduced compared to conventional metal materials.

なお、ステンレス鋼や低炭素鋼などの鋼の製錬時におい
ては、製錬中にII!f等を目的としてFe5i(フェ
ロシリコン)、FeMn(フェロマンガン)、SiMn
(シリコンマンガン)等を添加することが多いが、その
場合これらの添加原料にも不可避的にBが含有されてい
るのが通常であるから、IB2B製錬侵の到達B門を考
慮して、可及的に8含有1の少ない添加原料を使用する
ことが望ましい。
In addition, when smelting steel such as stainless steel or low carbon steel, II! Fe5i (ferrosilicon), FeMn (ferromanganese), SiMn for the purpose of
(silicon manganese), etc., but in that case, it is normal that these additive raw materials also inevitably contain B, so considering the reach B gate of IB2B smelting invasion, It is desirable to use additive raw materials containing as little 8 and 1 as possible.

なおまた、m81棟は1回だけの製錬に限らず、2回以
上の製錬を繰返しても良いことは勿論であり、これによ
り10B絶対惜の−1の低減を図ることができる。
Furthermore, it goes without saying that the m81 building is not limited to smelting only once, but may be smelted twice or more, thereby reducing the 10B by -1.

実施例 [実施例1] 先ずオーステナイト系ステンレス鋼の製造に適用したこ
の発明の実施例を比較例とともに記す。
Examples [Example 1] First, an example of the present invention applied to the production of austenitic stainless steel will be described together with a comparative example.

重量%でc o、os%、3 i 0.50%、Mnl
、00%、p 0.020%、3 o、ooe%、Ni
9.0%、Cr18.3%、B o、ooos%、残部
がFeおよび不可避的不純物よりなる5tJS  30
4鋼を、転炉による粗脱炭−VOD炉による脱B製錬を
兼ねた真空脱炭により製造するにあたり、現場製造条件
を4!擬した小型実験fJ![炉により次の(A>、(
B)、(C)に示す3種の条件で脱B製錬を行なった。
wt% co, os%, 3i 0.50%, Mnl
, 00%, p 0.020%, 3 o, ooe%, Ni
5tJS 30 consisting of 9.0%, Cr18.3%, Bo, ooos%, and the balance consisting of Fe and inevitable impurities.
When manufacturing 4 steel by vacuum decarburization that also serves as rough decarburization in a converter and decarburization in a VOD furnace, the on-site manufacturing conditions are 4! Simulated small experiment fJ! [The following (A>, (
B-removal smelting was performed under the three conditions shown in B) and (C).

なお脱8製諌前の溶鉄中の不純物としての8含有(至)
はいずれの場合も101)D!Itである。
In addition, 8 content as an impurity in molten iron before smelting (to)
In either case, 101)D! It is.

(A)  硼素含有原料を特に添加せず、B5pp!ま
で脱B製錬を行なった(比11f!1ll)。
(A) B5pp without adding any boron-containing raw materials! B-free smelting was carried out up to (11f!1ll).

(B)  ”B量(”B+”B)の瀘が自然存在比(約
80%)となっている80%Fe −20%B合金を、
ENIで101)p罎添加し、B5pp噴まで1i12
B製錬を行なった(比較例2)。
(B) 80%Fe-20%B alloy in which the amount of B (“B+”B) is the natural abundance ratio (approximately 80%),
Add 101)p in ENI and 1i12 until B5pp injection
B smelting was performed (Comparative Example 2).

(C)   ”B量(”B+”B)の筐が自然存在比(
杓80%)より高い98%となっている80%Fe−2
0%B合金を、日量で40op−添加して、B5pρジ
まで脱B製錬を行なった(本発明実施例1a)。
(C) The natural abundance ratio (
80% Fe-2 which is 98% higher than 80%
A 0% B alloy was added at a daily rate of 40 op-p, and B-removal smelting was carried out to B5 pp (Example 1a of the present invention).

(D)  前記の(C)で用いたものと同じ80%Fe
−20B合金を、B量で501)11m添加して、B 
45 pplまで脱8製錬を行なった(本発明実施例1
b)。
(D) Same 80% Fe as used in (C) above
-20B alloy is added in B amount of 501)11m, B
De-8 smelting was carried out to 45 ppl (Example 1 of the present invention).
b).

いずれの場合も脱B製錬の開始から終了まで随時サンプ
リングし、全日量および10B量(10日+11B)の
測定を行なった。それらの結果を第1図および第2図に
示す。
In either case, samples were taken at any time from the start to the end of the B removal smelting, and the total daily amount and 10B amount (10 days + 11B) were measured. The results are shown in FIGS. 1 and 2.

第2図は特に硼素含有原料を添加しなかった比較例1お
よびto Bの量比が自然存在比の硼素含有原料を添加
した比較例2の場合について示すものであり、比較例1
の場合にはB量が脱B製錬開始前の不純物ffi10p
pmから5 ppmに低下しただけであり、”B量 (
”B + +’B ) f)値ハ製錬1111中はぼ自
然存在比の0.2で一定であった。また比較例2の場合
は、脱B製錬前のB添加によって81は製錬開始時に2
0111)■となり、最終的に51)Illまで低下し
ているが、添加したBは++3/(+03+I+ 3 
)の値が自然存在比であるため、製錬期間中の10B/
 (10B + IIB )の値はほぼ0.2で一定で
あった。
FIG. 2 particularly shows the cases of Comparative Example 1 in which no boron-containing raw material was added and Comparative Example 2 in which a boron-containing raw material was added with a natural abundance ratio of to B.
In the case of
It only decreased from pm to 5 ppm, and the amount of B (
``B + +'B ) f) value during smelting 1111 was constant at approximately 0.2, which is the natural abundance ratio.In addition, in the case of Comparative Example 2, 81 was smelted by adding B before B removal smelting. 2 at the start of training
0111)■, and finally decreased to 51)Ill, but the added B is ++3/(+03+I+ 3
) is the natural abundance ratio, so 10B/
The value of (10B + IIB) was approximately constant at 0.2.

一方第1図は、II Bの量比11B、/ (+03 
+ 1113 )の値が自然存在比よりも格段に高い9
8%を示すBを含有する硼素含有原料を添加した本発明
実施例1a、1bの場合について示すものであり、この
場合硼素含有原料の添加によって脱B開始時の103の
l比+’B/ (IOB+ IIB)は0.05となり
、その後の全脱B製諌WJ間を通じて10Bの量比がほ
ぼ一定に保たれ、最終的にIOBの轟沈が0.05と比
較例1、比較例2の場合よりも格段に少ないオーステナ
イト系ステンレスを得ることができた。
On the other hand, in Fig. 1, the quantity ratio of II B is 11B, / (+03
+1113) value is much higher than the natural abundance ratio9
This figure shows the cases of Examples 1a and 1b of the present invention in which a boron-containing raw material containing 8% B was added, and in this case, the addition of the boron-containing raw material increased the l ratio of 103+'B/ at the start of B removal. (IOB + IIB) becomes 0.05, and the amount ratio of 10B is kept almost constant throughout the subsequent complete B-removal WJ, and finally the IOB sinking is 0.05, which is the same as in Comparative Examples 1 and 2. We were able to obtain significantly less austenitic stainless steel than would otherwise be possible.

なお上記実施例1では、脱B製錬を実験室的な例で示し
たが、これは製gI法を特に限定するものではなく、既
に述べたように溶銑予備処理時の製邊、転炉、電気炉、
VOD炉、AOD炉あるいはRH脱ガス槽などでの脱B
製錬など、すべてが適用可能であることは勿論である。
In Example 1 above, de-B smelting was shown as a laboratory example, but this does not particularly limit the gil method. ,Electric furnace,
De-B in VOD furnace, AOD furnace, RH degassing tank, etc.
Of course, everything is applicable, including smelting.

なおまた上記の実施例1においては、IOBの量比を低
減するための硼素含有原料として80%Fe−20%B
合金を用いているが、このほかのフェロボロン等の硼素
含有原料を用いても同穆な効果が得られることは勿論で
ある。
Furthermore, in the above Example 1, 80%Fe-20%B was used as a boron-containing raw material to reduce the IOB quantity ratio.
Although an alloy is used, it goes without saying that the same effect can be obtained by using other boron-containing raw materials such as ferroboron.

[実施IM2] 次に低炭素鋼の製造にこの発明の方法を適用した実施例
を比較例とともに記す。
[Example IM 2] Next, an example in which the method of the present invention is applied to the production of low carbon steel will be described together with a comparative example.

第1表のA、Bに示す目標成分組成の低炭素鋼を常法に
したがって製錬するにあたり、製錬末期に自然存在比よ
りもo Bを濃化した硼素原料を添加し、その後脱B製
錬を行なった。第2表にplAB製tI前の溶鉄中のt
o B @、添加した硼素原料による溶慣中の増加Bf
lとその添加硼素原料中のII 3量比すなわち”B量
 (”B+ +’B)、団素原Fl添加直後のIOB農
、脱81辣復の全81、+oBl比すなわち+O8/ 
(108+ IIB) 、”B念を併せて示す。なお第
2表中においてi(α5およびに7は従来法にしたがっ
て、待に1素原料を添加しなかった比較例、 Nα6は
II 13情比が自然存在比の1素原料を添加した比較
例である。
When smelting low carbon steel with the target component compositions shown in A and B in Table 1 in accordance with the conventional method, a boron raw material enriched in oB compared to the natural abundance ratio is added at the final stage of smelting, and then the boron is removed. Performed smelting. Table 2 shows the t in molten iron before tI manufactured by plAB.
o B @, increase Bf during dissolution due to added boron raw material
l and its II3 amount ratio in the added boron raw material, i.e., the amount of B ('B+ +'B), the IOB ratio immediately after addition of the boron raw material Fl, the total 81 of the removal of 81, and the +oBl ratio, that is, +O8/
(108+ IIB), "B" is also shown. In Table 2, i (α5 and Ni7 are comparative examples in which one raw material was not added according to the conventional method, and Nα6 is II 13 This is a comparative example in which one raw material with a natural abundance ratio was added.

第2表から朗らかなように、この発明の方法によれば、
脱8製煉後の鋼中の全Bうは密素原料を添加しない比較
例および11B曇比が自然存在比の硼素[料を添加した
比較例とほぼ同程度であるが、+oB量比は著しく減少
して、to Bの絶対月も著しく減少しており、したが
ってこの発明の方法が低炭素鋼中の103の低減に有効
であることが判る。
As clearly shown in Table 2, according to the method of this invention,
The total B content in the steel after de-8 refining is almost the same as that of the comparative example in which no ferrous raw material was added and the comparative example in which the natural abundance ratio of boron was added, but the +oB content ratio was 103 in low carbon steel.

[実施例3] 次いで低Cr−MO清およびフェライト系高クロム鋼の
製造にこの発明の方法を適用した実施例を比較例ととも
に記す。
[Example 3] Next, an example in which the method of the present invention was applied to the production of low Cr-MO steel and ferritic high chromium steel will be described together with a comparative example.

第3表のC,D、Eに示す目標成分組成の利を常法にし
たがって製錬するにあたり、製錬末期に自然存在比より
もII 8を濃化した硼素原料を添加し、その後WA8
興辣を行なった。第4表に脱B製錬前の溶鉄中のto 
B @、添加した!!素原料による溶鋼中の増加8Mと
その添加硼素原料中のII Bm比すなわち118/ 
(IOB+ ”B) 、硼素原料添加直!(7)108
11QBtjM後(7)全Bl 1081比すなわち1
037 (+03 十t+3 ) 、103母を併せて
示す。なお第4表中においてNa7、No、9および漱
10は従来法にしたがって、待に翔r#原料を添加しな
かった比較例、N11L8はII [3量比が自然存在
比の硼素原料を添加した比較例である。
When smelting according to the conventional method to achieve the target component compositions shown in C, D, and E in Table 3, a boron raw material enriched with II8 than the natural abundance ratio is added at the final stage of smelting, and then WA8
I had fun. Table 4 shows the amount of to in molten iron before B-free smelting.
B @, added! ! The increase in 8M in molten steel due to the raw material and the II Bm ratio in the added boron raw material, that is, 118/
(IOB+”B), boron raw material addition directly! (7) 108
After 11QBtjM (7) Total Bl 1081 ratio i.e. 1
037 (+03 10t+3) and 103 mother are also shown. In Table 4, Na7, No. 9, and Sho 10 were prepared according to the conventional method, and N11L8 was a comparative example in which no raw material was added. This is a comparative example.

第4表から明らかなように、この発明の方法によれば、
脱日製錬後の鋼中の全Bflは硼素原料を添加しない比
較例および+113量比が自然存在比の硼素原料を添加
した比較例とほぼ同程度であるが、+03ffl比は著
しく減少して、+03の絶対偵も著しく減少しており、
したがってこの発明の方法が低Cr −Mo ’IAや
フェライト系高クロム鋼の+oBの低減にも有効である
ことが判る。
As is clear from Table 4, according to the method of this invention,
The total Bfl in the steel after de-Japanese smelting is almost the same as that of the comparative example in which no boron raw material was added and the comparative example in which a boron raw material with a natural abundance ratio of +113 was added, but the +03ffl ratio was significantly reduced. , +03 Absolute Detective has also decreased significantly,
Therefore, it can be seen that the method of the present invention is effective for reducing +oB of low Cr-Mo'IA and ferritic high chromium steel.

[実施例4〕 さらに超合金の製造にこの発明の方法を適用した実施例
を比較例とともに記す。
[Example 4] Further, an example in which the method of the present invention is applied to the production of a superalloy will be described together with a comparative example.

第5表に示す目標成分組成のインコロイ800H合金と
インコネル625合金を製錬するにあたり、T′#諌末
肩に自然存在比よりもn Bを濃化したN素原料を添加
し、その後脱B製錬を行なった。
When smelting Incoloy 800H alloy and Inconel 625 alloy with the target component compositions shown in Table 5, an N raw material enriched with nB than the natural abundance ratio is added to the T'# end shoulder, and then B is removed. Performed smelting.

第6表に脱8’lll前の合金溶湯中のTOB@、添加
した:IN素原料よる溶鋼中の増加Bfiとその添加ツ
索原料中のII 3 、i比すなわち”B/(’OB+
11B)、IIIJtl添加VX後の10 B憬、説8
製煉後の全Bj、+OB壜比すなわらIQ 13 / 
(Io 3 + IT 3 )、”aBはを併せて示す
。なtB第6表中に6いて魔5お上び[)α7は従来法
にしたがっC持に1索原利を添加しなかった比較例、N
α6は113 ii比が自然存在比のr、り素原1を;
壜六口した比較例である。
Table 6 shows the increased Bfi in the molten steel due to TOB@ in the alloy molten metal before removal of 8'lll, the added:IN raw material, and the II 3 in the added steel raw material, i ratio, ``B/('OB+
11B), 10B after IIIJtl addition VX, Theory 8
Total Bj after refining, + OB bottle ratio, IQ 13 /
(Io 3 + IT 3), "aB" is also shown. tB is 6 in Table 6 and magic 5 is added [) α7 is according to the conventional method and does not add 1 Sakuharai to C-mochi. Comparative example, N
α6 is 113 ii ratio is natural abundance ratio r, Ri elemental 1;
This is a comparative example of six bottles.

第6表から明らかなように、この発明の方法によれば、
IAMB製?lI後の合金中の全日量は同素原料を添加
しない比較例およびII 3.31比が自然存在比のf
1素原料を添加した比較例とほぼ同程αであるが、10
3 量比は著しく減少して、!OBの絶対1も著しく減
少しており2したがってこの発明の方法が超合金中の1
0Bの低減にも有効であることが判る。
As is clear from Table 6, according to the method of this invention,
Made by IAMB? The total daily amount in the alloy after II is the comparative example in which no allotropic raw material is added and II.3.31 ratio is f of the natural abundance ratio.
α is almost the same as that of the comparative example in which one elemental material was added, but 10
3 The quantity ratio has decreased significantly! The absolute value of 1 in OB is also significantly reduced.2 Therefore, the method of the present invention
It can be seen that this method is also effective in reducing 0B.

なお以上の各実施例1〜4においては、オーステナイト
系ステンレス鋼、低CI’−Mail、フェライト系ク
ロム講、および超合金について示したが、その池の金属
材料、例えばフェライト系ステンレス鋼やマルテンサイ
系ステンレス渕などにもこの発明を適用して有効なこと
は勿4である。
In each of Examples 1 to 4 above, austenitic stainless steel, low CI'-Mail, ferritic chrome steel, and superalloy were shown, but metal materials such as ferritic stainless steel and martensitic stainless steel It goes without saying that this invention is also effective when applied to stainless steel edges.

発明の効果 以上の実施例からも明らかなようにこの発明の方法によ
れば、熱中性子照射を受けた際にクリープ脆化を沼く原
因となる核反応を起こす+03の存在率が従来の金属材
料よりも低い金属材nを得ることができる。すなわちこ
の発明の方法によれば、熱中性子照射を受けてもクリー
プ脆化が生じるおそれが少ないB含有金属材料を製造で
きるから、熱中性子照射を受ける原子炉構成材料につい
ても、Bを積極添加して粒界強化等を図った金属材料の
適用が可能となり、また同時に、単に不純物としてのみ
Bを含有する金属材料についても熱中性子照射によるク
リープ脆化の危険を防止することが可能となる。
Effects of the Invention As is clear from the examples described above, according to the method of the present invention, the abundance of +03, which causes a nuclear reaction that causes creep embrittlement when exposed to thermal neutron irradiation, is lower than that of conventional metals. It is possible to obtain a metal material n lower than that of the material. In other words, according to the method of the present invention, B-containing metal materials with little risk of creep embrittlement even when subjected to thermal neutron irradiation can be produced. This makes it possible to apply metal materials with grain boundary reinforcement, etc., and at the same time, it also becomes possible to prevent the risk of creep embrittlement due to thermal neutron irradiation even for metal materials that contain B only as an impurity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例1における脱B製錬で溶鉄中
B量および了OB/ (+OB+ ll8)の推移を示
す・グラフ、第2図は従来法による比較例1および比較
例2における脱B製錬での溶鉄中BIiおよび”B/ 
(IOB+I’B )の推移を示すグラフである。
Fig. 1 is a graph showing the changes in the amount of B in molten iron and OB/ (+OB+ ll8) in B-removal smelting in Example 1 of the present invention, and Fig. 2 is a graph showing the changes in B content in molten iron and OB/(+OB+ ll8) in Comparative Example 1 and Comparative Example 2 using the conventional method. BIi and “B/” in molten iron in de-B smelting
It is a graph showing the transition of (IOB+I'B).

Claims (1)

【特許請求の範囲】[Claims] 中性子照射環境下で使用される原子炉用の金属材料を製
錬するにあたり、予めBの同位元素^1^1Bの量比^
1^1B/(^1^0B+^1^1B)が自然存在比よ
りも高い硼素含有原料を添加した後、脱B製錬すること
を特徴とする原子炉用金属材料の製造方法。
When smelting metal materials for nuclear reactors used in a neutron irradiation environment, the amount ratio of B isotope ^1^1B is determined in advance.
A method for producing a metal material for a nuclear reactor, which comprises adding a boron-containing raw material having a boron content of 1^1B/(^1^0B+^1^1B) higher than the natural abundance ratio, and then smelting the boron-free material.
JP13507085A 1985-06-06 1985-06-20 Production of metallic material for nuclear reactor Granted JPS61291948A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13507085A JPS61291948A (en) 1985-06-20 1985-06-20 Production of metallic material for nuclear reactor
US06/868,789 US4744824A (en) 1985-06-06 1986-05-29 Method of producing metallic materials for the components of nuclear reactors
DE19863618887 DE3618887A1 (en) 1985-06-06 1986-06-05 METHOD FOR PRODUCING METALLIC MATERIALS FOR COMPONENTS OF CORE REACTORS
FR868608225A FR2583065B1 (en) 1985-06-06 1986-06-06 PROCESS FOR THE MANUFACTURE OF METAL MATERIALS WHICH CAN BE USED AS NUCLEAR REACTOR COMPONENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13507085A JPS61291948A (en) 1985-06-20 1985-06-20 Production of metallic material for nuclear reactor

Publications (2)

Publication Number Publication Date
JPS61291948A true JPS61291948A (en) 1986-12-22
JPH0362783B2 JPH0362783B2 (en) 1991-09-27

Family

ID=15143152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13507085A Granted JPS61291948A (en) 1985-06-06 1985-06-20 Production of metallic material for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61291948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896988B1 (en) * 2007-08-16 2009-05-14 한국원자력연구원 High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor
JP2019206456A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143467A (en) * 1981-02-27 1982-09-04 Kawasaki Steel Corp Low c-low si-cr-mo steel used in wet vapor
JPS58120766A (en) * 1982-01-08 1983-07-18 Japan Atom Energy Res Inst Austenitic stainless steel with superior strength at high temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143467A (en) * 1981-02-27 1982-09-04 Kawasaki Steel Corp Low c-low si-cr-mo steel used in wet vapor
JPS58120766A (en) * 1982-01-08 1983-07-18 Japan Atom Energy Res Inst Austenitic stainless steel with superior strength at high temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896988B1 (en) * 2007-08-16 2009-05-14 한국원자력연구원 High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor
JP2019206456A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same

Also Published As

Publication number Publication date
JPH0362783B2 (en) 1991-09-27

Similar Documents

Publication Publication Date Title
Gunn Duplex stainless steels: microstructure, properties and applications
CN111394547A (en) Ultra-thick high-strength steel for nuclear reactor containment vessel and manufacturing method thereof
CN111621702B (en) Nuclear grade stainless steel for high-level waste glass solidification container
Votinov et al. Prospects and problems using vanadium alloys as a structural material of the first wall and blanket of fusion reactors
JPS61291948A (en) Production of metallic material for nuclear reactor
KR100896988B1 (en) High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor
CN110923569B (en) Nuclear grade high-strength high-intergranular corrosion-resistant large-section stainless steel forged pipe and manufacturing method thereof
JP2007177259A (en) Austenitic stainless steel for nuclear power use, and its manufacturing method
RU2383417C1 (en) Low activated corrosion resistant welding material
CN104928597B (en) Low-nickel-chromium stainless steel as well as production method and application thereof
US20180163285A1 (en) Ni-Based Alloy Pipe or Tube for Nuclear Power
US4744824A (en) Method of producing metallic materials for the components of nuclear reactors
JPH0518897B2 (en)
JPH09111413A (en) Heat resistant steel for nuclear fusion reactor, excellent in toughness, and its production
US4214950A (en) Steel for nuclear applications
RU2800699C1 (en) Corrosion resistant neutron absorbing steel
JPS6289845A (en) Austenitic stainless steel excellent in neutron irradiation embrittlement-resisting property
JPS6256557A (en) Stainless steel material excellent in neutron-absorption capacity and its production
JPH02175842A (en) Stainless steel for unclear reactor core equipment and its production
JPS5835255B2 (en) Structural low alloy steel
CN115717215A (en) Stainless steel cladding tube material for lead-bismuth fast reactor fuel assembly and preparation method thereof
Lin et al. Research of the Standards Compilation of Welding Material for Carbon Steel in Pressurized Water Reactor Nuclear Power Plants
RU2135623C1 (en) Low-activated radioresistant steel
JPS6284896A (en) Submerged arc welding method
JPS6284886A (en) Electroslag buildup welding method for obtaining padding metal excellent in corrosion resistance and neutron irradiation embrittlement resistance characteristic