JPS6156286A - Alkali battery - Google Patents

Alkali battery

Info

Publication number
JPS6156286A
JPS6156286A JP15308484A JP15308484A JPS6156286A JP S6156286 A JPS6156286 A JP S6156286A JP 15308484 A JP15308484 A JP 15308484A JP 15308484 A JP15308484 A JP 15308484A JP S6156286 A JPS6156286 A JP S6156286A
Authority
JP
Japan
Prior art keywords
acid
copper
layer
benzotriazole
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15308484A
Other languages
Japanese (ja)
Other versions
JPS6224512B2 (en
Inventor
Nobuaki Chiba
千葉 信昭
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP15308484A priority Critical patent/JPS6156286A/en
Publication of JPS6156286A publication Critical patent/JPS6156286A/en
Publication of JPS6224512B2 publication Critical patent/JPS6224512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To provide a titled battery which prevents pitting and extends the life thereof by polishing the copper or copper alloy layer on the suface of a negative current collector with a chemical polishing agent consisting of hydrogen peroxide and org. acid or the salt thereof and forming a film contg. benzotriazole or the driv. thereof thereon. CONSTITUTION:This alkali battery is provided with the negative current collector of which the copper layer or copper alloy layer on the surface is polished with the chemical polishing agent consisting of >=1 kinds of the hydrogen peroxide and org. acid as well as the org. acid salt and the film contg. at least the benzotriazole and the deriv. thereof is formed thereon. The oxide, oil, fine fragments of metals, etc. sticking to the copper layer on the surface are removed, by which the generation of gaseous hydrogen, the rupture of the vessel and the liquid leakage by pitting are prevented. The concn. of the above-mentioned hydrogen peroxide is preferably about 0.2-1.0mol/l. Formic acid, oxalic acid, acetic acid, citric acid, gluconic acid, etc. are used for the org. acid and the film is constitued of the benzotriazole and the deriv. thereof and amphoteric surface active agent.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はアルカリ電池に関し、特に負極集電体を改良し
たアルカリ電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an alkaline battery, and particularly to an alkaline battery with an improved negative electrode current collector.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えば、ボタン型酸化銀電池の場合では、一般に負極集
電体(負極容器)としてステンレスと銅又は銅合金との
二層クラツド板、或いはニッケルとステンレスと銅又は
銅合金との三層クラツド板を、その銅又は銅合金側が容
器の内側となるように絞シ加工したものが使用されてい
る。かかる絞シ加工等によシ造られた負極容器の銅層又
は銅合金層の表面には、クラツド板の製造、スリット加
工、打抜き絞シ加工等の工程において、銅の酸化物の生
成、潤滑油の汚れやゴミの付着が生じる。またステンレ
ス、ニッケル等の金属の微細片も付着する。
For example, in the case of a button-type silver oxide battery, a two-layer clad plate of stainless steel and copper or a copper alloy, or a three-layer clad plate of nickel, stainless steel, and copper or a copper alloy is generally used as the negative electrode current collector (negative electrode container). , the copper or copper alloy side is drawn so that it is on the inside of the container. The surface of the copper layer or copper alloy layer of the negative electrode container formed by such drawing processing, etc., is exposed to the production of copper oxide and lubrication during processes such as manufacturing the clad plate, slitting, punching and drawing. Oil stains and dirt may adhere. In addition, minute pieces of metal such as stainless steel and nickel also adhere.

ところで、従来より電池組立前には、アルカリ脱脂洗浄
の処理が行なわれている。しかしながら、上記負極容器
の銅層又は銅合金層にステンレス、ニッケル等の微細片
が付着したシ、付着後にプレスされた場合にはアルカリ
脱脂処理ではそれら微細片を完全に除去できず、電池の
組立後において水素ガスの発生要因となる。
Incidentally, alkaline degreasing and cleaning have conventionally been performed before battery assembly. However, if fine particles of stainless steel, nickel, etc. adhere to the copper layer or copper alloy layer of the negative electrode container, or if the particles are pressed after adhesion, alkaline degreasing cannot completely remove these fine particles, and battery assembly is difficult. This will later become a factor in the generation of hydrogen gas.

即ち、負極容器の銅層又は銅合金の面は、アルカリ電解
液の存在によシ負極活物質の氷化亜鉛と接触してアマル
ガム化と亜鉛メッキとが行なわれる。このため、銅層又
は銅合金層は亜鉛よシ貴な金属であるにもかかわらず、
亜鉛と接触しても水素がスの発生は抑制される。しかし
ながら、銅層又は銅合金層の面にステンレス。
That is, the surface of the copper layer or copper alloy of the negative electrode container is amalgamated and galvanized by contacting the frozen zinc of the negative electrode active material due to the presence of the alkaline electrolyte. For this reason, even though the copper layer or copper alloy layer is a more noble metal than zinc,
Even when hydrogen comes into contact with zinc, the generation of gas is suppressed. However, stainless steel on the surface of the copper layer or copper alloy layer.

ニッケル等の微細片が付着すると、その金属は水素過電
圧が小さいので、負極容器にアルカリ電解液と亜鉛とが
充填された場合、水素ガスを発生する。また、銅の酸化
物、油、が之等の場合は、アルカリ電解液がある状態で
氷化亜鉛と接触した場合、銅層又は銅合金層が氷化と亜
鉛メッキがなされるまでに時間がかかる。このため、銅
層又は銅合金層から水素ガスが発生する。
When fine pieces of nickel or the like adhere, the metal has a small hydrogen overvoltage, so when the negative electrode container is filled with an alkaline electrolyte and zinc, hydrogen gas is generated. In addition, in the case of copper oxide, oil, etc., if it comes into contact with frozen zinc in the presence of an alkaline electrolyte, it will take time for the copper layer or copper alloy layer to freeze and galvanize. It takes. Therefore, hydrogen gas is generated from the copper layer or copper alloy layer.

電池製造時は、負極容器に氷化亜鉛及びアルカリ電解液
を充填後、すぐに電池を封口するので、水素ガスの発生
は封口された電池内で続くことになる。こうした水素ガ
スの発生が起こると、電池内部に水素ガスが充満して内
圧が高まシ、破裂や漏液の原因となる。
During battery manufacturing, the negative electrode container is filled with frozen zinc and an alkaline electrolyte and then immediately sealed, so hydrogen gas continues to be generated within the sealed battery. When such hydrogen gas is generated, the inside of the battery is filled with hydrogen gas, increasing the internal pressure and causing rupture or leakage.

このようなことから、最近、電池組立前に表面の銅層又
は銅合金層を過酸化水素水と硫酸とからなる化学研摩液
で研摩した負極容器が用いられている。しかしながら、
かかる化学研摩された負極容器は次のような欠点を有す
る。
For this reason, recently, negative electrode containers have been used in which the surface copper layer or copper alloy layer is polished with a chemical polishing solution consisting of hydrogen peroxide and sulfuric acid before battery assembly. however,
Such chemically polished negative electrode containers have the following drawbacks.

(1)前記化学研摩液は過酸化水素水の濃度が約2〜6
 mob/l 、硫酸濃度が約0.1〜2.0 mob
/1と高濃度で、非常に腐食性の高い溶液である。
(1) The chemical polishing liquid has a concentration of hydrogen peroxide of about 2 to 6.
mob/l, sulfuric acid concentration is approximately 0.1 to 2.0 mob
It is a highly corrosive solution with a high concentration of /1.

このため、研摩速度が0.1〜0.5P/d−・min
 と比較的速いので、局部的な孔食が発生し易い。特に
、絞シ加工された負極容器の折シ曲げ部や折シ返し部の
近傍の銅層又は銅合金層の表面は、加工によって粗くな
シ、かつ加工前よル薄くなっているため、孔食が発生し
易い。こうした孔食の発生は、漏液の原因となる。また
、孔食が二層又は三層クラツド板のステンレス層にまで
達している場合はガス発生の原因となる。
Therefore, the polishing speed is 0.1 to 0.5P/d-min.
Since this is relatively fast, localized pitting corrosion is likely to occur. In particular, the surface of the copper layer or copper alloy layer near the folded or folded portions of the drawn negative electrode container is not rough due to the processing and is thinner before processing, so the holes may Eclipses are likely to occur. The occurrence of such pitting corrosion causes liquid leakage. Additionally, if pitting corrosion reaches the stainless steel layer of a two-layer or three-layer clad plate, it may cause gas generation.

(2)前記化学研摩液は高酸性(約pH1以下)のため
、少量の化学研摩液が銅層又は銅合金層の表面に残留し
ただけで、酸化皮膜が生成する。
(2) Since the chemical polishing liquid is highly acidic (about pH 1 or less), an oxide film is formed even if a small amount of the chemical polishing liquid remains on the surface of the copper layer or copper alloy layer.

こうした酸化皮膜の生成は水素ガスの発生原因となシ、
破裂や漏液を招く。
The formation of such an oxide film does not cause the generation of hydrogen gas.
This may cause rupture or leakage.

なお、上述した問題点はぎタン型アルカリ電池に限らず
、円筒型アルカリマンガン電池の負極集電体としての銅
又は銅合金の集電棒においても孔食を招き、これによシ
負極集電体と絶縁バッキングとの接合面の密着性を損な
うため、電池内部の電解液が外部に漏液し易くなるとい
う欠点を有する。
The above-mentioned problem is not limited to the tan-type alkaline batteries, but also the copper or copper alloy current collector rods used as the negative electrode current collectors of cylindrical alkaline manganese batteries, which lead to pitting corrosion. This has the disadvantage that the electrolyte inside the battery tends to leak to the outside because the adhesiveness of the bonding surface with the insulating backing is impaired.

〔発明の目的〕[Purpose of the invention]

本発明は孔食の発生がなく、清浄化された負極集電体を
備え、破裂や漏液を防止した高寿命のアルカリ電池を提
供しようとするものである。
The present invention aims to provide a long-life alkaline battery that does not suffer from pitting corrosion, is equipped with a cleaned negative electrode current collector, and is prevented from bursting or leaking.

〔発明の概要〕[Summary of the invention]

本発明は表面の銅層もしくは銅合金層を過酸化水素と有
機酸及び有機酸塩から選ばれる1種以上とよりなる化学
研摩液で研摩し、ベンゾトリアゾール又はその誘導体を
少なくとも含む被膜を形成してなる負極集電体を備えた
ことを特徴とするものである。かかる本発明によれば、
孔食を生じることなく清浄化され、かつその清浄状態が
ベンゾトリアゾール等の被膜で保持された銅層もしくは
銅合金層を表面に有する負極集電体を備えたアルカリ電
池を得ることができる。その結果、表面の銅層もしくは
銅合金層に付着した酸化物、油、金属の微細片による水
素ガスの発生、容器破裂を防止し、かつ孔食等による漏
液を防止した高寿命のアルカリ電池を提供できる。
The present invention involves polishing a surface copper layer or copper alloy layer with a chemical polishing liquid consisting of hydrogen peroxide and one or more selected from organic acids and organic acid salts to form a coating containing at least benzotriazole or its derivatives. The device is characterized by being equipped with a negative electrode current collector consisting of: According to this invention,
It is possible to obtain an alkaline battery equipped with a negative electrode current collector having a copper layer or a copper alloy layer on its surface that is cleaned without causing pitting corrosion and whose clean state is maintained with a coating of benzotriazole or the like. As a result, a long-life alkaline battery that prevents hydrogen gas generation and container rupture due to oxides, oil, and fine metal particles adhering to the surface copper layer or copper alloy layer, and prevents leakage due to pitting corrosion, etc. can be provided.

上記化学研摩液を構成する有機酸としては、例えばギ酸
、シュウ酸、酢酸、クエン酸、グルコン酸等を挙げるこ
とができる。また、有機酸塩としては、例えばギ酸ナト
リウム、ギ酸カリウム、シェラ酸ナトリウム、シェラ酸
カリウム等を挙げることができる。
Examples of the organic acids constituting the chemical polishing liquid include formic acid, oxalic acid, acetic acid, citric acid, and gluconic acid. Furthermore, examples of the organic acid salts include sodium formate, potassium formate, sodium shelate, potassium shelate, and the like.

上記化学研摩液を構成する過酸化水素の濃度は0.2〜
1.0 mol、/lの範囲にすることが望ましい。
The concentration of hydrogen peroxide constituting the above chemical polishing liquid is 0.2~
A range of 1.0 mol/l is desirable.

この理由は、その濃度を0.2 mol / 1未満に
すると、反応速度が遅く、銅層もしくは銅合金層の面の
不純物が十分に除去できなくなる。一方、その濃度が1
.0mol/73を越えると、反応速度が速くなυ過ぎ
、局部的に薄い銅層もしくは銅合金層部分に孔食等を発
生する恐れがある。
The reason for this is that if the concentration is less than 0.2 mol/1, the reaction rate is slow and impurities on the surface of the copper layer or copper alloy layer cannot be sufficiently removed. On the other hand, the concentration is 1
.. If it exceeds 0 mol/73, the reaction rate will be too fast and there is a risk that pitting corrosion etc. will occur locally in the thin copper layer or copper alloy layer.

上記化学研摩液は、上記過酸化水素の濃度範囲内におい
てpHが3.0〜5.0の範囲にすることが望ましい。
It is desirable that the chemical polishing liquid has a pH in the range of 3.0 to 5.0 within the hydrogen peroxide concentration range.

この理由は、pHを3.0未満にすると、孔食を発生す
る恐れがあ)、しかも水洗処理を十分に行なわないと、
銅層もしくは銅合金層の面に水素ガス発生の要因となる
酸化皮膜が生成し易くなる。一方、研摩液のpHが5.
0を越えると、研摩速度が急激に遅くなシ、不純物の除
去効果が低下して、ガス発生防止効果や漏液防止効果を
充分に達成できなくなる恐れがある。また、過酸化水素
の安定性が低下し自己分解が起こシ易く、作業性の悪化
を招く。
The reason for this is that if the pH is less than 3.0, pitting corrosion may occur), and if water washing is not done sufficiently,
An oxide film that causes hydrogen gas generation is likely to be formed on the surface of the copper layer or copper alloy layer. On the other hand, the pH of the polishing liquid is 5.
If it exceeds 0, the polishing speed will drop sharply, the impurity removal effect will be reduced, and there is a risk that the gas generation prevention effect and liquid leakage prevention effect will not be sufficiently achieved. Furthermore, the stability of hydrogen peroxide is reduced and self-decomposition is likely to occur, resulting in deterioration of workability.

上記ベンゾ) IJアゾール又はその誘導体を含む皮膜
は清浄化された銅層もしくは銅合金層の面を保護して、
その清浄状態を維持すると共に、防錆効果を発揮する。
The coating containing the benzo) IJ azole or its derivatives protects the surface of the cleaned copper layer or copper alloy layer,
It maintains its clean state and exhibits rust prevention effects.

かかるベンゾトリアゾール誘導体としては、例えばメチ
ルベンゾトリアゾール、ベンゾチアゾール、エチルベン
ゾトリアゾール或いは2−メルカゾトペンゾトリアゾー
ル等を挙げることができる。こうした皮膜を銅層もしく
は銅合金層に形成するには、通常、水やアルコールなど
の溶媒に溶解した溶液への浸漬、或いは該溶液の塗布に
よシ行なわれる。この場合のベンゾトリアゾール等の濃
度は0.01〜1.0重量%、よシ好ましくは0.02
〜0.1重量%の範囲にすることが望ましい。
Examples of such benzotriazole derivatives include methylbenzotriazole, benzothiazole, ethylbenzotriazole, and 2-mercazotopenzotriazole. Formation of such a film on a copper layer or copper alloy layer is usually carried out by immersion in a solution dissolved in a solvent such as water or alcohol, or by coating the solution. In this case, the concentration of benzotriazole etc. is 0.01 to 1.0% by weight, preferably 0.02% by weight.
It is desirable that the content be in the range of ~0.1% by weight.

なお、研摩した銅層もしくは銅合金層にベンゾトリアゾ
ール又はその誘導体と共に両イオン性界面活性剤を加え
た皮膜を形成してもよい。
Note that a film may be formed by adding an amphoteric surfactant to the polished copper layer or copper alloy layer together with benzotriazole or its derivative.

こうした両イオン性界面活性剤の添加によシ、銅層もし
くは銅合金層に数10X〜数100Xのごく薄い吸着膜
を形成し、濡れ性を改善すると共に、銅層もしくは銅合
金層の酸化皮膜生成を防止する。また、ベンゾトリアゾ
ール又はその誘導体の銅層もしくは銅合金層への吸着量
を促進し、それら層に対して吸着性の高い防錆皮膜を形
成できる。更に、銅層もしくは銅合金層の孔食や粒界に
存在する弱い部分を補強し、銅や亜鉛の孔食反応に対す
る物理的な隔壁の役目をなす。かかる両イオン性界面活
性剤としては、特に−分子中にアミノ基又はアミノ残基
とカルブキシル基とを同時に含有するものが望ましい。
By adding such an amphoteric surfactant, a very thin adsorption film of several 10X to several 100X is formed on the copper layer or copper alloy layer, improving the wettability and forming an oxide film on the copper layer or copper alloy layer. Prevent generation. Furthermore, the amount of benzotriazole or its derivatives adsorbed onto the copper layer or copper alloy layer can be promoted, and a highly adsorbent anticorrosive film can be formed on these layers. Furthermore, it reinforces pitting corrosion in the copper layer or copper alloy layer and weak parts existing at grain boundaries, and serves as a physical barrier against pitting reactions of copper and zinc. As such amphoteric surfactants, those containing an amino group or an amino residue and a carboxyl group simultaneously in the molecule are particularly desirable.

具体的には、次式(1)〜(4)で表わされる化合物、
又ハゲリシン、アラニン、パニン、セリン等ヲ挙げるこ
とができる。
Specifically, compounds represented by the following formulas (1) to (4),
Also included are hagelicin, alanine, panin, serine and the like.

R1−(NH・(CH2)−) nC00M   ・・
・(3)\CH2□  ・・・ (4) 〔但し式中のR1は炭素数8〜14のアルキル基、m、
nは夫々1又は2の整数、Mはアルカリ金属、R2は水
素原子、ナ) IJウム、又はCH2C00M基、Xは
C00M基、CH2C00M基又ハCH(OH)CH2
・SO,M基を示す。〕 上記両イオン性界面活性剤の中で特に、式(1)。
R1-(NH・(CH2)-) nC00M...
・(3)\CH2□ ... (4) [However, R1 in the formula is an alkyl group having 8 to 14 carbon atoms, m,
n is an integer of 1 or 2, M is an alkali metal, R2 is a hydrogen atom, n) IJum, or CH2C00M group, X is a C00M group, CH2C00M group, or HCH(OH)CH2
- Indicates SO, M group. ] Among the above amphoteric surfactants, formula (1) is particularly preferred.

(2)のアルキルモノ(又はジ)アラネートが適してい
る。このような両イオン性界面活性剤を前述した水やア
ルコールの溶媒中に溶解させる場合は、その濃度を0.
01〜0.5重量%、特に0.1〜0.2重量%の範囲
にすることが好ましい。
(2) Alkyl mono(or di)alanates are suitable. When such an amphoteric surfactant is dissolved in the above-mentioned water or alcohol solvent, the concentration should be 0.
It is preferably in the range of 0.01 to 0.5% by weight, particularly 0.1 to 0.2% by weight.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 まず、ニッケル層1、ステンレス層2及び銅層3(厚さ
30μm)からなる厚さ0.3illの三層クラツド板
を絞シ加工して第1図に示すブタン型アルカリ電池の負
極容器4を作製した。つづいて、この負極容器をシュウ
酸4P/11.シュウ酸ナトリウム151/1.35%
過酸化水素80P/l 、 pH3,5の化学研摩液(
液温50℃)で4分間研摩した。次いで、研摩後の負極
容器を80℃のベンゾトリアゾールを0.05重量%含
む水溶液に30秒間浸漬して銅層表面にベンゾトリアゾ
ールの皮膜を形成した。
Example 1 First, a three-layer clad plate with a thickness of 0.3 ILL consisting of a nickel layer 1, a stainless steel layer 2, and a copper layer 3 (thickness 30 μm) was drawn and processed to form a negative electrode for a butane-type alkaline battery as shown in FIG. Container 4 was produced. Subsequently, this negative electrode container was mixed with oxalic acid 4P/11. Sodium oxalate 151/1.35%
Hydrogen peroxide 80P/l, pH 3.5 chemical polishing liquid (
Polishing was performed for 4 minutes at a liquid temperature of 50°C. Next, the polished negative electrode container was immersed in an aqueous solution containing 0.05% by weight of benzotriazole at 80° C. for 30 seconds to form a benzotriazole film on the surface of the copper layer.

こうした研摩処理、ベンゾトリアゾール皮膜が形成され
た負極容器を用いて第2図に示す酸化銀電池5R54(
外径11.6m、高さ3.05m)を組立てた。即ち、
第2図において5はニッケルメッキした鋼板よ)なる正
極容器、6は該正極容器5内に充填された酸化銀活物質
に電導剤として黒鉛を添加してなる正極合剤である。7
は゛    イオ・透過性のセ・・レータ、8はアーカ
リ電解液を含浸させた多孔性繊維物質からなる電解液保
持材、9は負極活物質としての氷化亜鉛である。10は
前記正極容器5と負極容器4との間を絶縁すると共に、
その間隙を密封する絶縁バッキングで、正極容器5の開
口部を内側に湾曲させて封口している。
Using this polishing treatment and the negative electrode container on which the benzotriazole film was formed, the silver oxide battery 5R54 (
(outer diameter 11.6 m, height 3.05 m) was assembled. That is,
In FIG. 2, 5 is a positive electrode container made of a nickel-plated steel plate, and 6 is a positive electrode mixture made by adding graphite as a conductive agent to a silver oxide active material filled in the positive electrode container 5. 7
8 is an electrolyte holding material made of a porous fibrous material impregnated with an alkaline electrolyte, and 9 is frozen zinc as a negative electrode active material. 10 insulates between the positive electrode container 5 and the negative electrode container 4,
The opening of the positive electrode container 5 is curved inward and sealed with an insulating backing that seals the gap.

実施例2 第1図図示の負極容器4を実施例1と同様に研摩した後
、ベンゾトリアゾールを0.05重量%とラウリルモノ
アラネー) Na塩を0.2重I:%含む水溶液(液温
80℃)に30秒間浸漬して、その銅層に複合皮膜を形
成したものを用いた以外、第2図図示と同構造の酸化銀
電池を組立てた。
Example 2 After polishing the negative electrode container 4 shown in FIG. 1 in the same manner as in Example 1, an aqueous solution (liquid temperature A silver oxide battery having the same structure as shown in FIG. 2 was assembled, except that a composite film was formed on the copper layer by immersing the battery at 80° C. for 30 seconds.

比較例 第1図図示の負極容器4を過酸化水素4.mot/13
゜硫酸0.42 moL/ Itの化学研摩液(液温5
0℃)で1分間研摩したものを用いた以外、第2図図示
と同構造の酸化銀電池を組立てた。
Comparative Example The negative electrode container 4 shown in FIG. 1 was heated with hydrogen peroxide 4. mot/13
゜Sulfuric acid 0.42 moL/It chemical polishing liquid (solution temperature 5
A silver oxide battery having the same structure as shown in FIG. 2 was assembled, except that the battery was polished for 1 minute at 0°C.

しかして、本実施例1,2及び比較例の電池100個に
ついて、温度60℃、湿度90%の試験槽中に貯蔵した
後の漏液個数を10倍の顕微鏡で測定したところ、下記
表に示す結果を得た。また、同実施例1,2及び比較例
の電池100個について、同様な温度、湿度の試験槽に
3力月間貯蔵した後の水素ガス発生個数を調べた。その
結果を同表に併記した。なお、この試験において、水素
ガス発生によシミ池高さが0.5n以上変化した電池を
水素ガス発生電池として判定した。
For 100 batteries of Examples 1 and 2 and Comparative Example, the number of leaking batteries after being stored in a test tank at a temperature of 60°C and a humidity of 90% was measured using a 10x microscope, and the results are shown in the table below. The following results were obtained. Furthermore, the number of hydrogen gas generated was investigated after storing 100 batteries of Examples 1 and 2 and Comparative Example in a test chamber at similar temperature and humidity for 3 months. The results are also listed in the same table. In this test, a battery in which the stain pond height changed by 0.5n or more due to hydrogen gas generation was determined to be a hydrogen gas generating battery.

表 上表より明らかな如く、過酸化水素−硫酸系の化学研摩
液で研摩した負極容器を備えた電池(比較例)は、貯蔵
日数が20日では漏液個数が零であるが、40日間貯蔵
すると、急激に漏液個数が増加する。これに対し、過酸
化水素−有機酸系の化学研摩液で研摩し、更にベンゾト
リアゾールの皮膜を形成した負極容器を備えた本発明の
電池(実施例1)は貯蔵日数40日では若干数の漏液が
認められるが、日数が増加しても比較例のように漏液す
る電池の個数は増加しない。一方、ベンゾトリアゾール
と両イオン性界面活性剤の複合皮膜を研摩後に形成した
負極容器を備えた電池(実施例2)では、実施例1に比
べてより一層、漏液した電池の個数が減少する。また、
ガス発生不良についても、本発明の電池はわずか実施例
1では1個、実施例2では0個であシ、比較例に比べて
不良率を著しく改善できることがわかる。
As is clear from the table above, the battery (comparative example) equipped with a negative electrode container polished with a hydrogen peroxide-sulfuric acid-based chemical polishing solution had zero leakage when stored for 20 days, but after 40 days. When stored, the number of leaking items increases rapidly. On the other hand, the battery of the present invention (Example 1) equipped with a negative electrode container polished with a hydrogen peroxide-organic acid based chemical polishing liquid and further formed with a benzotriazole film, had a small number of defects after being stored for 40 days. Although leakage is observed, the number of batteries leaking does not increase as the number of days increases, unlike in the comparative example. On the other hand, in the battery (Example 2) equipped with a negative electrode container in which a composite film of benzotriazole and amphoteric surfactant was formed after polishing, the number of leaking batteries was further reduced compared to Example 1. . Also,
Regarding gas generation defects, the batteries of the present invention had only 1 in Example 1 and 0 in Example 2, which shows that the defective rate can be significantly improved compared to the comparative example.

なお、本発明は上記実施例に示すがタン型アルカリ電池
のみに限らず、第3図に示す筒形アルカリ電池にも同様
に適用できる。即ち、第3図中の11は正極端子を兼ね
た正極容器であシ、この容器11内には正極合剤12が
加圧充填されている。この正極合剤12の内側には不織
布製の七ノ4レータ13を介して負極活物質としての氷
化亜鉛14が充填されている。前記正極容器11の開口
部には合成樹脂製の絶縁バッキング15が挿着され、該
容器11の上部を内方向に折曲することによシ該バッキ
ング15が締め付け、密着されている。このバッキング
15上には負極端子を兼ねる封目板16が取着されてお
シ、かつ該封口板16の下面には前記バッキング15及
びセパレータ13を貫通して汞化亜鉛14内に延出され
た真鍮製の負極集電体17が取シ付けられている。こう
した筒形アルカリ電池の負極集電体17を実施例と同様
な組成の化学研摩液で研摩し、更にベンゾトリアゾール
又はその誘導体の皮膜を形成することに、よって、その
表面に孔食が生じることなく清浄化できるため、前述し
たのと同様な理由によシガス発生の原因となる不純物を
除去でき、更に絶縁バッキング15との密着性が良好と
なシ、破裂や漏液を確実に減少させることができる。
Although the present invention is shown in the above embodiment, it is not limited to the tan-type alkaline battery, but can be similarly applied to the cylindrical alkaline battery shown in FIG. That is, 11 in FIG. 3 is a positive electrode container which also serves as a positive electrode terminal, and a positive electrode mixture 12 is filled under pressure in this container 11. The inside of this positive electrode mixture 12 is filled with frozen zinc 14 as a negative electrode active material via a seven-layer plate 13 made of nonwoven fabric. An insulating backing 15 made of synthetic resin is inserted into the opening of the positive electrode container 11, and by bending the upper part of the container 11 inward, the backing 15 is tightened and tightly attached. A sealing plate 16, which also serves as a negative electrode terminal, is attached to the backing 15. A sealing plate 16, which also serves as a negative electrode terminal, is attached to the lower surface of the sealing plate 16. A negative electrode current collector 17 made of brass is attached. By polishing the negative electrode current collector 17 of such a cylindrical alkaline battery with a chemical polishing solution having the same composition as in the example and further forming a film of benzotriazole or its derivative, pitting corrosion can occur on its surface. Since the impurities that cause gas generation can be removed for the same reasons as mentioned above, the adhesion with the insulating backing 15 is good, and rupture and leakage can be reliably reduced. I can do it.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば孔食の発生がなく、
清浄化された負極集電体を備え、破裂や漏液を防止した
高寿命のアルカリ電池を提供できる。
As detailed above, according to the present invention, pitting corrosion does not occur,
It is possible to provide a long-life alkaline battery that is equipped with a cleaned negative electrode current collector and is prevented from bursting or leaking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における負極集電体を示す拡大
断面図、第2図は同実施例によって得られたがタン型ア
ルカリ電池を示す縦断面図、第3図は本発明の他の実施
例を示す筒形アルカリ電池を示す縦断面図である。 1・・・ニッケル層、2・・・ステンレス層、3・・・
銅層、4・・・負極容器、5,11・・・正極容器、6
゜12・・・正極合剤、7.13・・・セパレータ、9
゜14・・・氷化亜鉛、10.15・・・絶縁ノ4ツキ
ング、17・・・負極集電体。 出願人代理人  弁理士 鈴 江 武 彦ご廿 −へ 叡          截
FIG. 1 is an enlarged cross-sectional view showing a negative electrode current collector in an example of the present invention, FIG. 2 is a longitudinal cross-sectional view showing a tan-type alkaline battery obtained by the same example, and FIG. FIG. 2 is a longitudinal cross-sectional view showing a cylindrical alkaline battery according to an embodiment of the present invention. 1...Nickel layer, 2...Stainless steel layer, 3...
Copper layer, 4... Negative electrode container, 5, 11... Positive electrode container, 6
゜12...Positive electrode mixture, 7.13...Separator, 9
゜14... Zinc oxide, 10.15... Insulating quartz, 17... Negative electrode current collector. Applicant's Representative Patent Attorney Takehiko Suzue

Claims (4)

【特許請求の範囲】[Claims] (1)表面の銅層もしくは銅合金層を過酸化水素と有機
酸及び有機酸塩から選ばれる1種以上とよりなる化学研
摩液で研摩し、ベンゾトリアゾール又はその誘導体を少
なくとも含む被膜を形成してなる負極集電体を備えたこ
とを特徴とするアルカリ電池。
(1) Polishing the copper layer or copper alloy layer on the surface with a chemical polishing liquid consisting of hydrogen peroxide and one or more selected from organic acids and organic acid salts to form a coating containing at least benzotriazole or its derivatives. An alkaline battery characterized by comprising a negative electrode current collector.
(2)有機酸がギ酸、シュウ酸、酢酸、クエン酸又はグ
ルコン酸であることを特徴とする特許請求の範囲第1項
記載のアルカリ電池。
(2) The alkaline battery according to claim 1, wherein the organic acid is formic acid, oxalic acid, acetic acid, citric acid, or gluconic acid.
(3)化学研摩液のpHが3.0〜5.0であることを
特徴とする特許請求の範囲第1項記載のアルカリ電池。
(3) The alkaline battery according to claim 1, wherein the chemical polishing liquid has a pH of 3.0 to 5.0.
(4)被膜がベンゾトリアゾール又はその誘導体と両イ
オン性界面活性剤とからなることを特徴とする特許請求
の範囲第1項記載のアルカリ電池。
(4) The alkaline battery according to claim 1, wherein the coating comprises benzotriazole or a derivative thereof and an amphoteric surfactant.
JP15308484A 1984-07-25 1984-07-25 Alkali battery Granted JPS6156286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15308484A JPS6156286A (en) 1984-07-25 1984-07-25 Alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15308484A JPS6156286A (en) 1984-07-25 1984-07-25 Alkali battery

Publications (2)

Publication Number Publication Date
JPS6156286A true JPS6156286A (en) 1986-03-20
JPS6224512B2 JPS6224512B2 (en) 1987-05-28

Family

ID=15554621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15308484A Granted JPS6156286A (en) 1984-07-25 1984-07-25 Alkali battery

Country Status (1)

Country Link
JP (1) JPS6156286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747939A2 (en) * 1995-06-08 1996-12-11 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
WO2006103751A1 (en) * 2005-03-29 2006-10-05 Mitsubishi Chemical Corporation Copper etchant and method of etching
JP2012201968A (en) * 2011-03-28 2012-10-22 Kurita Water Ind Ltd Method for inhibiting pitting corrosion of copper member
JP2014181346A (en) * 2013-03-18 2014-09-29 Dowa Metaltech Kk Method of producing metal-ceramic circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109223A (en) * 1973-02-21 1974-10-17
JPS5841627A (en) * 1981-09-07 1983-03-10 Mitsui Keikinzoku Kako Kk Manufacture of metallic decorative panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109223A (en) * 1973-02-21 1974-10-17
JPS5841627A (en) * 1981-09-07 1983-03-10 Mitsui Keikinzoku Kako Kk Manufacture of metallic decorative panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747939A2 (en) * 1995-06-08 1996-12-11 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
EP0747939A3 (en) * 1995-06-08 1998-10-14 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
WO2006103751A1 (en) * 2005-03-29 2006-10-05 Mitsubishi Chemical Corporation Copper etchant and method of etching
JP2012201968A (en) * 2011-03-28 2012-10-22 Kurita Water Ind Ltd Method for inhibiting pitting corrosion of copper member
JP2014181346A (en) * 2013-03-18 2014-09-29 Dowa Metaltech Kk Method of producing metal-ceramic circuit board

Also Published As

Publication number Publication date
JPS6224512B2 (en) 1987-05-28

Similar Documents

Publication Publication Date Title
JPS6156286A (en) Alkali battery
JPS6156285A (en) Alkali battery
JPS61267264A (en) Alkaline battery
JPS61267265A (en) Alkaline battery
JPH08130021A (en) Alkaline battery
JPH07302581A (en) Alkaline battery
JPH0955193A (en) Alkaline cell
JP2003272636A (en) Alkaline battery
JPS6348394B2 (en)
JP4618771B2 (en) Button-type alkaline battery
JPS59119673A (en) Battery
JPS58155655A (en) Manufacture of alkaline battery
JPH0620694A (en) Alkaline dry battery
JPS58155656A (en) Manufacture of alkaline battery
JP2956345B2 (en) Alkaline batteries
JPH05266881A (en) Alkaline battery and manufacture thereof
JPS6151378B2 (en)
JPS6412063B2 (en)
JPS59167957A (en) Manufacture of button type alkali cell
El Shayeb et al. Electrochemical behaviour of Al, Cu, and Al–Cu alloys in NaOH and HCl solutions
JPH09147816A (en) Alkaline button battery
JP4646521B2 (en) Button-type alkaline battery
JPS6122413B2 (en)
JP3492121B2 (en) Button-shaped alkaline battery and method of manufacturing the same
JPS58155654A (en) Manufacture of alkaline battery