JPS6348394B2 - - Google Patents

Info

Publication number
JPS6348394B2
JPS6348394B2 JP57038577A JP3857782A JPS6348394B2 JP S6348394 B2 JPS6348394 B2 JP S6348394B2 JP 57038577 A JP57038577 A JP 57038577A JP 3857782 A JP3857782 A JP 3857782A JP S6348394 B2 JPS6348394 B2 JP S6348394B2
Authority
JP
Japan
Prior art keywords
copper
negative electrode
copper alloy
sulfuric acid
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57038577A
Other languages
Japanese (ja)
Other versions
JPS58169770A (en
Inventor
Akio Nagamine
Kojiro Myasaka
Nobuaki Chiba
Hitomi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP57038577A priority Critical patent/JPS58169770A/en
Publication of JPS58169770A publication Critical patent/JPS58169770A/en
Publication of JPS6348394B2 publication Critical patent/JPS6348394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、酸化鉄、二酸化マンガン等を正極
活物質、亜鉛等を負極活物質としアルカリ電解液
を用いるアルカリ電池の製造方法に関するもので
ある。 一般にアルカリ電池は正極端子を兼ねた金属製
正極容器内に正極活物質、負極端子を兼ねる金属
製負極容器内に負極活物質およびアルカリ電解液
を充填した後、セパレータを介在させ、合成高分
子等からなる絶縁ガスケツトを介して両容器を嵌
合し、正極容器の開口部を内方に彎曲させて密封
口している。 例えばボタン形酸化銀電池の場合、一般に負極
容器は、ステンレススチールと銅または銅合金と
の2層クラツド板、あるいはニツケルステンレス
スチール、銅または銅合金の三層クラツド板を銅
または銅合金の側が容器の内面になるように絞り
加工して製造したものである。 このようにして製造した負極容器の銅または銅
合金面にはクラツド板の製造工程、スリツト加工
打抜き絞り加工等の工程で、酸化物の生成、汚れ
やゴミの付着あるいはステンレス、ニツケル等の
金属の微細片が付着したりすることを避けること
ができない。電池組立前には脱脂洗滌等の前処理
を行なうが、これらの異物が銅または銅合金面の
キズに入つたり、付着後プレスされた場合には通
常の洗滌等の手段ではこれらを完全に除去するこ
とは困難である。 負極容器の銅または銅合金面はアルカリ電解液
のあることにより、負極活物質の汞化亜鉛と接触
してアマルガム化と亜鉛メツキとが行なわれる。
このため、銅または銅合金は亜鉛より貴であるに
もかかわらず、亜鉛と接触しても水素ガス発生は
抑制されるので、電池を密封口することができ
る。 しかし、ステンレススチール、ニツケル等の異
物が銅または銅合金面に残つていると、これらの
異物には汞水と亜鉛メツキとが行われにくいた
め、そのまま露出した状態で残る。これらの金属
は水素過電圧が小さいので、負極容器にアルカリ
溶液と亜鉛とが充填された場合、水素ガスを発生
する。 したがつて、組立て後電池内部に水素ガスが充
満して電池の内圧を高め、漏液の原因となりある
いは電池を破裂させたりして、このように、水素
ガスを発生し易い構造は、電池としての重大な欠
陥である。 この発明は上記の事情に基づきなされたもの
で、負極集電体の負極活物質と接する銅または銅
合金の表面を過酸化水素、硫酸系化学研摩液で研
摩して清浄化した後、水銀イオンを含む銅または
銅合金の防錆剤溶液で処理し、アマルガム化と防
錆処理とを同時に行なうことにより、水素ガスの
発生が少なくしたがつて漏液、インピーダンスの
増加、破裂等がなく寿命を長期化することができ
るとともに作業効率を向上することのできるアル
カリ電池の製造方法を提供しようとするものであ
る。 すなわち、負極容器の銅または銅合金に付着し
た金属の微細片等の異物は通常の洗滌法では除去
が困難であるから、これらの有害な異物を銅また
は銅合金の表面をある厚さまでけずり取ることに
より解決したものである。 この研摩により除去する厚さは、面の汚れや異
物の付着の程度と銅または銅合金の厚さによつて
決定される。銅または銅合金面の厚さは、クラツ
ド板全体の厚さの10%程度が標準的であり、した
がつてクラツド板が薄い場合は銅または銅合金層
もまた薄くなり、けずり取る厚さも制限される。 クラツド板の厚さが0.3mmの場合は、銅または
銅合金の厚さは30μ程度が一般的であり、10μ程
度けずり取つても内側のステンレススチール層が
露出するおそれはないが、はずり取るための費用
がかさみ実用的でない。負極容器の銅または銅合
金面にステンレススチール、ニツケル等の異物が
付着したり打込まれている深さは、深いものでも
3〜5μ程度であり、6μ程度けずり取ることこの
のできることが確認された。 この場合に銅または銅合金面をけずる取る手段
としては、けずり取る厚さを比較的容易に管理で
きるという点で化学研摩が適当である。さらに具
体的には、過酸化水素硫酸系化学研摩剤を用いる
のが、過酸化水素と硫酸の組成、処理温度および
時間を選ぶことにより、けずり取る厚さを的確に
管理できる特長がある。 特定化学研摩液としてこの発明において過酸化
水素硫酸系化学研摩剤を用いた理由は、硝酸ある
いは塩酸に過酸化水素を混合した化学研摩液では
亜硝酸または塩素ガスの発生が激しいのに対し、
この発明ではガスの発生を少くできる特長がある
ことによるものである。 異物を除去した後の銅または銅合金面はそのま
まに放置すると酸化されるので、電池に包含され
る少量のアルカリ電解液がある状態で汞化亜鉛と
接触した場合、汞化と亜鉛メツキが行なわれるま
でに時間がかかり、それまでの間は銅または銅合
金面から水素ガスを発生する。負極容器に汞化亜
鉛およびアルカリ電解液を充填後すぐに電池を組
立てるので、水素ガスの発生は電池組立後まで続
くことになる。電池の内部で水素ガスが発生する
とそのインピーダンスを増加させあるいは内圧の
増加による漏液の原因となる。 そこで、この発明においては、化学研摩により
清浄化した後この清浄面を水銀イオンを含む銅ま
たは銅合金の防錆剤溶液に浸漬してアマルガム化
と防錆処理とを同時に行なつた後汞化亜鉛とアル
カリ電解液とを充填することにより水素ガスの発
生を防止している。この場合に、防錆剤としては
銅または銅合金の防錆剤として一般に使用されて
いるトリアゾール誘導体を用いることができる。 なお、負極容器は一般に絞り加工によつて周辺
に折返し部を設けた形状になつていて、この折返
し部を形成する際析り返し部付近は銅または銅合
金の加工度が大きいため引き延ばされて他の部分
より薄くなつている。したがつてこの部分を化学
研摩液でけずり取るとステンレススチールが露出
しこれが原因で水素ガスを発生するおそれがあ
る。しかしながら、この発明においては折り返し
部を避けて化学研摩を行なうものであるから、こ
のような点においても水素ガス発生防止に対する
配慮なされている。 次に図面を参照してこの発明の一実施例を説明
する。 第1図に示すような、全体の厚さが0.3mmで銅
の厚さが30μのニツケル1、ステンレススチール
2、銅3よりなる三層クラツド板を使用し、これ
を絞り加工して負極容器4を製作する。 この負極容器4の周辺折返し部5に合成樹脂製
の治具6を当接して表面を覆つた後、過酸化水素
約10モル、硫酸約0.45モルを含み過酸化水素に対
する硫酸のモル比が0.045の化学研摩液により常
温で2分間程度処理した後、水洗、硫酸洗い、水
洗、中和、水洗を繰返して露出している銅3の表
面を化学的にけずり取り、異物を除去して清浄に
する。この清浄面に対し、直ちに負極容器1個当
り約0.1mgの水銀イオンと防錆剤としてベンゾト
リアゾール0.2%とを含む水溶液中に浸漬し、80
℃で約15秒間処理し、アマルガム化と防錆被膜の
形成を同時に行なつた後、治具6を外して水洗乾
燥した。銅面をけずり取る厚さは平均して約6μ
とする。 この負極容器4を用いて第2図に示すような酸
化銀電池SR54(外径11.6mm、高さ3.05mm)を組立
てた。第2図において、7はニツケルメツキした
鋼板よりなる有底短円筒状の正極容器、8は酸化
銀活物質に電導剤として黒鉛を添加し形成した陽
極合剤、9はイオン透過性のセパレータ、10は
アルカリ電解液を含浸させた多孔性繊維物質から
なる電解液保持材、11は負極活物質としての汞
化亜鉛である。12は正極容器7と負極容器4と
の間を絶縁するとともにその間隙を密封する絶縁
パツキングで、正極容器1の開口部を内側に彎曲
させてこれを締着している。図中13は環体であ
る。 このようにして作つた電池(C)を含む各種の処理
液組成の電池(A)〜(E)と比較のために同じ負極容器
をトリクレン洗滌後アルカリ洗滌して水洗乾燥し
ただけのものを用いて組立てた従来の電池(F)とを
漏液の点について対比した。すなわち第1表は、
これらの電池を温度60℃、湿度90%の試験槽中に
貯蔵し、10倍の顕微鏡を用いてそれぞれ1000個に
ついて漏液したものの個数を示したものである。
The present invention relates to a method for manufacturing an alkaline battery using an alkaline electrolyte, using iron oxide, manganese dioxide, etc. as a positive electrode active material, zinc, etc. as a negative electrode active material, and using an alkaline electrolyte. In general, in an alkaline battery, a positive electrode active material is filled in a metal positive electrode container that also serves as a positive electrode terminal, and a negative electrode active material and an alkaline electrolyte are filled in a metal negative electrode container that also serves as a negative electrode terminal, and then a separator is interposed. The two containers are fitted together via an insulating gasket consisting of an insulating gasket, and the opening of the positive electrode container is curved inward to form a hermetically sealed opening. For example, in the case of a button-type silver oxide battery, the negative electrode container is generally a two-layer clad plate of stainless steel and copper or a copper alloy, or a three-layer clad plate of nickel stainless steel, copper or copper alloy, with the copper or copper alloy side facing the container. It is manufactured by drawing so that it has the inner surface. The copper or copper alloy surface of the negative electrode container manufactured in this way is subjected to the production of cladding plates, slitting, punching, drawing, etc. processes such as the formation of oxides, the adhesion of dirt and dust, or the presence of metals such as stainless steel and nickel. The adhesion of fine particles cannot be avoided. Before battery assembly, pretreatment such as degreasing and cleaning is performed, but if these foreign substances get into scratches on the copper or copper alloy surface, or if they are pressed after adhesion, it is impossible to completely remove them with normal cleaning or other means. It is difficult to remove. Due to the presence of an alkaline electrolyte, the copper or copper alloy surface of the negative electrode container comes into contact with the negative electrode active material, ie, zinc chloride, to undergo amalgamation and galvanization.
Therefore, even though copper or copper alloy is more noble than zinc, hydrogen gas generation is suppressed even when it comes into contact with zinc, so the battery can be sealed. However, if foreign substances such as stainless steel or nickel remain on the copper or copper alloy surface, these foreign substances will remain exposed as they are difficult to be washed with water and galvanized. Since these metals have a small hydrogen overvoltage, they generate hydrogen gas when the negative electrode container is filled with an alkaline solution and zinc. Therefore, after assembly, hydrogen gas fills inside the battery, increasing the internal pressure of the battery, causing leakage, or causing the battery to burst. Structures that tend to generate hydrogen gas cannot be used as batteries. This is a serious flaw. This invention was made based on the above circumstances, and after polishing and cleaning the surface of copper or copper alloy in contact with the negative electrode active material of the negative electrode current collector with hydrogen peroxide and sulfuric acid-based chemical polishing liquid, mercury ions are removed. By treating with a rust preventive solution of copper or copper alloy containing copper and performing amalgamation and rust prevention treatment at the same time, the generation of hydrogen gas is reduced, so there is no leakage, impedance increase, rupture, etc., and the service life is extended. The present invention aims to provide a method for manufacturing alkaline batteries that can last for a long time and improve work efficiency. In other words, since it is difficult to remove foreign substances such as minute pieces of metal attached to the copper or copper alloy of the negative electrode container by normal cleaning methods, these harmful foreign substances are scraped off to a certain thickness on the surface of the copper or copper alloy. The problem was solved by this. The thickness to be removed by this polishing is determined by the degree of dirt and foreign matter adhering to the surface and the thickness of the copper or copper alloy. The standard thickness of the copper or copper alloy surface is about 10% of the total thickness of the clad plate, so if the clad plate is thin, the copper or copper alloy layer will also be thinner, which limits the thickness to be scraped. be done. If the thickness of the clad plate is 0.3mm, the thickness of the copper or copper alloy is generally around 30μ, and there is no risk of exposing the inner stainless steel layer even if it is removed by about 10μ, but it can be removed. This is expensive and impractical. It has been confirmed that the depth at which foreign matter such as stainless steel or nickel adheres to or is implanted into the copper or copper alloy surface of the negative electrode container is approximately 3 to 5 microns at most, and that it is possible to scrape it off by approximately 6 microns. Ta. In this case, chemical polishing is suitable as a means for scraping the copper or copper alloy surface, since the thickness of the scraping can be controlled relatively easily. More specifically, the use of hydrogen peroxide and sulfuric acid-based chemical abrasives has the advantage that the thickness to be scraped can be precisely controlled by selecting the composition of hydrogen peroxide and sulfuric acid, treatment temperature, and time. The reason why hydrogen peroxide and sulfuric acid based chemical abrasives are used as the specified chemical polishing liquid in this invention is that chemical polishing liquids in which hydrogen peroxide is mixed with nitric acid or hydrochloric acid generate a large amount of nitrous acid or chlorine gas.
This is because this invention has the advantage of being able to reduce gas generation. If the copper or copper alloy surface is left untouched after foreign matter has been removed, it will oxidize, so if it comes into contact with zinc chloride in the presence of a small amount of alkaline electrolyte contained in the battery, oxidation and galvanization will not occur. It takes time for the copper or copper alloy surface to generate hydrogen gas. Since the battery is assembled immediately after filling the negative electrode container with zinc chloride and alkaline electrolyte, hydrogen gas generation continues until after the battery is assembled. When hydrogen gas is generated inside the battery, it increases its impedance or causes leakage due to an increase in internal pressure. Therefore, in the present invention, after cleaning by chemical polishing, this clean surface is immersed in a rust preventive solution of copper or copper alloy containing mercury ions to perform amalgamation and rust prevention treatment at the same time. Generation of hydrogen gas is prevented by filling with zinc and alkaline electrolyte. In this case, triazole derivatives commonly used as rust preventive agents for copper or copper alloys can be used as the rust preventive agent. In addition, the negative electrode container is generally formed into a shape with a folded part around the periphery by drawing processing, and when forming this folded part, the copper or copper alloy in the vicinity of the folded part is highly processed, so it is not necessary to stretch it. It has been made thinner than other parts. Therefore, if this part is scraped off with a chemical polishing solution, the stainless steel will be exposed, which may generate hydrogen gas. However, in this invention, since chemical polishing is performed while avoiding the folded portion, consideration is given to prevention of hydrogen gas generation in this respect as well. Next, an embodiment of the present invention will be described with reference to the drawings. As shown in Figure 1, a three-layer clad plate made of nickel 1, stainless steel 2, and copper 3 with a total thickness of 0.3 mm and a copper thickness of 30 μm is used, and this is drawn to form a negative electrode container. Produce 4. After a jig 6 made of synthetic resin is brought into contact with the peripheral folded portion 5 of this negative electrode container 4 to cover the surface, it contains about 10 moles of hydrogen peroxide and about 0.45 moles of sulfuric acid, and the molar ratio of sulfuric acid to hydrogen peroxide is 0.045. After processing with a chemical polishing solution for about 2 minutes at room temperature, the exposed surface of the copper 3 is chemically scraped by repeating washing with water, washing with sulfuric acid, washing with water, neutralization, and washing with water to remove foreign substances and clean it. do. Immediately immerse this clean surface in an aqueous solution containing approximately 0.1 mg of mercury ion per negative electrode container and 0.2% benzotriazole as a rust preventive agent.
After processing at ℃ for about 15 seconds to simultaneously form amalgam and form a rust-preventing film, the jig 6 was removed and washed with water and dried. The average thickness of the copper surface is approximately 6μ.
shall be. Using this negative electrode container 4, a silver oxide battery SR54 (outer diameter 11.6 mm, height 3.05 mm) as shown in FIG. 2 was assembled. In FIG. 2, 7 is a bottomed short cylindrical positive electrode container made of nickel-plated steel plate, 8 is an anode mixture formed by adding graphite as a conductive agent to a silver oxide active material, 9 is an ion-permeable separator, and 10 1 is an electrolyte holding material made of a porous fiber material impregnated with an alkaline electrolyte, and 11 is zinc chloride as a negative electrode active material. Reference numeral 12 denotes an insulating packing that insulates the gap between the positive electrode container 7 and the negative electrode container 4 and seals the gap therebetween, and the opening of the positive electrode container 1 is curved inward to fasten the packing. In the figure, 13 is a ring. For comparison with batteries (A) to (E) with various treatment solution compositions, including battery (C) made in this way, the same negative electrode container was washed with trichlene, alkaline, washed with water, and then dried. A comparison was made with respect to leakage with a conventional battery (F) assembled using a conventional battery. In other words, Table 1 is
These batteries were stored in a test tank at a temperature of 60°C and a humidity of 90%, and the number of leaked batteries was calculated using a 10x microscope.

【表】 また第2表は、温度45℃、湿度90%で3ケ月貯
蔵した電池の水素ガス発生等に基づく高さの変化
を調べ、それぞれ試験電池1000個中膨らんで0.5
mm以上高くなつた電池の個数を示したものであ
る。
[Table] In addition, Table 2 shows the changes in height due to hydrogen gas generation, etc. of batteries stored for 3 months at a temperature of 45°C and humidity of 90%.
This shows the number of batteries whose price has increased by more than mm.

【表】【table】

【表】 第1表によると、従来品(F)の場合には貯蔵日数
20日で漏液が始まり日数の増加とともに急激に増
加して行くのに対し、この発明による電池(A)〜(E)
の場合には貯蔵日数30日で少ない個数の漏液が始
まり、日数が増加しても従来品(F)の場合に比して
漏液するものの数は著しく少ない。 また第2表によれば、従来品(F)の場合の不良の
数に比してこの発明による電池(A)〜(E)の場合には
約1/7以下に抑えることができる。 なお、第1表および第2表を通じ過酸化水素8
〜10モル、硫酸0.25〜0.6モル、過酸化水素に対
する硫酸のモル比が0.03〜0.06の範囲に含まれる
(B)〜(D)の場合が特に良好な試験結果が得られるこ
とを知ることができる。 以上述べたようにこの発明によれば、負極集電
体の負極活物質と接する銅または銅合金の表面を
過酸化水素、硫酸系化学研摩液で研摩して清浄化
した後、水銀イオンを含む銅または銅合金の防錆
剤溶液で処理し、アマルガム化と防錆処理とを同
時に行なうことにより、水素ガスの発生が少なく
したがつて漏液、インピーダンスの増加、破裂等
がなく寿命を長期化することができるとともに作
業効率を向上することができるアルカリ電池の製
造方法を提供することができる。 なお、この発明は上記実施例に限定されるもの
ではなく要旨を変更しない範囲において種々変形
して実施することができる。上記実施例において
防錆剤としてトリアゾール誘導体を用いる場合を
示しているが、防錆剤はこれのみに限定されるも
のではない。銅または銅合金に化学吸着する防錆
剤としてはベンゾトリアゾール誘導体の他に安息
香酸ヘキサメチレンイミン、ジニトロ安息香酸シ
クロヘキシルアミン等を挙げることができる。
[Table] According to Table 1, in the case of conventional product (F), the number of storage days
In contrast to batteries (A) to (E) according to the present invention, the leakage started after 20 days and rapidly increased as the number of days increased.
In the case of , a small number of leaks start after 30 days of storage, and even if the number of days increases, the number of leaks is significantly smaller than in the case of conventional product (F). Furthermore, according to Table 2, the number of defects can be suppressed to about 1/7 or less in the batteries (A) to (E) according to the present invention compared to the number of defects in the conventional product (F). In addition, through Tables 1 and 2, hydrogen peroxide 8
~10 mol, sulfuric acid 0.25-0.6 mol, molar ratio of sulfuric acid to hydrogen peroxide in the range 0.03-0.06
It can be seen that particularly good test results are obtained in cases (B) to (D). As described above, according to the present invention, after polishing and cleaning the surface of the copper or copper alloy in contact with the negative electrode active material of the negative electrode current collector with hydrogen peroxide and sulfuric acid-based chemical polishing liquid, the surface of the copper or copper alloy containing mercury ions is removed. By treating with a rust preventive solution of copper or copper alloy, and performing amalgamation and rust prevention treatment at the same time, hydrogen gas generation is reduced, so there is no leakage, impedance increase, rupture, etc., and the service life is extended. It is possible to provide a method for manufacturing an alkaline battery that can improve work efficiency. Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist. Although the above examples show the case where a triazole derivative is used as the rust preventive agent, the rust preventive agent is not limited to this. In addition to benzotriazole derivatives, hexamethyleneimine benzoate, cyclohexylamine dinitrobenzoate, and the like can be cited as rust preventive agents that chemically adsorb onto copper or copper alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の製造工程の説明
図、第2図は同実施例によつて得られた酸化銀電
池を示す縦断面図である。 1……ニツケル、2……ステンレススチール、
3……銅、4……負極容器、5……周辺折返し
部、6……治具、7……正極容器、8……陽極合
剤、9……セパレータ、10……電解液保持材、
11……汞化亜鉛、12……絶縁パツキング、1
3……環体。
FIG. 1 is an explanatory diagram of the manufacturing process of one embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing a silver oxide battery obtained by the same embodiment. 1...nickel, 2...stainless steel,
3... Copper, 4... Negative electrode container, 5... Peripheral folded part, 6... Jig, 7... Positive electrode container, 8... Anode mixture, 9... Separator, 10... Electrolyte holding material,
11...Zinc chloride, 12...Insulating packing, 1
3... Ring body.

Claims (1)

【特許請求の範囲】 1 負極集電体1の負極活物質と接する銅または
銅合金3の表面を過酸化水素硫酸系化学研摩液で
研摩して清浄化する前処理工程と、前記前処理工
程で得た負極集電体を水銀イオンと銅または銅合
金の防錆剤とを含む溶剤に浸漬して負極集電体1
の銅または銅合金3の表面に同時にアマルガム被
覆および防錆剤被覆を施す後処理工程とからなる
アルカリ電池の製造方法。 2 上記化学研摩液は過酸化水素8〜10モル、硫
酸0.25〜0.6モルを含むものであることを特徴と
する特許請求の範囲第1項記載のアルカリ電池の
製造方法。 3 上記化学研摩液は過酸化水素に対する硫酸の
モル比が0.03〜0.06の範囲のものであることを特
徴とする特許請求の範囲第2項記載のアルカリ電
池の製造方法。 4 上記防錆剤としてトリアゾール誘導体を用い
ることを特徴とする特許請求の範囲第1項ないし
第3項のいずれかに記載されたアルカリ電池の製
造方法。
[Scope of Claims] 1. A pretreatment step of polishing and cleaning the surface of the copper or copper alloy 3 in contact with the negative electrode active material of the negative electrode current collector 1 with a hydrogen peroxide/sulfuric acid-based chemical polishing liquid; and the pretreatment step. Negative electrode current collector 1 is prepared by immersing the obtained negative electrode current collector in a solvent containing mercury ions and a copper or copper alloy rust preventive agent.
A method for producing an alkaline battery comprising a post-treatment step of simultaneously applying an amalgam coating and a rust preventive coating to the surface of the copper or copper alloy 3. 2. The method of manufacturing an alkaline battery according to claim 1, wherein the chemical polishing liquid contains 8 to 10 moles of hydrogen peroxide and 0.25 to 0.6 moles of sulfuric acid. 3. The method of manufacturing an alkaline battery according to claim 2, wherein the chemical polishing liquid has a molar ratio of sulfuric acid to hydrogen peroxide in a range of 0.03 to 0.06. 4. The method for manufacturing an alkaline battery according to any one of claims 1 to 3, characterized in that a triazole derivative is used as the rust preventive agent.
JP57038577A 1982-03-11 1982-03-11 Manufacturing method of alkaline battery Granted JPS58169770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038577A JPS58169770A (en) 1982-03-11 1982-03-11 Manufacturing method of alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038577A JPS58169770A (en) 1982-03-11 1982-03-11 Manufacturing method of alkaline battery

Publications (2)

Publication Number Publication Date
JPS58169770A JPS58169770A (en) 1983-10-06
JPS6348394B2 true JPS6348394B2 (en) 1988-09-28

Family

ID=12529135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038577A Granted JPS58169770A (en) 1982-03-11 1982-03-11 Manufacturing method of alkaline battery

Country Status (1)

Country Link
JP (1) JPS58169770A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055725Y2 (en) * 1987-02-06 1993-02-15

Also Published As

Publication number Publication date
JPS58169770A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
KR0150230B1 (en) Alkaline dry cell
US20090220861A1 (en) Method for producing alkaline battery, and alkaline battery
JPS6348394B2 (en)
JP3522303B2 (en) Button type alkaline battery
JPS58155657A (en) Manufacture of alkaline battery
JPH07326358A (en) Alkaline battery
JPH0620694A (en) Alkaline dry battery
JPS58155656A (en) Manufacture of alkaline battery
JPS6156285A (en) Alkali battery
JPH07302581A (en) Alkaline battery
JPS6151378B2 (en)
JPS58155654A (en) Manufacture of alkaline battery
JPS58155655A (en) Manufacture of alkaline battery
JPS58155653A (en) Manufacture of alkaline battery
JP3018771B2 (en) Button type zinc alkaline battery
JP4618771B2 (en) Button-type alkaline battery
JPH05109411A (en) Alkaline dry battery
JPS6156286A (en) Alkali battery
JP2956345B2 (en) Alkaline batteries
JPH08130021A (en) Alkaline battery
JP2946874B2 (en) Mercury-free alkaline batteries
JP2737233B2 (en) Zinc alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPH07254396A (en) Button type alkaline battery
JPH06275280A (en) Alkaline battery