JPH07302581A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH07302581A
JPH07302581A JP6095263A JP9526394A JPH07302581A JP H07302581 A JPH07302581 A JP H07302581A JP 6095263 A JP6095263 A JP 6095263A JP 9526394 A JP9526394 A JP 9526394A JP H07302581 A JPH07302581 A JP H07302581A
Authority
JP
Japan
Prior art keywords
copper
negative electrode
tin
minutes
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6095263A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡邊
Tsugio Sakai
次夫 酒井
Hideo Sakamoto
秀夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP6095263A priority Critical patent/JPH07302581A/en
Publication of JPH07302581A publication Critical patent/JPH07302581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance performance and reduce production cost by using a copper- tin alloy in a negative pole can. CONSTITUTION:The outside 9 and inside 10 of a negative pole can of a silver battery are formed with an alloy comprising copper and tin in place of a nickel- stainless steel-copper three layer clad material to prevent the bulging of battery container caused by generation of hydrogen gas and deterioration in shelf life. A negative pole can core material formed of iron or brass and a copper-tin alloy layer is formed on the surface of the negative pole can to reduce production cost. After forming of the can, since the copper-tin alloy layer is formed by plating or vapor deposition, power of metal such as stainless steel and iron is not exposed on the surface of the inside 10. Since the copper-tin alloy layer is difficult to form on the inside 12 of turning up part of the negative pole can, when press forming is conducted after forming of the alloy layer, the core material is exposed at the negative pole can end 11. If the exposed metal is stainless steel or brass, corrosion is not produced, but if it is iron, care must be taken in environment for use, such as the inside of an appliance. By use of the copper-tin alloy, cost can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、亜鉛または亜鉛合金粉
末を負極活物質とし、正極活物質として、酸化銀、二酸
化マンガン、酸素等を用いるボタン型、コイン型アルカ
リ電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a button type or coin type alkaline battery in which zinc or zinc alloy powder is used as a negative electrode active material and silver oxide, manganese dioxide, oxygen or the like is used as a positive electrode active material.

【従来の技術】アルカリ電池に用いられる負極缶の多く
は、ニッケル、ステンレス、銅の三層クラッド材をプレ
ス成形したものが用いられていた。
2. Description of the Related Art Most of negative electrode cans used in alkaline batteries are press-molded three-layer clad materials of nickel, stainless steel and copper.

【発明が解決しようとする課題】アルカリ電池に用いら
れる負極缶の多くは、ニッケル、ステンレス、銅の三層
クラッド材をプレス成形したものが用いられている。ニ
ッケル、ステンレス、銅の三層クラッド材は高価な材料
であるという課題があった。三層クラッド材を用いた場
合、成形時にステンレスの切り粉や鋼具からの鉄粉が銅
面に付着することがあった。集電体である銅面に付着し
た、ステンレス、鉄等の金属粉末は、水素過電圧が小さ
いため亜鉛と接触し局部電池を形成して、水素ガスを発
生する。そのため、電池缶の膨らみや保存容量の劣化と
いった不良の原因となっていた。
Many of the negative electrode cans used in alkaline batteries are press-molded three-layer clad materials of nickel, stainless steel, and copper. The three-layer clad material of nickel, stainless steel, and copper has a problem that it is an expensive material. When a three-layer clad material was used, cutting powder of stainless steel or iron powder from a steel tool sometimes adhered to the copper surface during molding. The metal powder such as stainless steel and iron attached to the copper surface which is the current collector has a small hydrogen overvoltage, and therefore contacts zinc and forms a local battery to generate hydrogen gas. Therefore, it has caused defects such as swelling of the battery can and deterioration of storage capacity.

【課題を解決するための手段】図1に示す銀電池の負極
缶外側9、負極缶内側10を銅・スズを主成分とす銅・
スズを主成分とするる合金にし、ニッケル、ステンレ
ス、銅の三層クラッド材を用いないことにより前述の課
題を解決できる。具体的な解決方法としては、銅・スズ
を主成分とする合金の帯材をプレス成形したものを用い
ればよい。また、ステンレス、鉄または黄銅で成形した
負極缶心材をつくり、表面に銅・スズを主成分とする合
金層を設けた負極缶を用いることにより、製造コストを
大幅に削減することができる。さらにこの方法だと、缶
成形後表面に銅・スズ合金層をめっきや蒸着などの方法
により形成するため、負極缶内側10最表面にステンレ
ス、鉄等の金属粉末が露出することはなくなる。ただ
し、負極缶折り返し内部12には銅・スズを主成分とす
る合金層を設けにくい。帯状の材料に銅・スズを主成分
とする合金層を設けてからプレス成形する場合は負極缶
端部11には心材が露出する。負極缶折り返し内部1
2、負極缶端部11に露出する金属がステンレス、黄銅
の場合は腐食の問題はない。露出する金属が鉄の場合
は、機器の内部等腐食しにくい環境で電池を使用するこ
とが望ましい。ニッケル、ステンレス、銅の三層クラッ
ド材を安価な材料に変更することにより大幅なコスト削
減ができる。
[Means for Solving the Problems] The outer side 9 and the inner side 10 of the negative electrode can of the silver battery shown in FIG.
The above problems can be solved by using an alloy containing tin as a main component and not using a three-layer clad material of nickel, stainless steel, and copper. As a concrete solution, a material obtained by press-molding a strip material of an alloy containing copper and tin as a main component may be used. Further, by manufacturing the negative electrode can core material formed of stainless steel, iron or brass and using the negative electrode can on the surface of which the alloy layer containing copper and tin as a main component is provided, the manufacturing cost can be significantly reduced. Further, according to this method, since the copper / tin alloy layer is formed on the surface after the can is formed by a method such as plating or vapor deposition, metal powder such as stainless steel or iron is not exposed on the outermost surface of the inside 10 of the negative electrode can. However, it is difficult to provide an alloy layer containing copper and tin as a main component in the folded inside 12 of the negative electrode can. When the band-shaped material is provided with an alloy layer containing copper and tin as a main component and then press-molded, the core material is exposed at the negative electrode can end 11. Negative electrode can folded inside 1
2. If the metal exposed at the negative electrode can end 11 is stainless steel or brass, there is no problem of corrosion. When the exposed metal is iron, it is desirable to use the battery in an environment such as the inside of the equipment that is unlikely to corrode. Significant cost reduction can be achieved by changing the three-layer clad material of nickel, stainless steel, and copper to an inexpensive material.

【作用】銅・スズ合金は、耐食性が良く負極缶とリード
端子の接触抵抗の増加が少ない。また、従来負極缶の内
側として使用されている銅より水素過電圧も大きいため
負極活物質である亜鉛と接触してもガス発生は少ない
し、水銀ともこう化もしやすい。負極活物質としては、
ビスマス、インジウム、アルミニウム、カルシウム、
鉛、ガリウム等を数10〜数100ppm程度含む無水
銀亜鉛でもこう化亜鉛でも同様に効果がある。負極缶の
外側、内側の表面を銅・スズを主成分とする合金にし、
ニッケル、ステンレス、銅の三層クラッド材を用いない
ことにより前述の課題を解決できる。銅・スズを主成分
とするる合金表面にさらに撥水剤等の有機皮膜を設ける
ことも効果的である。有機皮膜は、負極缶の外側におい
ては合金の腐食を防止し接触抵抗が増加することを抑制
する。内側においては、電解液が電池缶の外側に漏れ出
す漏液を防止する。具体的な解決方法としては、銅・ス
ズを主成分とする合金の板材をプレス成形したものを用
いればよい。この場合、缶強度の低下と成形時の切り粉
や鋼具からの鉄粉の付着が問題となる。強度低下は板材
を多少厚くすること、切り粉や鋼具からの鉄粉の付着は
負極缶の酸による洗浄や化学研磨により解決できる。こ
の場合、酸としては硫酸および塩酸を用いることが望ま
しい。硝酸は、比較的低濃度で用いる場合はよいが、高
濃度になると酸化性が強くなるため銅・スズを主成分と
する合金にダメージを与えることになる。酸濃度は10
〜50%程度に数10秒〜数分浸漬することが望まし
い。例えば、酸濃度をA重量%、浸漬時間をB分とした
場合、A×Bの値が10以上となるよう設定すれば十分
な効果が得られる。使用する負極缶により不純物の付着
状態は異なるため、適正濃度と浸漬時間は後述のような
ガス発生テストにより各製造ロットごとに決めればよ
い。酸処理温度は、硫酸の場合室温から80℃、塩酸の
場合揮発性が強いため室温で行う。化学研磨としては、
過酸化水素水(本発明における過酸化水素水とは一般試
薬として入手できる過酸化水素を25〜35重量%程度
含有するものと定義する)25〜80vol%、硫酸
0.01〜1vol%、アルコール5〜40vol%残
り水からなる液に浸漬した後、酸に浸漬することによ
り、銅・スズ合金面に付着した、ステンレス、鉄等の金
属粉末を除去することができる。さらに、銅・スズ合金
表面の光沢が増し、平坦になるため耐漏液性も向上す
る。ガス発生テストは、負極缶に電解液をこぼれる寸前
まで駒込ピペットでいれた後、100から200メッシ
ュの大きさの無水銀亜鉛を数10粒いれ、負極缶に発生
する気泡を実体顕微鏡により観察するという方法により
行う。負極缶にステンレス、鉄等の金属粉末が付着して
いるとそこからガスの気泡が発生する。また、ステンレ
ス、鉄または黄銅でプレス成形した負極缶心材をつく
り、表面に銅・スズを主成分とする合金層を設けた負極
缶を用いることにより、製造コストを大幅に削減するこ
とができる。さらにこの方法だと、缶成形後表面に銅・
スズを主成分とする合金層をめっきや蒸着などの方法に
より形成するため、負極缶内側10最表面にステンレ
ス、鉄等の金属粉末が露出することはなくなる。缶成形
後表面に銅・スズを主成分とする合金層を形成する方法
としてはめっき法が最も効率の良い方法である。銅・ス
ズに光沢や耐食性をよくする目的で亜鉛やニッケルを加
えた皮膜をめっきすることも効果的である。ステンレス
や鉄は水素過電圧が小さく、表面に露出すると電池内で
ガス発生が起こり、電池の膨らみや漏液といった不良の
原因となる。心材とする金属にステンレスや鉄を使用す
る場合は、一度ニッケルや銅でめっきしてから、銅・ス
ズを主成分とする合金層をめっきすることにより、合金
層の密着を良くでき膜の欠陥も少なくできる。また、ス
テンレスを心材とする場合は表面の酸化皮膜を、物理的
または化学的に除去してからめっきすることも密着を良
くし膜の欠陥も少なくする上で重要なことである。心材
とする金属にニッケルや銅を缶の成形前のフープの状態
でめっきする方法もある。この場合ニッケルや銅の厚さ
制御がしやすいというメリットがある。心材として使用
するステンレスはJISのSUS304、SUS430
等、鉄はSPCの絞り用、深絞り用等がある。黄銅では
JISのC2100、C2200、C2300、C24
00、C2600、C2680、C2720、C280
1、C3560、C3561、C3710、C371
3、C4250、C4430、C4621、C4640
等を用いれば良い。通常C2000番台の合金を用いれ
ば良いが、サイズの大きな電池に用いるものは高強度の
C3000番台、腐食環境で使用する可能性のある電池
に用いるのはC4000番台の高耐食性のものを用いれ
ば良い。めっきとしては、日本エレクトロプレイティン
グ・エンジニアーズ株式会社製の白色で光沢のある銅と
スズの比が0.6:1のブロンゼックスW−1、淡黄色
で銅とスズの比が3.3:1のブロンゼックスII、金色
で銅とスズの比が5:1のブロンゼックスG−1等をが
ある。表面が銅・スズを主成分とする合金である負極缶
は、漏液、膨らみといった不良を少なくするため公害物
質である水銀を減らしたり、無水銀化することができ
る。負極缶の原料であるフープ材をニッケル、ステンレ
ス、銅の三層クラッド材から本発明の材料にすることに
より、作製時のエネルギーを大幅に削減できる。
[Function] Copper-tin alloy has good corrosion resistance and little increase in contact resistance between the negative electrode can and the lead terminal. Further, since the hydrogen overvoltage is larger than that of copper conventionally used as the inside of the negative electrode can, even if it contacts zinc, which is the negative electrode active material, less gas is generated, and mercury is also apt to undergo this process. As the negative electrode active material,
Bismuth, indium, aluminum, calcium,
The same effect can be obtained by using either anhydrous zinc-zinc containing lead, gallium, or the like in the range of several tens to several hundreds of ppm or zinc iodide. The outer and inner surfaces of the negative electrode can are made of an alloy containing copper and tin as main components,
The above problem can be solved by not using the three-layer clad material of nickel, stainless steel, and copper. It is also effective to further provide an organic film such as a water repellent agent on the surface of the alloy containing copper and tin as a main component. The organic coating prevents corrosion of the alloy on the outside of the negative electrode can and suppresses an increase in contact resistance. On the inner side, the electrolyte is prevented from leaking out to the outside of the battery can. As a specific solution, it is possible to use a press-molded plate material of an alloy containing copper and tin as a main component. In this case, there is a problem in that the strength of the can is reduced and the cutting powder at the time of molding and the adhesion of iron powder from the steel tool. The decrease in strength can be solved by making the plate material a little thicker, and the adhesion of cutting powder or iron powder from steel tools can be solved by cleaning the negative electrode can with acid or chemical polishing. In this case, it is desirable to use sulfuric acid and hydrochloric acid as the acid. Nitric acid is preferably used at a relatively low concentration, but when it is at a high concentration, it becomes more oxidative and damages the alloy containing copper and tin as the main component. Acid concentration is 10
It is desirable to immerse it in about 50% for several tens of seconds to several minutes. For example, when the acid concentration is A% by weight and the immersion time is B minutes, a sufficient effect can be obtained by setting the value of A × B to be 10 or more. Since the adhesion state of impurities differs depending on the negative electrode can used, the proper concentration and the immersion time may be determined for each production lot by a gas generation test as described below. The acid treatment temperature is from room temperature to 80 ° C. in the case of sulfuric acid, and room temperature because hydrochloric acid has a strong volatility. For chemical polishing,
Hydrogen peroxide water (hydrogen peroxide water in the present invention is defined as containing about 25 to 35% by weight of hydrogen peroxide available as a general reagent) 25 to 80 vol%, sulfuric acid 0.01 to 1 vol%, alcohol It is possible to remove metal powder such as stainless steel and iron adhered to the copper-tin alloy surface by immersing in a liquid consisting of 5 to 40 vol% remaining water and then immersing in acid. Furthermore, the surface of the copper-tin alloy increases in gloss and becomes flat, so that liquid leakage resistance is also improved. In the gas generation test, after putting the electrolyte solution into the negative electrode can with a Komagome pipette just before spilling, put several tens of anhydrous silver zinc particles of 100 to 200 mesh size, and observe bubbles generated in the negative electrode can with a stereoscopic microscope. By the method. When metal powder such as stainless steel or iron adheres to the negative electrode can, gas bubbles are generated from the metal powder. Further, by manufacturing a negative electrode can core material press-molded from stainless steel, iron or brass and using a negative electrode can having an alloy layer containing copper and tin as a main component on the surface, the manufacturing cost can be significantly reduced. Furthermore, with this method, copper can be
Since the alloy layer containing tin as a main component is formed by a method such as plating or vapor deposition, metal powder such as stainless steel or iron is not exposed on the outermost surface of the inside 10 of the negative electrode can. The plating method is the most efficient method for forming an alloy layer containing copper and tin as a main component on the surface after can forming. It is also effective to plate copper / tin with zinc or nickel for the purpose of improving gloss and corrosion resistance. Stainless steel and iron have a small hydrogen overvoltage, and when exposed to the surface, gas generation occurs in the battery, which causes defects such as swelling and leakage of the battery. When stainless steel or iron is used as the core material, plating with nickel or copper once, and then plating with an alloy layer containing copper or tin as the main component can improve the adhesion of the alloy layer, resulting in film defects. Can be reduced. When stainless steel is used as the core material, it is also important to physically or chemically remove the oxide film on the surface before plating to improve adhesion and reduce defects in the film. There is also a method of plating nickel or copper on a metal as a core material in a hoop state before forming a can. In this case, there is an advantage that it is easy to control the thickness of nickel or copper. Stainless steel used as the core material is JIS SUS304, SUS430
Etc. Iron is used for SPC drawing, deep drawing, etc. For brass, JIS C2100, C2200, C2300, C24
00, C2600, C2680, C2720, C280
1, C3560, C3561, C3710, C371
3, C4250, C4430, C4621, C4640
Etc. may be used. Normally, alloys in the C2000 series may be used, but high strength C3000 series may be used for large size batteries, and C4000 series high corrosion resistance may be used for batteries that may be used in corrosive environments. . For plating, Bronzex W-1 manufactured by Nippon Electroplating Engineers Co., Ltd. with a white and glossy copper-tin ratio of 0.6: 1, and a pale yellow copper-tin ratio of 3.3. There are Bronzex II of 1: 1 and Bronzex G-1 of golden color with a copper to tin ratio of 5: 1. A negative electrode can whose surface is an alloy containing copper and tin as a main component can reduce mercury, which is a pollutant, or can be converted to anhydrous silver in order to reduce defects such as liquid leakage and swelling. By changing the material of the present invention from a three-layer clad material of nickel, stainless steel, and copper as the hoop material, which is the raw material of the negative electrode can, the energy during production can be significantly reduced.

【実施例】以下、実施例により本発明を説明する。 <実施例1>厚さ0.2mmのJISのSPCEの冷間
圧延鋼帯をプレス加工してSR626SWサイズの負極
缶を1万個作製した。次にオルソけい酸ナトリウム30
g/l、界面活性剤3g/lで60℃のアルカリ脱脂液
を10000mlつくり、負極缶を500ml容のアク
リル製の横型バレルにいれ、40rpmで20分回転さ
せ脱脂洗浄を行った後、流水で30秒間水洗した。次に
バレルのまま硫酸濃度10vol%、60℃の液に数分
浸漬し、さらに流水で3分間水洗し、最後に純水で洗浄
するという手順で酸洗浄を行いめっきを施した。以下め
っき条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例2>厚さ0.2mmのJISのSUS304の
ステンレス鋼帯をプレス加工してSR626SWサイズ
の負極缶を1万個作製した。次にオルソけい酸ナトリウ
ム30g/l、界面活性剤3g/lで60℃のアルカリ
脱脂液を10000mlつくり、負極缶を500ml容
のアクリル製の横型バレルにいれ、40rpmで20分
回転させ脱脂洗浄を行った後、流水で30秒間水洗し
た。次にステンレス鋼の酸化皮膜の除去および活性化を
行った。バレルのまま硫酸濃度20vol%、70℃の
液に激しいガス発生がなくなり均一にガスが発生するま
で浸漬した。さらに硫酸濃度50vol%の液中で5A
/dm2 、5分間陰極処理を行った。流水で3分間水洗
し、最後に純水で洗浄した後めっきを施した。以下めっ
き条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例3>厚さ0.2mmのJISのC2100黄銅
帯をプレス加工してSR626SWサイズの負極缶を1
万個作製した。次にオルソけい酸ナトリウム10g/
l、水酸化ナトリウム10g/l、炭酸ナトリウム30
g/l、界面活性剤3g/lで80℃のアルカリ脱脂液
を10000mlつくり、負極缶を500ml容のアク
リル製の横型バレルにいれ、40rpmで2分回転させ
陰極電流密度5A/dm 2 で電解脱脂洗浄を行った後、
流水で30秒間水洗した。次にバレルのまま硫酸濃度4
0vol%、80℃の液に10分浸漬し、さらに流水で
3分間水洗し、最後に純水で洗浄するという手順で酸洗
浄を行いめっきを施した。以下めっき条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例4>厚さ0.2mmのJISのSPCEの冷間
圧延鋼帯をプレス加工してSR626SWサイズの負極
缶を1万個作製した。次にオルソけい酸ナトリウム30
g/l、界面活性剤3g/lで60℃のアルカリ脱脂液
を10000mlつくり、負極缶を500ml容のアク
リル製の横型バレルにいれ、40rpmで20分回転さ
せ脱脂洗浄を行った後、流水で30秒間水洗した。次に
バレルのまま硫酸濃度10vol%、60℃の液に数分
浸漬し、さらに流水で3分間水洗し、最後に純水で洗浄
するという手順で酸洗浄を行った。次にニッケルバレル
めっきを以下の条件で行った。 めっき液組成:塩化ニッケル 240g/l 塩酸 120g/l 温度:常温 電流密度:10A/dm2 時間:3分間 さらに銅・スズめっきを以下の条件で行った。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例5>厚さ0.2mmのJISのSPCEの冷間
圧延鋼帯をプレス加工してSR626SWサイズの負極
缶を1万個作製した。次にオルソけい酸ナトリウム30
g/l、界面活性剤3g/lで60℃のアルカリ脱脂液
を10000mlつくり、負極缶を500ml容のアク
リル製の横型バレルにいれ、40rpmで20分回転さ
せ脱脂洗浄を行った後、流水で30秒間水洗した。次に
バレルのまま硫酸濃度10vol%、60℃の液に数分
浸漬し、さらに流水で3分間水洗し、最後に純水で洗浄
するという手順で酸洗浄を行った。次に銅バレルめっき
を以下の条件で行った。 めっき液組成:シアン化第一銅 50g/l シアン化ナトリウム 20g/l 水酸化カリウム 10g/l 温度:50℃ 電流密度:3A/dm2 時間:3分間 さらに銅・スズめっきを以下の条件で行った。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例6>厚さ0.2mmのJISのSPCEの冷間
圧延鋼帯の両面に3μmニッケルをフープめっきしたも
のををプレス加工してSR626SWサイズの負極缶を
1万個作製した。次にオルソけい酸ナトリウム30g/
l、界面活性剤3g/lで60℃のアルカリ脱脂液を1
0000mlつくり、負極缶を500ml容のアクリル
製の横型バレルにいれ、40rpmで20分回転させ脱
脂洗浄を行った後、流水で30秒間水洗した。次に以下
の方法でニッケルの活性化処理を行った。 活性化液:硫酸 10vol% 陽極処理:3A/dm2 、30秒 陰極処理:3A/dm 2 2秒 活性化処理後、流水で3分間水洗し、最後に純水で洗浄
し銅・スズめっきを施した。以下めっき条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例7>厚さ0.2mmのJISのSPCEの冷間
圧延鋼帯の両面に3μm銅をフープめっきしたものをを
プレス加工してSR626SWサイズの負極缶を1万個
作製した。次にオルソけい酸ナトリウム30g/l、界
面活性剤3g/lで60℃のアルカリ脱脂液を1000
0mlつくり、負極缶を500ml容のアクリル製の横
型バレルにいれ、40rpmで20分回転させ脱脂洗浄
を行った後、流水で30秒間水洗した。次に以下の方法
で銅の活性化処理を行った。過酸化水素水(試薬特級3
0重量%)150g、硫酸(試薬特級97重量%)0.
4g、エタノール(試薬特級)40g、水(純水)20
0gからなるA液と硫酸約10重量%の水溶液であるB
液を500ml作製した。液の温度はA、Bとも室温と
した。負極缶をすばやくA液にいれ所定時間浸漬した。
A液への浸漬で均一なあめ色の銅酸化膜が生成した負極
缶を流水で水洗した後、B液に1分間浸漬し銅酸化膜の
溶解を行うことにより光沢のある活性化した銅面を有す
る負極缶を得ることができた。活性化処理後、流水で3
分間水洗し、最後に純水で洗浄し銅・スズめっきを施し
た。以下めっき条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例8>厚さ0.2mmのJISのSUS304の
ステンレス鋼帯をプレス加工してSR626SWサイズ
の負極缶を1万個作製した。次にオルソけい酸ナトリウ
ム30g/l、界面活性剤3g/lで60℃のアルカリ
脱脂液を10000mlつくり、負極缶を500ml容
のアクリル製の横型バレルにいれ、40rpmで20分
回転させ脱脂洗浄を行った後、流水で30秒間水洗し
た。次にステンレス鋼の酸化皮膜の除去および活性化を
行った。バレルのまま硫酸濃度20vol%、70℃の
液に激しいガス発生がなくなり均一にガスが発生するま
で浸漬した。さらに硫酸濃度50vol%の液中で5A
/dm2 、5分間陰極処理を行った。さらに流水で3分
間水洗し、最後に純水で洗浄するという手順で活性化処
理を行った。次にニッケルバレルめっきを以下の条件で
行った。 めっき液組成:塩化ニッケル 240g/l 塩酸 120g/l 温度:常温 電解条件:2分間、2A/dm2 で陽極処理をした後、
4分間、2A/dm2 でめっきした。 さらに銅・スズめっきを以下の条件で行った。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例9>厚さ0.2mmのJISのSUS304の
ステンレス鋼帯をプレス加工してSR626SWサイズ
の負極缶を1万個作製した。次にオルソけい酸ナトリウ
ム30g/l、界面活性剤3g/lで60℃のアルカリ
脱脂液を10000mlつくり、負極缶を500ml容
のアクリル製の横型バレルにいれ、40rpmで20分
回転させ脱脂洗浄を行った後、流水で30秒間水洗し
た。次にステンレス鋼の酸化皮膜の除去および活性化を
行った。バレルのまま硫酸濃度20vol%、70℃の
液に激しいガス発生がなくなり均一にガスが発生するま
で浸漬した。さらに硫酸濃度50vol%の液中で5A
/dm2 、5分間陰極処理を行った。さらに流水で3分
間水洗し、最後に純水で洗浄するという手順で活性化処
理を行った。次に銅バレルめっきを以下の条件で行っ
た。 めっき液組成:シアン化第一銅 50g/l シアン化ナトリウム 20g/l 水酸化カリウム 10g/l 温度:50℃ 電流密度:3A/dm2 時間:3分間 さらに銅・スズめっきを以下の条件で行った。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例10>厚さ0.2mmのJISのSUS304
のステンレス鋼帯の両面に3μmニッケルをフープめっ
きしたものををプレス加工してSR626SWサイズの
負極缶を1万個作製した。次にオルソけい酸ナトリウム
30g/l、界面活性剤3g/lで60℃のアルカリ脱
脂液を10000mlつくり、負極缶を500ml容の
アクリル製の横型バレルにいれ、40rpmで20分回
転させ脱脂洗浄を行った後、流水で30秒間水洗した。
次に以下の方法でニッケルの活性化処理を行った。 活性化液:硫酸 10vol% 陽極処理:3A/dm2 、30秒 陰極処理:3A/dm2 、 2秒 活性化処理後、流水で3分間水洗し、最後に純水で洗浄
し銅・スズめっきを施した。以下めっき条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。 <実施例11>厚さ0.2mmのJISのSUS304
のステンレス鋼帯の両面に3μm銅をフープめっきした
ものををプレス加工してSR626SWサイズの負極缶
を1万個作製した。次にオルソけい酸ナトリウム30g
/l、界面活性剤3g/lで60℃のアルカリ脱脂液を
10000mlつくり、負極缶を500ml容のアクリ
ル製の横型バレルにいれ、40rpmで20分回転させ
脱脂洗浄を行った後、流水で30秒間水洗した。次にバ
レルのまま硫酸濃度40vol%、80℃の液に10分
浸漬し、さらに流水で3分間水洗し、最後に純水で洗浄
するという手順で酸洗浄を行いめっきを施した。以下め
っき条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。中間の銅やニッケル層の欠陥をなくし、下地のステ
ンレスや鉄が露出しないようにするには、フープめっき
した後圧延したり、中間層クラッド加工により形成した
材料を用いることも有効である。中間の銅層の欠陥をな
くし、下地のステンレスや鉄の露出をなくすにはフープ
めっきした後圧延したり、中間の銅をクラッド加工した
材料を用いることも効果的である。 <実施例12>厚さ0.2mmの銅対スズの比が4対6
の青銅帯をプレス加工してSR626SWサイズの負極
缶を1万個作製した。次にオルソけい酸ナトリウム10
g/l、水酸化ナトリウム10g/l、炭酸ナトリウム
30g/l、界面活性剤3g/lで80℃のアルカリ脱
脂液を10000mlつくり、負極缶を500ml容の
アクリル製の横型バレルにいれ、40rpmで2分回転
させ陰極電流密度5A/dm2 で電解脱脂洗浄を行った
後、流水で30秒間水洗した。次にバレルのまま硫酸濃
度40vol%、80℃の液に10分浸漬し、さらに流
水で3分間水洗し、最後に純水で洗浄するという手順で
酸洗浄を行った。必要に応じめっきも行った。以下めっ
き条件を記す。 めっき液:ブロンゼックスW−1 日本エレクトロプレイティング・エンジニアーズ株式会
社製 温度:55℃ 電流密度:3A/dm2 析出速度:0.7μm/分 めっきした負極缶はバレルのまま3分間流水で洗浄した
後、純水で3分間洗浄した。次にメタノールをいれた槽
を2槽用意した。各槽に3分づつ振とうを加えながら浸
漬し負極缶表面についている水をメタノールで置換し
た。置換後メタノール分を遠心乾燥によりにより大まか
に飛ばし、50℃に加熱した乾燥炉にいれ15分間乾燥
した。めっき皮膜の厚さは蛍光X線装置により確認し
た。実施例1から12の銅・スズ合金のめっき厚の水準
は0、0.5、1、3、4μmとした。負極缶の評価
は、負極缶に電解液をこぼれる寸前まで駒込ピペットで
いれた後、100から200メッシュの大きさの無水銀
亜鉛を数10粒いれた直後、負極缶に発生する連続気泡
を実体顕微鏡により観察するというガス発生テストと実
際に電池を作製し容量の減少を調べることにより評価し
た。負極缶にステンレス、鉄等の金属粉末が付着してい
たり、めっき膜に欠陥があるとそこから気泡が発生す
る。比較的大きな金属粉末や欠陥からは、気泡が連続的
に発生する連続気泡がみられ、小さければ静止気泡がみ
られる。表1に、それぞれの実施例の銅・スズ合金めっ
き厚に対する連続気泡の発生した負極缶の個数を示し
た。それぞれのガス発生テストの負極缶の個数は10個
とした。
EXAMPLES The present invention will be described below with reference to examples. <Example 1> Cold of JIS SPCE of 0.2 mm thickness
SR626SW size negative electrode by pressing rolled steel strip
10,000 cans were produced. Next, sodium orthosilicate 30
Alkaline degreasing liquid at 60 ° C with g / l and surfactant 3g / l
Make 10000 ml of the
Place in a horizontal barrel made of ril and rotate at 40 rpm for 20 minutes.
After degreasing and cleaning, the product was washed with running water for 30 seconds. next
Sulfuric acid concentration of 10 vol% as it is in the barrel, a few minutes in a liquid of 60 ℃
Immerse, rinse with running water for 3 minutes, and finally with pure water
Then, acid cleaning was performed and plating was performed. Below
Describe the conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 2> JIS SUS304 having a thickness of 0.2 mm
SR626SW size by pressing a stainless steel strip
10,000 negative electrode cans were produced. Next, sodium orthosilicate
Alkali at 60 ° C with 30 g / l of surfactant and 3 g / l of surfactant
Make 10,000 ml of degreasing liquid and 500 ml of negative electrode can
Place it in a horizontal acrylic barrel for 20 minutes at 40 rpm
After rotating and degreasing cleaning, rinse with running water for 30 seconds.
It was Next, remove and activate the oxide film on the stainless steel.
went. Sulfuric acid concentration of 20vol% at 70 ℃
The liquid does not violently generate gas, and gas is generated uniformly.
Soaked in. Furthermore, 5 A in a liquid with a sulfuric acid concentration of 50 vol%
/ Dm2 The cathode treatment was performed for 5 minutes. Rinse with running water for 3 minutes
Finally, the plate was washed with pure water and then plated. Below
Write down the conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 3> 0.2 mm thick JIS C2100 brass
Press the strip to make a SR626SW size negative electrode can.
Ten thousand were produced. Next, sodium orthosilicate 10 g /
1, sodium hydroxide 10g / l, sodium carbonate 30
Alkaline degreasing liquid at 80 ° C with g / l and surfactant 3g / l
Make 10000 ml of the
Put in a horizontal barrel made of ril and rotate at 40 rpm for 2 minutes.
Cathode current density 5A / dm 2 After performing electrolytic degreasing cleaning with
It was washed with running water for 30 seconds. Next, leave the barrel with sulfuric acid concentration 4
Immerse in 0vol%, 80 ° C liquid for 10 minutes, and then with running water
Rinse with water for 3 minutes and finally with pure water
It was purified and plated. The plating conditions are described below. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Company temperature: 55 ° C Current density: 3A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 4> Cold of JIS SPCE of 0.2 mm in thickness
SR626SW size negative electrode by pressing rolled steel strip
10,000 cans were produced. Next, sodium orthosilicate 30
Alkaline degreasing liquid at 60 ° C with g / l and surfactant 3g / l
Make 10000 ml of the
Place in a horizontal barrel made of ril and rotate at 40 rpm for 20 minutes.
After degreasing and cleaning, the product was washed with running water for 30 seconds. next
Sulfuric acid concentration of 10 vol% as it is in the barrel, a few minutes in a liquid of 60 ℃
Immerse, rinse with running water for 3 minutes, and finally with pure water
The acid cleaning was performed by the procedure of performing. Then nickel barrel
The plating was performed under the following conditions. Plating solution composition: Nickel chloride 240g / l Hydrochloric acid 120g / l Temperature: Room temperature Current density: 10A / dm2 Time: 3 minutes Copper / tin plating was further performed under the following conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 5> Cold of JIS SPCE of 0.2 mm thickness
SR626SW size negative electrode by pressing rolled steel strip
10,000 cans were produced. Next, sodium orthosilicate 30
Alkaline degreasing liquid at 60 ° C with g / l and surfactant 3g / l
Make 10000 ml of the
Place in a horizontal barrel made of ril and rotate at 40 rpm for 20 minutes.
After degreasing and cleaning, the product was washed with running water for 30 seconds. next
Sulfuric acid concentration of 10 vol% as it is in barrel
Immerse, rinse with running water for 3 minutes, and finally with pure water
The acid cleaning was performed by the procedure of performing. Then copper barrel plating
Was performed under the following conditions. Plating solution composition: Cuprous cyanide 50 g / l Sodium cyanide 20 g / l Potassium hydroxide 10 g / l Temperature: 50 ° C. Current density: 3 A / dm2 Time: 3 minutes Copper / tin plating was further performed under the following conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 6> Cold of JIS SPCE of 0.2 mm in thickness
Hoop plating of 3μm nickel on both sides of rolled steel strip
Press the No. to make a SR626SW size negative electrode can.
10,000 pieces were produced. Next, sodium orthosilicate 30g /
l, 1g of alkaline degreasing liquid at 60 ° C with 3g / l of surfactant
0000ml made, negative electrode can with 500ml acrylic
Put it in a horizontal barrel made of steel and rotate it at 40 rpm for 20 minutes to remove it.
After the oil was washed, it was washed with running water for 30 seconds. Then the following
The activation process of nickel was performed by the above method. Activating solution: Sulfuric acid 10 vol% Anodic treatment: 3 A / dm2 , 30 seconds Cathodic treatment: 3 A / dm2 2 seconds After activation, rinse with running water for 3 minutes and finally with pure water
Plated with copper and tin. The plating conditions are described below. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 7> 0.2 mm thick JIS SPCE cold work
Use hoop plated 3μm copper on both sides of rolled steel strip.
10,000 pieces of SR626SW size negative electrode cans by press working
It was made. Next, sodium orthosilicate 30g / l,
1000g of alkaline degreasing liquid at 60 ℃ with 3g / l surfactant
Make 0 ml, and put the negative electrode can into a 500 ml acrylic side.
Put in mold barrel and rotate at 40 rpm for 20 minutes to degrease and wash
After that, it was washed with running water for 30 seconds. Next method
The copper activation treatment was performed. Hydrogen peroxide water (reagent special grade 3
0 wt%) 150 g, sulfuric acid (special grade 97 wt%)
4 g, ethanol (special grade reagent) 40 g, water (pure water) 20
A solution consisting of 0 g and an aqueous solution of about 10 wt% sulfuric acid B
500 ml of the liquid was prepared. The temperature of the liquid is room temperature for both A and B.
did. The negative electrode can was quickly put in the liquid A and immersed for a predetermined time.
Negative electrode in which a uniform candy-colored copper oxide film was formed by immersion in solution A
After washing the can with running water, soak it in solution B for 1 minute to remove the copper oxide film.
Has a lustrous activated copper surface by melting
It was possible to obtain a negative electrode can. After the activation treatment, 3 with running water
Rinse with water for a minute, and finally with pure water and apply copper / tin plating
It was The plating conditions are described below. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 8> JIS SUS304 having a thickness of 0.2 mm
SR626SW size by pressing a stainless steel strip
10,000 negative electrode cans were produced. Next, sodium orthosilicate
Alkali at 60 ° C with 30 g / l of surfactant and 3 g / l of surfactant
Make 10,000 ml of degreasing liquid and 500 ml of negative electrode can
Place it in a horizontal acrylic barrel for 20 minutes at 40 rpm
After rotating and degreasing cleaning, rinse with running water for 30 seconds.
It was Next, remove and activate the oxide film on the stainless steel.
went. Sulfuric acid concentration of 20vol% at 70 ℃
The liquid does not violently generate gas, and gas is generated uniformly.
Soaked in. Furthermore, 5 A in a liquid with a sulfuric acid concentration of 50 vol%
/ Dm2 The cathode treatment was performed for 5 minutes. 3 minutes with running water
The activation process is performed by washing with cold water and finally with pure water.
It made sense. Next, nickel barrel plating under the following conditions
went. Plating solution composition: Nickel chloride 240g / l Hydrochloric acid 120g / l Temperature: Room temperature Electrolysis conditions: 2 minutes, 2A / dm2 After anodizing with
4 minutes, 2 A / dm2 Plated. Further, copper / tin plating was performed under the following conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 9> JIS SUS304 having a thickness of 0.2 mm
SR626SW size by pressing a stainless steel strip
10,000 negative electrode cans were produced. Next, sodium orthosilicate
Alkali at 60 ° C with 30 g / l of surfactant and 3 g / l of surfactant
Make 10,000 ml of degreasing liquid and 500 ml of negative electrode can
Place it in a horizontal acrylic barrel for 20 minutes at 40 rpm
After rotating and degreasing cleaning, rinse with running water for 30 seconds.
It was Next, remove and activate the oxide film on the stainless steel.
went. Sulfuric acid concentration of 20vol% at 70 ℃
The liquid does not violently generate gas, and gas is generated uniformly.
Soaked in. Furthermore, 5 A in a liquid with a sulfuric acid concentration of 50 vol%
/ Dm2 The cathode treatment was performed for 5 minutes. 3 minutes with running water
The activation process is performed by washing with cold water and finally with pure water.
It made sense. Next, copper barrel plating is performed under the following conditions.
It was Plating solution composition: Cuprous cyanide 50 g / l Sodium cyanide 20 g / l Potassium hydroxide 10 g / l Temperature: 50 ° C. Current density: 3 A / dm2 Time: 3 minutes Copper / tin plating was further performed under the following conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 10> JIS SUS304 having a thickness of 0.2 mm
Hoop 3 μm nickel on both sides of the stainless steel strip
Press the pressed ones into SR626SW size
10,000 negative electrode cans were produced. Then sodium orthosilicate
Alkaline removal at 60 ° C with 30 g / l and 3 g / l of surfactant
Make 10000ml of oil and 500ml of negative electrode can.
Place in an acrylic horizontal barrel and rotate at 40 rpm for 20 minutes.
After tumbling and degreasing and washing, it was washed with running water for 30 seconds.
Next, nickel activation treatment was performed by the following method. Activating solution: Sulfuric acid 10 vol% Anodic treatment: 3 A / dm2 , 30 seconds Cathodic treatment: 3 A / dm2 , 2 seconds After activation, rinse with running water for 3 minutes and finally with pure water
Plated with copper and tin. The plating conditions are described below. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was <Example 11> JIS SUS304 having a thickness of 0.2 mm
Hoop plating of 3μm copper on both sides of the stainless steel strip
SR626SW size negative electrode can by pressing
10,000 were produced. Next, sodium orthosilicate 30g
/ L, 3g / l of surfactant and 60 ° C alkaline degreaser
Make 10000 ml and add a negative electrode can to a volume of 500 ml.
Put in a horizontal barrel made of le and rotate at 40 rpm for 20 minutes
After degreasing and washing, it was washed with running water for 30 seconds. Next
Sulfuric acid concentration 40 vol% as it is, 10 minutes in a liquid at 80 ° C
Immerse, rinse with running water for 3 minutes, and finally with pure water
Then, acid cleaning was performed and plating was performed. Below
Describe the conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was Eliminate defects in the intermediate copper and nickel layers and
Hoop plating to prevent exposure of iron and iron
Formed by rolling or intermediate layer cladding
It is also effective to use materials. Remove defects in the middle copper layer
Comb, hoop to eliminate exposed stainless steel or iron
After plating, rolled or clad with intermediate copper
It is also effective to use materials. <Example 12> The ratio of copper to tin having a thickness of 0.2 mm is 4: 6.
SR626SW size negative electrode by pressing the bronze band of
10,000 cans were produced. Next, sodium orthosilicate 10
g / l, sodium hydroxide 10g / l, sodium carbonate
Alkaline desorption at 80 ° C with 30 g / l and 3 g / l of surfactant
Make 10000ml of oil and 500ml of negative electrode can.
Place in an acrylic horizontal barrel and rotate at 40 rpm for 2 minutes
Let cathode current density 5A / dm2 Electrolytic degreasing was performed with
Then, it was washed with running water for 30 seconds. Next, leave the barrel with concentrated sulfuric acid
Immerse in liquid of 80 vol.
Wash with water for 3 minutes and finally with pure water.
An acid wash was performed. Plating was also performed if necessary. Below
Write down the conditions. Plating solution: Bronzex W-1 Japan Electroplating Engineers Co., Ltd.
Manufactured by: Temperature: 55 ° C Current density: 3 A / dm2 Deposition rate: 0.7 μm / min The plated negative electrode can was washed with running water for 3 minutes with the barrel still.
Then, it was washed with pure water for 3 minutes. Next, a tank containing methanol
2 tanks were prepared. Soak each tank for 3 minutes with shaking.
Replace the water on the surface of the negative electrode can with methanol.
It was After replacement, the methanol content is roughly dried by centrifugation.
Then, put it in a drying oven heated to 50 ° C and dry for 15 minutes.
did. Check the thickness of the plating film with a fluorescent X-ray device.
It was Level of plating thickness of copper-tin alloy of Examples 1 to 12
Was 0, 0.5, 1, 3, 4 μm. Evaluation of negative electrode can
Use a Komagome pipette until the electrolyte spills into the negative electrode can.
After pouring, 100-200 mesh size anhydrous silver
Open cells generated in the negative electrode can immediately after adding several tens of zinc
The gas generation test and the actual
It was evaluated by making a battery and examining the decrease in capacity.
It was Metal powder such as stainless steel or iron adheres to the negative electrode can.
Or, if there is a defect in the plating film, bubbles will be generated from it.
It Continuous bubbles from relatively large metal powders and defects
Continuous bubbles appearing in the
To be Table 1 shows the copper-tin alloy plating of each example.
Indicates the number of negative electrode cans with open cells against the thickness.
It was The number of negative electrode cans for each gas generation test is 10.
And

【表1】 連続気泡には、数10分後におさまるものと、そのまま
出続けるものとがある。後者は電池の膨らみや破裂につ
ながる可能性がある。実際の電池として用いる負極缶と
しては、ガス発生テストで連続気泡が発生してはならな
いという観点でみると、心材に鉄、ステンレスを用いる
場合は4μm以上、黄銅、青銅や中間層めっきをした心
材を用いる場合は2〜3μm以上の銅・スズ合金のめっ
き厚が必要である。実施例1から12の銅・スズ合金の
めっきの負極缶を用いて、SR626SWサイズのNa
OH系の電解液を用いた酸化銀電池をそれぞれ1000
個作製した。酸化銀電池は以下に記すように作製した。
正極缶6の凹面の中央部にNaOHにZnOを飽和近く
まで加えた電解液の1部を滴下した。そこに酸化銀に2
重量%の黒鉛を加えペレット化した正極合剤5、 次に
セパレータ4としてポリエチレンのグラフト重合膜2
枚、セロハン1枚をのせた。その上にシール剤8として
エポキシ系の接着剤とアスファルトピッチをトルエンに
溶解したものを塗布したガスケット7を押し込んだ。さ
らに、ガスケット7とセパレータ4からなる凹部に電解
液含浸材3と負極合剤2(亜鉛100部に対しポリアク
リル酸系のゲル化剤を0.5部加え、容量1000ml
のガラス製ポットを持つV型混合機で10分間混合した
もの)をいれ、電解液の残りを負極合剤2に滴下した。
負極缶1をガスケット7の凹部の溝にはいるように挿入
し、最後に正極缶6上部をシェービングプレスを用いか
しめて、封口し酸化銀電池を作製した。表2、表3に、
それぞれの実施例の銅・スズ合金めっき厚に対する容量
の減少を示した。酸化銀電池作製に用いた亜鉛種類は、
表1では無水銀亜鉛(Al、Bi、Inを含むもの)、
表2ではこう化亜鉛(Pb入り亜鉛を10重量%こう化
したもの)、を用いた。容量減少は、電池の初期の容量
から約1年後に相当するといわれている60℃20日後
の容量を引いた容量の減少分の初期容量に占める比率を
自己放電率とし、%で示した。
[Table 1] The open cells include those that subside after several tens of minutes and those that continue to emerge. The latter can lead to swelling and bursting of the battery. As for the negative electrode can used as an actual battery, from the viewpoint that open cells should not be generated in the gas generation test, when the core material is iron or stainless steel, the core material is 4 μm or more, and the core material is brass, bronze or an intermediate layer plated. When using, a plating thickness of copper-tin alloy of 2 to 3 μm or more is required. Using the copper-tin alloy plated negative electrode cans of Examples 1 to 12, SR626SW size Na was used.
1,000 silver oxide batteries using OH-based electrolyte
Individually made. A silver oxide battery was prepared as described below.
To the center of the concave surface of the positive electrode can 6, 1 part of an electrolytic solution in which ZnO was added to NaOH up to near saturation was dropped. Silver oxide there 2
A positive electrode mixture 5 pelletized by adding graphite in a weight percentage, and then a polyethylene graft polymerized film 2 as a separator 4.
I put one piece of cellophane. On top of that, a gasket 7 coated with an epoxy adhesive and asphalt pitch dissolved in toluene was pressed as a sealant 8. Further, in the concave portion formed by the gasket 7 and the separator 4, the electrolytic solution impregnated material 3 and the negative electrode mixture 2 (0.5 parts of polyacrylic acid-based gelling agent to 100 parts of zinc are added, and the capacity is 1000 ml).
(Mixed for 10 minutes with a V-type mixer having a glass pot) and the rest of the electrolytic solution was added dropwise to the negative electrode mixture 2.
The negative electrode can 1 was inserted so as to fit in the groove of the recess of the gasket 7, and finally the upper part of the positive electrode can 6 was caulked using a shaving press and sealed to produce a silver oxide battery. In Table 2 and Table 3,
The reduction in capacity with respect to the copper-tin alloy plating thickness of each example was shown. The types of zinc used to make silver oxide batteries are
In Table 1, anhydrous silver zinc (containing Al, Bi, In),
In Table 2, zinc iodide (zinc containing 10% by weight of zinc containing Pb) was used. The capacity decrease is represented by%, which is defined as the self-discharge rate, which is the ratio of the initial capacity of the battery minus the capacity after 20 days at 60 ° C., which is said to be equivalent to about one year later, to the initial capacity.

【表2】 [Table 2]

【表3】 表面が鉄、ステンレス、ニッケルのものまたは、銅・ス
ズ合金皮膜が薄く鉄、ステンレス、ニッケルの一部が表
面にでているものは、電池膨らみ、漏液等の不良が多か
ったため、保存および容量測定を中止した。表中には、
横棒を記した。全体的にみると水銀を含むこう化亜鉛を
用いた銀電池の方が自己放電率が小さい。実際の電池と
して用いる場合、実用上自己放電率が4%以下であれば
問題がないという観点でみると、無水銀亜鉛を用いた電
池では、心材に鉄、ステンレスを用いる場合は4μm以
上、黄銅、青銅や中間層めっきをした心材を用いる場合
は2〜3μm以上の銅・スズ合金のめっき厚が必要であ
る。こう化亜鉛を用いた電池では、心材に鉄、ステンレ
スを用いる場合は3μm以上、黄銅、青銅や中間層めっ
きをした心材を用いる場合は1〜2μm以上の銅・スズ
合金のめっき厚が必要である。無水銀亜鉛を用いた銀電
池で銅・スズ合金皮膜が比較的厚いものは、こう化亜鉛
を用いた銀電池に近い自己放電率を示し、公害物質とし
ての水銀減らすことができることを示している。中間め
っき層をバレルめっきで行ったものはプレス成形時に付
着したステンレス、鉄等の金属粉末が中間めっき層によ
り覆い隠されるため銅・スズ合金皮膜が薄くても効果が
ある。本実施例では、銅・スズ合金に形成に主にウェッ
トプロセスの一種であるめっき法を用いたが、他の蒸
着、スパッタ、イオンプレーティング、CVD等のドラ
イプロセスを用いて同様の負極缶構成の実施例を行って
も、同様の銀電池特性が期待できる。また、本発明では
銀電池につて述べたが、負極活物質に亜鉛粉末を用いる
アルカリ電池であれば、空気電池、マンガン電池であっ
ても同様の特性が期待できることはいうまでもない。
[Table 3] If the surface is iron, stainless steel, nickel, or if the copper-tin alloy film is thin and part of iron, stainless steel, or nickel is on the surface, there were many defects such as battery swelling and leakage, so storage and capacity The measurement was stopped. In the table,
A horizontal bar is marked. Overall, silver batteries using zinc iodide containing mercury have a lower self-discharge rate. When used as an actual battery, from the viewpoint that there is no problem if the self-discharge rate is 4% or less for practical use, in the battery using the anhydrous zinc-zinc, when iron or stainless steel is used as the core material, 4 μm or more, brass is used. When bronze or a core material plated with an intermediate layer is used, a plating thickness of copper-tin alloy of 2 to 3 μm or more is required. Batteries using zinc iodide require a copper / tin alloy plating thickness of 3 μm or more when iron or stainless steel is used as the core material and 1-2 μm or more when using the core material plated with brass, bronze or an intermediate layer. is there. A silver battery using mercury-free zinc with a relatively thick copper-tin alloy film exhibits a self-discharge rate similar to that of a silver battery using zinc iodide, indicating that mercury as a pollutant can be reduced. . When the intermediate plating layer is formed by barrel plating, the metal powder such as stainless steel and iron adhered during press molding is covered by the intermediate plating layer, so that it is effective even if the copper-tin alloy film is thin. In this embodiment, a plating method, which is a kind of wet process, is mainly used for forming a copper-tin alloy, but another dry process such as vapor deposition, sputtering, ion plating, and CVD is used to form a similar negative electrode can structure. The same silver battery characteristics can be expected even if the embodiment described above is performed. Further, in the present invention, the silver battery has been described, but it goes without saying that the same characteristics can be expected even in an air battery or a manganese battery as long as it is an alkaline battery using zinc powder as the negative electrode active material.

【発明の効果】以上実施例でも述べたように本発明によ
る銅・スズ合金をアルカリ電池負極缶に用いることによ
り、特性の向上および、製造コストを大幅に削減するこ
とができた。さらに、公害物質である水銀の削減、製造
時のエネルギー削減も可能となった。
As described in the above examples, by using the copper-tin alloy according to the present invention for the alkaline battery negative electrode can, the characteristics can be improved and the manufacturing cost can be greatly reduced. Furthermore, it has become possible to reduce mercury, which is a pollutant, and energy during manufacturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルカリ電池の断面図である。FIG. 1 is a cross-sectional view of an alkaline battery.

【符号の名称】[Name of code]

1 負極缶 2 負極合剤 3 電解液含浸材 4 セパレータ 5 正極合剤 6 正極缶 7 ガスケット 8 シール剤 9 負極缶外側 10 負極缶内側 11 負極缶端部 12 負極缶折り返し内部 DESCRIPTION OF SYMBOLS 1 Negative electrode can 2 Negative electrode mixture 3 Electrolyte impregnating material 4 Separator 5 Positive electrode mixture 6 Positive electrode can 7 Gasket 8 Sealing agent 9 Negative electrode can outside 10 Negative electrode inside 11 Negative electrode can end 12 Negative electrode folded back inside

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛または亜鉛合金粉末を負極活物質と
するコイン型、またはボタン型アルカリ電池において、
有機皮膜や不可避的にできる酸化膜を含まない、すくな
くとも負極缶端部および負極缶折り返し内部を除く最表
面が銅・スズを主成分とする合金である負極缶を用いた
ことを特徴とするアルカリ電池。
1. A coin-type or button-type alkaline battery using zinc or zinc alloy powder as a negative electrode active material,
An alkali characterized by using a negative electrode can which does not include an organic film or an unavoidable oxide film, and whose outermost surface is an alloy containing copper and tin as a main component except at least the end of the negative electrode can and the inside of the folded negative electrode can. battery.
【請求項2】 前記銅・スズを主成分とする合金が、銅
・スズ合金または銅・スズ合金に亜鉛またはニッケルか
ら選ばれるすくなくとも1種以上の金属加えられている
ことを特徴とする請求項1記載のアルカリ電池。
2. The alloy containing copper / tin as a main component is added to at least one metal selected from zinc or nickel to a copper / tin alloy or a copper / tin alloy. 1. The alkaline battery according to 1.
【請求項3】 前記銅・スズを主成分とする合金が心材
である金属上に設けられた皮膜層であることを特徴とす
る請求項1記載のアルカリ電池。
3. The alkaline battery according to claim 1, wherein the alloy containing copper and tin as a main component is a coating layer provided on a metal that is a core material.
【請求項4】 前記銅・スズを主成分とする合金の皮膜
層と前記心材である金属との間に密着をよくすることや
皮膜の欠陥を減らす等の目的で1層以上の金属層を設け
たことを特徴とする請求項3記載のアルカリ電池。
4. One or more metal layers are provided for the purpose of improving the adhesion between the coating layer of the alloy containing copper and tin as a main component and the metal that is the core material and reducing defects in the coating. The alkaline battery according to claim 3, wherein the alkaline battery is provided.
【請求項5】 前記最表面が銅・スズを主成分とする合
金の皮膜層と前記心材である金属との間に密着をよくす
ることや皮膜の欠陥を減らす等の目的で設けた1層以上
の金属層がニッケルまたは銅であるを特徴とする請求項
4記載のアルカリ電池。
5. A single layer provided for the purpose of improving adhesion between the outermost surface of a coating layer of an alloy containing copper and tin as a main component and the metal of the core material and reducing defects in the coating. The alkaline battery according to claim 4, wherein the metal layer is nickel or copper.
【請求項6】 前記銅・スズを主成分とする合金の皮膜
層の形成方法がめっき法であることを特徴とする請求項
3記載のアルカリ電池。
6. The alkaline battery according to claim 3, wherein the method of forming the coating layer of the alloy containing copper and tin as a main component is a plating method.
【請求項7】 前記心材である金属がステンレス、鉄、
黄銅から選ばれる金属または合金であることを特徴とす
る請求項3記載のアルカリ電池。
7. The core material metal is stainless steel, iron,
The alkaline battery according to claim 3, which is a metal or an alloy selected from brass.
JP6095263A 1994-03-08 1994-05-09 Alkaline battery Pending JPH07302581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6095263A JPH07302581A (en) 1994-03-08 1994-05-09 Alkaline battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-37313 1994-03-08
JP3731394 1994-03-08
JP6095263A JPH07302581A (en) 1994-03-08 1994-05-09 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH07302581A true JPH07302581A (en) 1995-11-14

Family

ID=26376444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6095263A Pending JPH07302581A (en) 1994-03-08 1994-05-09 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH07302581A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516614A (en) * 1999-12-13 2003-05-13 ザ ジレット カンパニー Zinc air battery
EP1365459A2 (en) * 2002-03-27 2003-11-26 VARTA Microbattery GmbH Galvanic element
JP2008539553A (en) * 2005-04-29 2008-11-13 エバレデイ バツテリ カンパニー インコーポレーテツド Alkaline battery anode casing
JP2010508641A (en) * 2006-11-01 2010-03-18 エバレデイ バツテリ カンパニー インコーポレーテツド Alkaline electrochemical cell with reduced gas generation
US8318340B2 (en) 2006-11-01 2012-11-27 Eveready Battery Company, Inc. Alkaline electrochemical cell with reduced gassing
US11450489B2 (en) 2015-12-14 2022-09-20 Kyushu Institute Of Technology Small electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516614A (en) * 1999-12-13 2003-05-13 ザ ジレット カンパニー Zinc air battery
EP1365459A2 (en) * 2002-03-27 2003-11-26 VARTA Microbattery GmbH Galvanic element
EP1365459A3 (en) * 2002-03-27 2004-06-16 VARTA Microbattery GmbH Galvanic element
JP2008539553A (en) * 2005-04-29 2008-11-13 エバレデイ バツテリ カンパニー インコーポレーテツド Alkaline battery anode casing
US7632605B2 (en) 2005-04-29 2009-12-15 Eveready Battery Co., Inc. Alkaline cell anode casing
JP4909989B2 (en) * 2005-04-29 2012-04-04 エバレデイ バツテリ カンパニー インコーポレーテツド Alkaline battery anode casing
JP2010508641A (en) * 2006-11-01 2010-03-18 エバレデイ バツテリ カンパニー インコーポレーテツド Alkaline electrochemical cell with reduced gas generation
US7993508B2 (en) 2006-11-01 2011-08-09 Eveready Battery Company, Inc. Method of forming an electrode casing for an alkaline electrochemical cell with reduced gassing
US8318340B2 (en) 2006-11-01 2012-11-27 Eveready Battery Company, Inc. Alkaline electrochemical cell with reduced gassing
US8444840B2 (en) 2006-11-01 2013-05-21 Eveready Battery Company, Inc. Method of forming an electrode casing for an alkaline electrochemical cell with reduced gassing
US11450489B2 (en) 2015-12-14 2022-09-20 Kyushu Institute Of Technology Small electronic device

Similar Documents

Publication Publication Date Title
EP1430562B1 (en) Zinc/air cell
KR101265909B1 (en) Alkaline electrochemical cell with reduced gassing and reduced discolouration
KR101266718B1 (en) Tin-plated anode casings for alkaline cells
Kannan et al. Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes
JP6032018B2 (en) Injection metal-air battery
JPH07302581A (en) Alkaline battery
GB2104279A (en) Method of loading metallic battery plaques
US3753779A (en) Method of making zinc electrodes
JPH06338327A (en) Negative electrode collector and button-shaped alkaline battery using same
JP4717222B2 (en) Alkaline battery
JP4460055B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
JPH08130021A (en) Alkaline battery
JP4618771B2 (en) Button-type alkaline battery
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JPH06163026A (en) Alkaline button battery
JPH0620694A (en) Alkaline dry battery
JPH0570907B2 (en)
JPH0794154A (en) Alkaline button battery
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JPH07254396A (en) Button type alkaline battery
JPS6156285A (en) Alkali battery
JPH06275280A (en) Alkaline battery
WO2022110339A1 (en) Steel sheet passivation process, passivated steel sheet, and vapor chamber
JPS58155657A (en) Manufacture of alkaline battery
CN112323050A (en) Chemical galvanizing process for copper needle for mercury-free alkaline battery