JPH05266881A - Alkaline battery and manufacture thereof - Google Patents

Alkaline battery and manufacture thereof

Info

Publication number
JPH05266881A
JPH05266881A JP6392492A JP6392492A JPH05266881A JP H05266881 A JPH05266881 A JP H05266881A JP 6392492 A JP6392492 A JP 6392492A JP 6392492 A JP6392492 A JP 6392492A JP H05266881 A JPH05266881 A JP H05266881A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
active material
alkaline battery
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6392492A
Other languages
Japanese (ja)
Inventor
Mutsuo Nozawa
睦雄 野沢
Iwazo Takahashi
岩三 高橋
Kazuo Wakabishi
和夫 若菱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP6392492A priority Critical patent/JPH05266881A/en
Publication of JPH05266881A publication Critical patent/JPH05266881A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To provide an alkaline battery without any use of amalgamated zinc by preliminarily positioning the zinc on the surface of a negative collector body where it is in contact with a negative electrode active material and an electrolyte. CONSTITUTION:A zinc layer 1a is laid on the internal surface of a negative electrode can 1. A negative electrode mix 2 is mainly composed of non- amalgamated zinc powder or non-amalgamated zinc alloy powder. A sealing agent 9 is laid between the can 1 and a gasket 8. Also, the application of plating, mask plating, deposition or the like to a negative collector body is available as a means for laying zinc or zinc containing an additive on the surface of the body where in contact with a negative electrode active material and an electrolyte. The negative electrode can 1l covered with zinc can be easily manufactured by using a can material where the zinc is hoop plated on a four-layer clad material of nickel, stainless steel, lead and zinc, or the copper surface of a three-layer clad material comprising nickel, stainless steel and copper, particularly in a button type alkaline battery where the negative collector body is used as the can 1 in common.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水銀を含有しないアル
カリ電池およびその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a mercury-free alkaline battery and a method for producing the same.

【0002】[0002]

【従来の技術】従来、負極活物質として亜鉛を用いるア
ルカリ電池は、亜鉛の表面に水銀を付着させていた。負
極の集電体として、筒形電池にあっては黄銅がボタン形
電池にあっては銅が、負極活物質と接する面に配設され
ているのが普通である。異種の金属、すなわち亜鉛と黄
銅(Cu−Sn)、もしくは亜鉛と銅がアルカリ電解液
に存在すると、局部電池が形成され、電解液中の水が分
解されて、黄銅もしくは銅の表面から水素ガスを発生す
る。亜鉛に水銀が添加されている場合は、集電体の表面
は水銀によって覆われる。亜鉛の表面に水銀をつけてア
マルガムとしている理由は、水銀は亜鉛よりも水素過電
圧が高いため、亜鉛自身の水素過電圧が大きくなるとと
もに、亜鉛に含有する水素過電圧の小さい異種金属はア
マルガム表面から容易に脱離するので、局部電池の構成
が困難となるためである。
2. Description of the Related Art Conventionally, in alkaline batteries using zinc as a negative electrode active material, mercury is attached to the surface of zinc. As a current collector for the negative electrode, brass is generally arranged in a cylindrical battery and copper is arranged in a button-shaped battery on the surface in contact with the negative electrode active material. When dissimilar metals, namely zinc and brass (Cu-Sn), or zinc and copper are present in the alkaline electrolyte, a local battery is formed, water in the electrolyte is decomposed, and hydrogen gas is emitted from the brass or copper surface. To occur. When mercury is added to zinc, the surface of the current collector is covered with mercury. The reason why mercury is attached to the surface of zinc to make it an amalgam is that since mercury has a higher hydrogen overvoltage than zinc, the hydrogen overvoltage of zinc itself increases, and the dissimilar metal contained in zinc with a low hydrogen overvoltage is easily removed from the amalgam surface. This is because it is difficult to construct the local battery because it is detached.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のアルカ
リ電池では、負極活物質として汞化亜鉛を用いているの
で、電池廃棄上公害の問題があった。また、従来のアル
カリ電池では負極活物質として水銀にて汞化されていな
い亜鉛を用いようとしても、負極集電体の負極活物質と
アルカリ電解液と接する面に亜鉛が配設されていなかっ
たので、この負極集電体に活物質としての未汞化亜鉛を
当接した場合、この集電体に亜鉛が析出するまで、ガス
が発生したり、この集電体をプレス加工した時に金型か
らこの集電体表面に混入したニッケルなどの異種金属不
純物からのガスの発生が生じたりするという課題があっ
た。
However, in the conventional alkaline battery, since zinc hydride is used as the negative electrode active material, there is a problem of pollution when the battery is discarded. Further, in the conventional alkaline battery, even if an attempt was made to use zinc that was not hydrogenated as the negative electrode active material, zinc was not disposed on the surface of the negative electrode current collector that was in contact with the negative electrode active material and the alkaline electrolyte. Therefore, when zinc unprecipitated as an active material is brought into contact with this negative electrode current collector, gas is generated until the zinc is deposited on this current collector, or a metal mold is used when this current collector is pressed. Therefore, there is a problem that gas is generated from different metal impurities such as nickel mixed in the surface of the current collector.

【0004】そこで、この発明の目的は水銀にて汞化さ
れた亜鉛を一切使用しない無水銀のアルカリ電池を得る
ことにある。
Therefore, an object of the present invention is to obtain a mercury-free alkaline battery that does not use any zinc deuterated with mercury.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明は、負極集電体の負極活物質および電解液に接す
る面に、あらかじめ亜鉛を配設した。また、亜鉛自体の
ガス発生を減少させるように鉛、インジウム、ビスマ
ス、ガリウム、錫などが添加された亜鉛を活物質として
使用する場合は、この活物質として使用される亜鉛合金
と負極集電体の表面を同一の組成とすることが望まし
く、いっそうの効果が得られる。
In order to solve the above problems, in the present invention, zinc is provided in advance on the surface of the negative electrode current collector which is in contact with the negative electrode active material and the electrolytic solution. Further, when using zinc added with lead, indium, bismuth, gallium, tin, etc. as an active material so as to reduce the gas generation of zinc itself, the zinc alloy used as this active material and the negative electrode current collector It is desirable that the surfaces of the same have the same composition, and a further effect can be obtained.

【0006】負極集電体の負極活物質および電解液に接
する面に亜鉛もしくは、添加物を含有する亜鉛を配設す
る手段として、負極集電体へのメッキ、マスクメッキ、
蒸着法などがある。特に、負極集電体が負極缶を兼ねる
ボタン形アルカリ電池にあっては、缶素材そのものをニ
ッケル、ステンレス鋼、銅および亜鉛の4層クラッド
材、もしくは、ニッケル、ステンレス鋼および銅の3層
クラッド材の銅面に亜鉛をフープメッキした素材を用い
ることにより、容易に亜鉛で覆われた負極缶を製造する
ことができる。また、電池の製造工程途中において、負
極缶とガスケットが組み合わせられた後、亜鉛をメッ
キ、蒸着あるいは亜鉛箔の圧着、接着、溶接等の方法に
より配設することも可能である。
As means for disposing zinc or zinc containing an additive on the surface of the negative electrode current collector that contacts the negative electrode active material and the electrolytic solution, plating on the negative electrode current collector, mask plating,
There is a vapor deposition method. In particular, in a button-type alkaline battery in which the negative electrode current collector also serves as a negative electrode can, the can material itself is a 4-layer clad material of nickel, stainless steel, copper and zinc, or a 3-layer clad of nickel, stainless steel and copper. By using a material in which the copper surface of the material is hoop-plated with zinc, a negative electrode can covered with zinc can be easily manufactured. Further, it is also possible to arrange the negative electrode can and the gasket by a method such as plating, vapor deposition or pressure bonding, adhesion, welding of zinc foil, etc. after the negative electrode can and the gasket are combined in the middle of the manufacturing process of the battery.

【0007】[0007]

【作用】亜鉛は、イオン化傾向の大きな金属であるが、
水銀と同様に水素過電圧が高く、亜鉛単体をアルカリ電
解液に浸漬した場合、水の分解される量は極めて少な
い。しかし、集電体である黄銅、銅などが亜鉛と接する
と、アルカリ電解液中で亜鉛電位となり、水の分解が急
速に行われる。本発明にあっては、集電体が始めから亜
鉛で覆われているため、黄銅や銅が亜鉛電位のまま電解
液に曝されることがなく、ガス発生は亜鉛単独のレベル
になり、極めて少なくなる。これにより、水銀を含まな
い亜鉛を負極活物質とするアルカリ電池が実用化され
る。
[Function] Zinc is a metal with a large ionization tendency,
Similar to mercury, it has a high hydrogen overvoltage, and when zinc alone is immersed in an alkaline electrolyte, the amount of water decomposed is extremely small. However, when brass, copper, or the like, which is the current collector, comes into contact with zinc, the zinc potential is reached in the alkaline electrolyte, and water is rapidly decomposed. In the present invention, since the current collector is covered with zinc from the beginning, brass and copper are not exposed to the electrolytic solution at the zinc potential, and the gas generation is at the level of zinc alone, which is extremely high. Less. Thereby, an alkaline battery using mercury-free zinc as a negative electrode active material is put into practical use.

【0008】集電体に配設された亜鉛も活物質として作
用するが、本来の活物質である亜鉛粒の表面積が大き
く、電池反応では亜鉛粒が先に消費される。また万一集
電体の表面の黄銅、銅が露出しても放電反応中は、ガス
発生は生じない。放電を中止すると直ちに亜鉛が集電体
表面に析出するため、亜鉛で覆われた状態が維持され
る。
Zinc provided on the current collector also acts as an active material, but the zinc particles, which are the original active material, have a large surface area, and the zinc particles are consumed first in the battery reaction. Even if brass or copper on the surface of the current collector were exposed, no gas was generated during the discharge reaction. As soon as the discharge is stopped, zinc is deposited on the surface of the current collector, so that the state covered with zinc is maintained.

【0009】[0009]

【実施例】【Example】

(実施例1)以下に、この発明の実施例を図面に基づい
て説明する。図1は、本発明を適用した一実施例を示す
酸化銀電池の部分断面図を示す。電池のサイズは外径
6.8mm、高さ2.6mmである。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a partial sectional view of a silver oxide battery showing an embodiment to which the present invention is applied. The battery has an outer diameter of 6.8 mm and a height of 2.6 mm.

【0010】図中、1は負極缶で、この負極缶1の内面
に亜鉛層1aが配設されている。2は負極合剤で、未汞
化亜鉛粉末もしくは未汞化の亜鉛合金粉末を主体として
いる。4は電解液含浸材、5はセパレータである。6は
正極合剤で、酸化銀を主体としている。7は正極缶で、
8はガスケットである。9はシール剤であり、負極缶1
とガスケット8との間に配設されている。
In the figure, reference numeral 1 is a negative electrode can, and a zinc layer 1a is provided on the inner surface of the negative electrode can 1. Reference numeral 2 denotes a negative electrode mixture, which is mainly composed of unarranged zinc powder or unarranged zinc alloy powder. Reference numeral 4 is an electrolytic solution impregnating material, and 5 is a separator. 6 is a positive electrode mixture, which is mainly composed of silver oxide. 7 is a positive electrode can
8 is a gasket. 9 is a sealant, and the negative electrode can 1
And the gasket 8.

【0011】(実施例2)図2は、本発明を適用した一
実施例を示す負極集電体を兼ねる負極缶の部分断面図で
ある。図中、負極缶1は外側からニッケル層1d、ステ
ンレス鋼層1c、銅層1bからなり、さらにこの負極缶
1の内側に亜鉛層1aが配設されている。この実施例2
では、これら1a、1b、1c、1dの4層がクラッド
されて一枚のシート状になっているものをプレスにて絞
り加工し、図2の形状に仕上げされている。
(Embodiment 2) FIG. 2 is a partial sectional view of a negative electrode can which also serves as a negative electrode current collector, showing an embodiment to which the present invention is applied. In the figure, the negative electrode can 1 is composed of a nickel layer 1d, a stainless steel layer 1c, and a copper layer 1b from the outside, and a zinc layer 1a is disposed inside the negative electrode can 1. This Example 2
Then, a sheet-shaped sheet in which these four layers 1a, 1b, 1c, and 1d are clad is drawn by a press to finish the shape shown in FIG.

【0012】この図2のように、負極缶1の内面に亜鉛
層1aが配設されているので、実施例1で説明した負極
合剤と接触しても、ガス発生が生じるということはな
い。この負極缶1を用いて、実施例1に示す酸化銀電池
と組立てた。次に、亜鉛層1aを配さない従来電池と、
この亜鉛層1aを配した、本発明電池について、電池の
自己放電率を比較した。この自己放電率は電池を60℃
に保存し、20日毎に電池数20個を放電し、保存前の
電池放電容量と保存数の電池放電容量から算出した。こ
の結果、自己放電率はほぼ直線的に保存期間と共に低下
し、本発明電池の自己放電率は1〜3%/20日で、従
来電池の自己放電率は3〜5%/20日であった。
As shown in FIG. 2, since the zinc layer 1a is provided on the inner surface of the negative electrode can 1, even if the zinc layer 1a is brought into contact with the negative electrode mixture described in Example 1, no gas is generated. .. Using this negative electrode can 1, the silver oxide battery shown in Example 1 was assembled. Next, a conventional battery without the zinc layer 1a,
For the batteries of the present invention in which this zinc layer 1a was arranged, the self-discharge rates of the batteries were compared. This self-discharge rate is 60 ℃
20 batteries were discharged every 20 days, and calculated from the battery discharge capacity before storage and the battery discharge capacity of the stored number. As a result, the self-discharge rate decreased almost linearly with the storage period. The self-discharge rate of the battery of the present invention was 1-3% / 20 days, and the self-discharge rate of the conventional battery was 3-5% / 20 days. It was

【0013】本発明電池の自己放電率が従来電池に比べ
て小さい理由は、負極缶1の内面に亜鉛層1aが配設さ
れているので、集電体である負極缶1と負極合剤である
未汞化亜鉛粉末との間に局部電池の形成がなくなるため
であると推察される。 (実施例3)本実施例3は、亜鉛層1aが鉛、インジウ
ム、ビスマス、ガリウム、アルミニウムおよび錫のうち
の1以上の元素と1ppm以上、2%以下の量を含有し
ている以外はすべて、実施例2と同様である。アルカリ
電解液中での未汞化亜鉛からのガス発生は、ボタン形酸
化銀電池を5年間位使用する期間の中では、ほとんど問
題にならないレベルである。
The reason why the self-discharge rate of the battery of the present invention is smaller than that of the conventional battery is that since the zinc layer 1a is disposed on the inner surface of the negative electrode can 1, the negative electrode can 1 and the negative electrode mixture, which are the current collectors, are used. It is presumed that this is because the formation of a local battery between the powder and a certain unhydrogenated zinc powder is eliminated. (Embodiment 3) This embodiment 3 is all except that the zinc layer 1a contains at least one element of lead, indium, bismuth, gallium, aluminum and tin and an amount of 1 ppm or more and 2% or less. The same as in Example 2. The generation of gas from unfluorinated zinc in the alkaline electrolyte is at a level that causes almost no problem during the period in which the button type silver oxide battery is used for about 5 years.

【0014】しかしながら、さらにこの未汞化亜鉛のア
ルカリ電解液中での自己溶解に伴うガス発生をさらに抑
えて、酸化銀電池の信頼性を向上すべく、この未汞化亜
鉛に上記添加物を含有せしめている訳である。この添加
物の量は、1ppmでは無添加の亜鉛と同一レベルでの
ガス発生量であり、2%以上ではこのガス発生量が変化
しなくなる。従って、添加量の最適範囲は1ppm〜2
%以下が適当である。
However, in order to further suppress the gas generation due to the self-dissolution of the uncondensed zinc in the alkaline electrolyte and improve the reliability of the silver oxide battery, the above-mentioned additive is added to the uncondensed zinc. That is why it is included. When the amount of this additive is 1 ppm, the amount of gas generated is the same as that of unadded zinc, and when it is 2% or more, the amount of gas generated does not change. Therefore, the optimum range of addition amount is 1 ppm to 2
% Or less is suitable.

【0015】なお、この亜鉛からのガス発生試験は、無
添加亜鉛末と添加亜鉛末を目盛付ガラス管にZnOを含
有しない30%ROH水溶液と共に各々1g入れ、この
目盛付ガラス管を60℃の恒温水槽に浸漬し、20日毎
に目盛の上昇値を読み取ることによって行われる。この
目盛の上昇が大きいほど、亜鉛の自己溶解に行う水素ガ
ス発生量が大きいということになる。実施例1と同様の
方法にて電池を組立てた。なお、負極合剤2は亜鉛層1
aと同一成分元素を含有した未汞化の亜鉛粉末である。
この亜鉛粉末と亜鉛層1aはいずれもインジウムを0.
5%含有している。このように組立てた本発明電池の自
己放電率を調べたところ、1〜1.5%/20日で優れ
た保存特性を示すことが分かった。
In the gas generation test from this zinc, 1 g each of non-added zinc powder and added zinc powder was put in a graduated glass tube together with a 30% ROH aqueous solution containing no ZnO, and the graduated glass tube was kept at 60 ° C. It is carried out by immersing it in a constant temperature water bath and reading the rising value of the scale every 20 days. The larger this scale is, the larger the amount of hydrogen gas generated for self-dissolving zinc is. A battery was assembled in the same manner as in Example 1. The negative electrode mixture 2 is the zinc layer 1
It is an unstructured zinc powder containing the same constituent elements as a.
Both the zinc powder and the zinc layer 1a contain indium of 0.
Contains 5%. When the self-discharge rate of the battery of the present invention assembled in this way was examined, it was found that the battery exhibited excellent storage characteristics at 1 to 1.5% / 20 days.

【0016】(実施例4)実施例2での亜鉛層1aがメ
ッキで形成されている以外はすべて実施例2と同様で、
実施例2と同様の効果が得られた。なお、このメッキは
ニッケル層、ステンレス鋼層、銅層の3層クラッド材の
銅層面にフープメッキされたのち、負極缶をプレス加工
してもよいし、前記3層クラッド材をプレス加工して製
造された負極缶内面に亜鉛メッキされてもよい。
(Embodiment 4) The same as Embodiment 2 except that the zinc layer 1a in Embodiment 2 is formed by plating.
The same effect as in Example 2 was obtained. The plating may be performed by hoop plating the copper layer surface of the three-layer clad material including the nickel layer, the stainless steel layer, and the copper layer, and then pressing the negative electrode can. The inner surface of the manufactured negative electrode can may be galvanized.

【0017】(実施例5)実施例2での亜鉛層1aが
鉛、インジウム、ビスマス、ガリウム、アルミニウムお
よび錫のうちの1以上の元素を1ppm以上、2%以下
の量を含有しているメッキ層であること以外は、すべて
実施例3と同様であり、実施例3と同様の効果が得られ
た。
(Embodiment 5) The plating in which the zinc layer 1a in Embodiment 2 contains one or more elements of lead, indium, bismuth, gallium, aluminum and tin in an amount of 1 ppm or more and 2% or less. All were the same as Example 3 except that they were layers, and the same effect as Example 3 was obtained.

【0018】(実施例6)図3は、本発明に係る負極缶
の内面に亜鉛層を配設した部分断面図である。亜鉛層1
aは、厚み15μmの亜鉛箔で、円形に打ち抜かれてお
り、負極缶1の内面に溶接、接着、プレス圧着等の手段
により固定されていて、実施例2と同様の効果が得られ
た。
(Embodiment 6) FIG. 3 is a partial cross-sectional view in which a zinc layer is provided on the inner surface of the negative electrode can according to the present invention. Zinc layer 1
The symbol a is a zinc foil having a thickness of 15 μm, which is punched out in a circular shape and fixed to the inner surface of the negative electrode can 1 by means such as welding, adhesion, and press-compression bonding, and the same effect as in Example 2 was obtained.

【0019】(実施例7)実施例6において、亜鉛層1
aは鉛、インジウム、ビスマス、ガリウム、アルミニウ
ムおよび錫のうちの1以上の元素を含有した亜鉛箔であ
ること以外は、すべて実施例3と同様であり、実施例3
と同様の効果が得られた。
Example 7 In Example 6, the zinc layer 1
Example 3 is the same as Example 3 except that a is a zinc foil containing at least one element of lead, indium, bismuth, gallium, aluminum, and tin.
The same effect as was obtained.

【0020】[0020]

【発明の効果】以上詳述したとおり、本発明は未汞化亜
鉛を用いているので、無水銀電池を提供でき、電池廃棄
上の公害防止に役立ち、工業的利用価値大なるものであ
る。
As described above in detail, since the present invention uses unhydrogenated zinc, it is possible to provide a mercury-free battery, help prevent pollution when the battery is discarded, and have a great industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す電池の部分断面図であ
る。
FIG. 1 is a partial cross-sectional view of a battery showing an embodiment of the present invention.

【図2】本発明を適用した一実施例を示す負極集電体を
兼ねる負極缶の部分断面図である。
FIG. 2 is a partial cross-sectional view of a negative electrode can that also serves as a negative electrode current collector, showing an embodiment to which the present invention is applied.

【図3】本発明を適用した一実施例で示す内面の一部に
亜鉛層を配設した負極缶の部分断面図である。
FIG. 3 is a partial cross-sectional view of a negative electrode can in which a zinc layer is provided on a part of the inner surface shown in an example to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 負極缶 1a 亜鉛層 1b 銅層 1c ステンレス鋼層 1d ニッケル層 2 負極合剤 4 電解液含浸材 5 セパレータ 6 正極合剤 7 正極缶 8 ガスケット 9 シール剤 DESCRIPTION OF SYMBOLS 1 Negative electrode can 1a Zinc layer 1b Copper layer 1c Stainless steel layer 1d Nickel layer 2 Negative electrode mixture 4 Electrolyte impregnating material 5 Separator 6 Positive electrode mixture 7 Positive electrode can 8 Gasket 9 Sealing agent

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 負極集電体の負極活物質および電解液と
接する面に亜鉛を配設し、水銀を含有しない亜鉛粒を主
たる負極活物質とすることを特徴とするアルカリ電池。
1. An alkaline battery characterized in that zinc is provided on the surface of the negative electrode current collector which is in contact with the negative electrode active material and the electrolytic solution, and zinc particles containing no mercury are the main negative electrode active material.
【請求項2】 負極集電体を兼ねる負極缶を有し、該負
極缶がニッケル、ステンレス鋼、銅および亜鉛の4層よ
り構成されていることを特徴とする請求項1記載のアル
カリ電池。
2. The alkaline battery according to claim 1, further comprising a negative electrode can also serving as a negative electrode current collector, the negative electrode can being composed of four layers of nickel, stainless steel, copper and zinc.
【請求項3】 該負極缶が、ニッケル、ステンレス鋼、
銅および亜鉛の4層クラッド材であることを特徴とする
請求項2記載のアルカリ電池。
3. The negative electrode can comprises nickel, stainless steel,
The alkaline battery according to claim 2, which is a four-layer clad material of copper and zinc.
【請求項4】 該負極缶が、ニッケル、ステンレス鋼、
銅の3層クラッド材で、この銅面に亜鉛メッキされてい
ることを特徴とする請求項2記載のアルカリ電池。
4. The negative electrode can comprises nickel, stainless steel,
3. The alkaline battery according to claim 2, wherein a copper three-layer clad material is galvanized on the copper surface.
【請求項5】 該集電体の負極活物質および電解液に接
する面に配設される亜鉛に、1ppm以上2%以下の
鉛、インジウム、ビスマス、ガリウム、アルミニウムお
よび錫のうちの1以上の元素を含有せしめたことを特徴
とする請求項1、請求項2、請求項3および請求項4記
載のアルカリ電池。
5. Zinc disposed on the surface of the current collector, which is in contact with the negative electrode active material and the electrolyte, contains 1 ppm or more and 2% or less of lead, indium, bismuth, gallium, aluminum and tin. The alkaline battery according to claim 1, claim 2, claim 3, or claim 4, wherein the alkaline battery contains an element.
【請求項6】 負極集電体を兼ねる負極缶を成形製造す
る工程、該負極缶の負極活物質および電解液に接しない
面にメッキ用マスクを被覆する工程、メッキ、蒸着等に
より該負極缶のマスクを施していない面に、亜鉛もしく
は亜鉛を主とする合金を付着せしめる工程、該負極缶に
付着せしめたメッキ用マスクを除去する工程、前記の諸
工程によって製造した負極缶を、正負極活物質、電解
液、セパレータ、正極缶、ガスケットなどの電池の他の
構成要素と組み合わせて電池を製造する工程を具備した
ことを特徴とする請求項2、請求項4および請求項5記
載のアルカリ電池の製造方法。
6. A step of forming and manufacturing a negative electrode can that also serves as a negative electrode current collector, a step of coating a surface of the negative electrode can that does not come into contact with the negative electrode active material and the electrolytic solution with a plating mask, and the negative electrode can by plating, vapor deposition, etc. The step of adhering zinc or an alloy mainly containing zinc to the surface not masked, the step of removing the plating mask adhering to the negative electrode can, and the negative electrode can manufactured by the above-mentioned steps The alkali according to claim 2, claim 4 or claim 5, further comprising a step of manufacturing a battery by combining with other components of the battery such as an active material, an electrolytic solution, a separator, a positive electrode can and a gasket. Battery manufacturing method.
【請求項7】 ニッケル、ステンレス鋼および銅のクラ
ッド材よりなる負極集電体を兼ねる負極缶に、アスファ
ルト、エポキシ樹脂、ポリアミド樹脂、ゴム類などのシ
ール剤によりプラスチック製のガスケットを組み合わせ
る工程、メッキ、蒸着などの手段によって、該負極缶の
負極活物質および電解液と接する面に、亜鉛もしくは亜
鉛合金を付着せしめる工程、該亜鉛を付着せしめたガス
ケットと組み合わされた負極缶を、正極缶、正負極活物
質、セパレータ、電解液などの他の電池の構成要素と組
み合わせて、電池を製造する工程を具備したことを特徴
とする請求項2、請求項4および請求項5記載のアルカ
リ電池の製造方法。
7. A process of assembling a negative electrode can made of a clad material of nickel, stainless steel and copper also serving as a negative electrode collector with a gasket made of plastic with a sealing agent such as asphalt, epoxy resin, polyamide resin, rubber or the like, plating , A step of depositing zinc or a zinc alloy on the surface of the negative electrode can contacting the negative electrode active material and the electrolytic solution by means such as vapor deposition, and the negative electrode can in combination with the gasket to which the zinc is adhered The manufacturing of an alkaline battery according to claim 2, 4, or 5, further comprising a step of manufacturing a battery in combination with other battery constituents such as a negative electrode active material, a separator, and an electrolytic solution. Method.
【請求項8】 負極集電体を兼ねる負極缶の内面に亜鉛
箔を、プレス圧着、接着、溶接等の手段により配設した
ことを特徴とする請求項1記載のアルカリ電池。
8. The alkaline battery according to claim 1, wherein a zinc foil is provided on the inner surface of the negative electrode can that also serves as the negative electrode current collector by means such as press-compression bonding, adhesion, and welding.
JP6392492A 1992-03-19 1992-03-19 Alkaline battery and manufacture thereof Pending JPH05266881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6392492A JPH05266881A (en) 1992-03-19 1992-03-19 Alkaline battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6392492A JPH05266881A (en) 1992-03-19 1992-03-19 Alkaline battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05266881A true JPH05266881A (en) 1993-10-15

Family

ID=13243380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6392492A Pending JPH05266881A (en) 1992-03-19 1992-03-19 Alkaline battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05266881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235595A (en) * 2004-02-20 2005-09-02 Hitachi Maxell Ltd Button type alkaline battery and its manufacturing method
JP2005259395A (en) * 2004-03-10 2005-09-22 Hitachi Maxell Ltd Button type alkaline battery
JP2010518585A (en) * 2007-02-12 2010-05-27 パワージェニックス システムズ, インコーポレーテッド Zinc metal current collector
US8003247B2 (en) 2003-12-10 2011-08-23 Hitachi Maxell Energy, Ltd. Button-type alkaline battery and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003247B2 (en) 2003-12-10 2011-08-23 Hitachi Maxell Energy, Ltd. Button-type alkaline battery and method of manufacturing the same
JP2005235595A (en) * 2004-02-20 2005-09-02 Hitachi Maxell Ltd Button type alkaline battery and its manufacturing method
JP2005259395A (en) * 2004-03-10 2005-09-22 Hitachi Maxell Ltd Button type alkaline battery
JP4618771B2 (en) * 2004-03-10 2011-01-26 日立マクセル株式会社 Button-type alkaline battery
JP2010518585A (en) * 2007-02-12 2010-05-27 パワージェニックス システムズ, インコーポレーテッド Zinc metal current collector
US8940430B2 (en) 2007-02-12 2015-01-27 Powergenix Systems, Inc. Metallic zinc-based current collector

Similar Documents

Publication Publication Date Title
JP3060145B2 (en) Mercury-free miniature zinc-air battery with indium-plated anode cup
US20060127758A1 (en) Negative electrode can, alkaline cell and production method for same
EP1187236B1 (en) Alkaline battery
JPS5835350B2 (en) alkaline primary battery
JP3901122B2 (en) Manufacturing method for negative electrode cup of alkaline battery
US20090220861A1 (en) Method for producing alkaline battery, and alkaline battery
JPH05266881A (en) Alkaline battery and manufacture thereof
US20060127757A1 (en) Alkaline cell and production method for same
JPH06338327A (en) Negative electrode collector and button-shaped alkaline battery using same
US20130230763A1 (en) Housing for mercury-free button cells
JP3997804B2 (en) Alkaline battery
JP4717222B2 (en) Alkaline battery
JPH06290784A (en) Alkali battery
JPH0794154A (en) Alkaline button battery
JPH06163026A (en) Alkaline button battery
JP2002110184A (en) Button type alkali cell and method for making the same
JP2002198014A (en) Alkaline cell
JP2001307739A (en) Alkaline battery
JPS60151957A (en) Button-shaped alkali cell
JP4618771B2 (en) Button-type alkaline battery
JPS61135047A (en) Thin-type battery
JPS5933749A (en) Cylindrical alkaline battery
JPS61183866A (en) Alkaline cell
JPS5626356A (en) Manufacture of alkaline battery
JPS5873952A (en) Battery