JP2014181346A - Method of producing metal-ceramic circuit board - Google Patents

Method of producing metal-ceramic circuit board Download PDF

Info

Publication number
JP2014181346A
JP2014181346A JP2013054595A JP2013054595A JP2014181346A JP 2014181346 A JP2014181346 A JP 2014181346A JP 2013054595 A JP2013054595 A JP 2013054595A JP 2013054595 A JP2013054595 A JP 2013054595A JP 2014181346 A JP2014181346 A JP 2014181346A
Authority
JP
Japan
Prior art keywords
metal
circuit board
rust
ceramic
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054595A
Other languages
Japanese (ja)
Other versions
JP6162986B2 (en
Inventor
Takashi Ideno
尭 出野
Chikafumi Kudo
史文 工藤
Masahiro Kitamura
征寛 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2013054595A priority Critical patent/JP6162986B2/en
Publication of JP2014181346A publication Critical patent/JP2014181346A/en
Application granted granted Critical
Publication of JP6162986B2 publication Critical patent/JP6162986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • ing And Chemical Polishing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a metal-ceramic circuit board which consists of a metal circuit plate joined with a ceramic substrate and has good solder wettability even without cleaning after a rust prevention treatment of the metal circuit plate.SOLUTION: The surface of a metal circuit plate joined with at least one side of a ceramic substrate is subjected to a rust prevention treatment with an aqueous solution of a non-benzotriazole type rust-preventive agent in a concentration of the rust-preventive agent of 0.013-0.07 vol.%, determined by the iodine number method.

Description

本発明は、金属−セラミックス回路基板の製造方法に関し、特に、金属回路板がセラミックス基板に接合した金属−セラミックス回路基板の製造方法に関する。   The present invention relates to a method for manufacturing a metal-ceramic circuit board, and more particularly, to a method for manufacturing a metal-ceramic circuit board in which a metal circuit board is bonded to a ceramic substrate.

近年、パワーモジュールなどに使用する回路基板として、銅回路板がセラミックス基板上に直接またはろう材を介して接合した金属−セラミックス回路基板が使用されている。また、このような金属−セラミックス回路基板の回路パターンとなる銅回路板の表面の変色を防止するとともに、半田付け工程における半田濡れ性や、耐腐食性や耐熱性などの耐候性を向上させるために、Ni、Auまたはこれらの合金などのめっきや防錆処理が行われている。   In recent years, a metal-ceramic circuit board in which a copper circuit board is joined to a ceramic board directly or via a brazing material is used as a circuit board used for a power module or the like. In addition, to prevent discoloration of the surface of the copper circuit board that becomes the circuit pattern of such a metal-ceramic circuit board, and to improve the weather resistance such as solder wettability, corrosion resistance and heat resistance in the soldering process In addition, Ni, Au, or an alloy thereof is plated or rust-proofed.

このような回路基板の防錆処理として、回路基板の一方の面に形成された金属回路と他方の面に形成された金属放熱板を化学研磨して表面粗さRaを0.1〜1.0μm(またはRmaxを1.0〜5.0μm)にした後に、金属回路と金属放熱板にめっきを施さずにベンゾトリアゾール(BTA)系の防錆剤を付与して厚さ0.05〜10μmの防錆層を形成し、金属回路間の基板表面に残留する防錆剤を有機溶剤で洗浄して除去する方法が提案されている(例えば、特許文献1参照)。   As a rust-proofing treatment for such a circuit board, the metal circuit formed on one surface of the circuit board and the metal heat sink formed on the other surface are chemically polished to have a surface roughness Ra of 0.1 to 1. After 0 μm (or Rmax is 1.0 to 5.0 μm), a benzotriazole (BTA) -based rust preventive agent is applied without plating the metal circuit and the metal heatsink, and the thickness is 0.05 to 10 μm. There has been proposed a method in which a rust preventive layer is formed and the rust preventive remaining on the substrate surface between metal circuits is removed by washing with an organic solvent (for example, see Patent Document 1).

また、ベンゾトリアゾール(BTA)系の防錆剤を使用しない防錆処理として、リードフレームの表面に非ベンゾトリアゾール(非BTA)系の防錆剤を塗布した後、ダイボンディングとワイヤボンディングを行う方法が提案されている(例えば、特許文献2参照)。この方法で使用する非BTA系の防錆剤は、BTA系の防錆剤のように耐熱温度が高い防錆層を形成することなく、(ワイヤボンディングの際の温度より低い)250℃前後の低温で完全に分解する防錆被膜を形成する。そのため、この方法では、ワイヤボンディングの際に防錆被膜が分解して残留物を生成しないので、リードフレームの素地が露出して、信頼性の高いワイヤボンディングが可能になる。   Also, as a rust prevention treatment that does not use a benzotriazole (BTA) rust inhibitor, a method of performing die bonding and wire bonding after applying a non-benzotriazole (non BTA) rust inhibitor to the surface of the lead frame Has been proposed (see, for example, Patent Document 2). The non-BTA rust preventive agent used in this method does not form a rust preventive layer having a high heat resistance temperature like the BTA rust preventive agent, and is around 250 ° C. (lower than the temperature at the time of wire bonding). Forms a rust-proof coating that decomposes completely at low temperatures. Therefore, in this method, since the rust preventive film is not decomposed and a residue is not generated at the time of wire bonding, the lead frame substrate is exposed, and highly reliable wire bonding becomes possible.

さらに、有機溶剤を使用しない洗浄方法として、銅ベース板とダイレクトボンディングカッパー基板(DBC)基板との間に半田付けされる領域のみをプラズマ照射により洗浄する方法が提案されている(例えば、特許文献3参照)。   Furthermore, as a cleaning method that does not use an organic solvent, there has been proposed a method in which only a region to be soldered between a copper base plate and a direct bonding copper substrate (DBC) substrate is cleaned by plasma irradiation (for example, Patent Documents). 3).

特開2007−81217号公報(段落番号0007−0022)JP 2007-81217 A (paragraph number 0007-0022) 特開2003−197827号公報(段落番号0018−0028)JP2003-197827A (paragraph numbers 0018-0028) 特開2001−196392号公報(段落番号0011)JP 2001-196392 A (paragraph number 0011)

しかし、銅回路板がセラミックス基板上に接合した金属−セラミックス回路基板では、(めっきを施さずに)防錆処理した銅回路板の表面に半導体チップなどの電子部品を半田付けする際に、短時間で半田付け温度まで昇温させると、ボイド欠陥が発生して半田濡れ性が低下するという問題がある。このようなボイド欠陥の発生は、半田付けする前に、防錆剤を有機溶剤やプラズマなどにより洗浄すれば防止することができるが、工程が増加して製造コストが上昇する。   However, with a metal-ceramic circuit board in which a copper circuit board is bonded onto a ceramic board, it is difficult to solder an electronic component such as a semiconductor chip onto the surface of a rust-proof copper circuit board (without plating). When the temperature is raised to the soldering temperature over time, there is a problem that void defects occur and solder wettability decreases. The occurrence of such void defects can be prevented by washing the rust inhibitor with an organic solvent or plasma before soldering, but the number of processes increases and the manufacturing cost increases.

一方、銅回路板に防錆処理を行わなければ、ボイド欠陥が発生するという問題はないが、銅回路板の表面の経時変化による酸化を十分に抑制することができずに半田濡れ性が低下するという問題がある。   On the other hand, if the copper circuit board is not rust-proofed, there will be no problem of void defects. However, oxidation due to aging of the surface of the copper circuit board cannot be sufficiently suppressed and solder wettability is reduced. There is a problem of doing.

したがって、本発明は、このような従来の問題点に鑑み、金属回路板がセラミックス基板に接合した金属−セラミックス回路基板の製造方法において、金属回路板を防錆処理した後に洗浄しなくても半田付け濡れ性が良好な金属−セラミックス回路基板を製造することができる、金属−セラミックス回路基板の製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention provides a metal-ceramic circuit board manufacturing method in which a metal circuit board is bonded to a ceramic board. It is an object of the present invention to provide a method for producing a metal-ceramic circuit board, which can produce a metal-ceramic circuit board having good wettability.

本発明者らは、上記課題を解決するために鋭意研究した結果、セラミックス基板の少なくとも一方の面に接合した金属回路板の表面を、防錆剤の濃度が0.013〜0.07体積%の非ベンゾトリアゾール系の防錆剤の水溶液で防錆処理することにより、金属回路板を防錆処理した後に洗浄しなくても半田付け濡れ性が良好な金属−セラミックス回路基板を製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the concentration of the rust inhibitor is 0.013 to 0.07% by volume on the surface of the metal circuit board bonded to at least one surface of the ceramic substrate. It is possible to produce a metal-ceramic circuit board with good soldering wettability even if the metal circuit board is not washed after being rust-proofed by rust-proofing with an aqueous solution of a non-benzotriazole-based rust-proofing agent. The present inventors have found that this can be done and have completed the present invention.

すなわち、本発明による金属−セラミックス回路基板の製造方法は、セラミックス基板の少なくとも一方の面に接合した金属回路板の表面を、防錆剤の濃度が0.013〜0.07体積%の非ベンゾトリアゾール系の防錆剤の水溶液で防錆処理することを特徴とする。   That is, in the method for producing a metal-ceramic circuit board according to the present invention, the surface of the metal circuit board bonded to at least one surface of the ceramic board is coated with a non-benzoic acid having a rust inhibitor concentration of 0.013-0.07% by volume. Rust prevention treatment is performed with an aqueous solution of a triazole rust inhibitor.

この金属−セラミックス回路基板の製造方法において、防錆剤の濃度がヨウ素価法によって求められた濃度であるのが好ましい。また、金属回路板が銅回路板であるのが好ましい。さらに、防錆処理の前に、金属回路板の表面を化学研磨するのが好ましい。   In this metal-ceramic circuit board manufacturing method, the concentration of the rust inhibitor is preferably determined by the iodine value method. The metal circuit board is preferably a copper circuit board. Furthermore, it is preferable to chemically polish the surface of the metal circuit board before the rust prevention treatment.

本発明によれば、金属回路板がセラミックス基板に接合した金属−セラミックス回路基板の製造方法において、金属回路板を防錆処理した後に洗浄しなくても半田付け濡れ性が良好な金属−セラミックス回路基板を製造することができる。   According to the present invention, in a method for manufacturing a metal-ceramic circuit board in which a metal circuit board is bonded to a ceramic substrate, the metal-ceramic circuit has good solder wettability without being washed after the metal circuit board has been rust-prevented. A substrate can be manufactured.

本発明による金属−セラミックス回路基板の製造方法の実施の形態では、セラミックス基板の少なくとも一方の面に接合した銅回路基板などの金属回路板の表面を、好ましくは化学研磨した後、防錆剤の濃度が0.013〜0.07体積%、好ましくは0.015〜0.05体積%の非ベンゾトリアゾール系の防錆剤の水溶液で防錆処理する。   In an embodiment of the method for producing a metal-ceramic circuit board according to the present invention, the surface of a metal circuit board such as a copper circuit board bonded to at least one surface of the ceramic board is preferably chemically polished, and then subjected to a rust inhibitor. Rust prevention treatment is performed with an aqueous solution of a non-benzotriazole rust inhibitor having a concentration of 0.013 to 0.07% by volume, preferably 0.015 to 0.05% by volume.

この金属−セラミックス回路基板の製造方法において、防錆剤の水溶液中の防錆剤の濃度は、例えば、以下のようなヨウ素価法(ウィイス法)により求めることができる。まず、防錆剤の水溶液1Lを正確に採取した後、ウィイス液(一塩化ヨウ素の酢酸溶液)6.25mLを正確に採取して防錆液に添加し、30秒間攪拌して常温で暗所に1時間以上放置する。次に、100g/Lのヨウ化カリウム溶液5mLを正確に採取して添加し、スターラーで攪拌した後、0.1モル/Lのチオ硫酸ナトリウム標準液で滴定する。この溶液が微黄色になったら、10g/Lのデンプン溶液を約5滴加えて滴定を続け、溶液の青〜褐色が消失するときを終点とする。このときの0.1モル/Lのチオ硫酸ナトリウム標準液の使用量をB(mL)とする。また、防錆剤の水溶液の希釈水のみで同様のブランクテストを行い、このときの0.1モル/Lのチオ硫酸ナトリウム標準液の使用量をA(mL)とし、防錆剤の濃度(体積%)=0.015×(A−B)×F−0.001から、防錆剤の濃度を算出する(なお、式中、Fは0.1モル/Lのチオ硫酸ナトリウム標準液のファクター=1.005である)。   In this method for producing a metal-ceramic circuit board, the concentration of the rust inhibitor in the aqueous solution of the rust inhibitor can be determined, for example, by the following iodine value method (Wiis method). First, after accurately collecting 1 L of an aqueous solution of a rust inhibitor, 6.25 mL of a Wies solution (iodine monochloride acetic acid solution) is accurately collected and added to the rust preventive solution, stirred for 30 seconds and dark at room temperature. Leave for more than 1 hour. Next, 5 mL of 100 g / L potassium iodide solution is accurately sampled and added, stirred with a stirrer, and titrated with a 0.1 mol / L sodium thiosulfate standard solution. When this solution becomes slightly yellow, about 5 drops of 10 g / L starch solution is added and titration is continued until the blue-brown color of the solution disappears. The amount of 0.1 mol / L sodium thiosulfate standard solution used at this time is defined as B (mL). In addition, the same blank test was performed only with the diluted water of the rust inhibitor aqueous solution, and the amount of 0.1 mol / L sodium thiosulfate standard solution used at this time was A (mL), and the concentration of the rust inhibitor ( (Volume%) = 0.015 × (A−B) × F−0.001 to calculate the concentration of the rust preventive agent (where F is a 0.1 mol / L sodium thiosulfate standard solution) Factor = 1.005).

本発明による金属−セラミックス回路基板の製造方法の実施の形態により、金属回路板がセラミックス基板に接合した金属−セラミックス回路基板の製造方法において、金属回路板を防錆処理した後に洗浄しなくても半田付け濡れ性が良好な金属−セラミックス回路基板を製造することができる。特に、従来の金属−セラミックス回路基板では、半田付けの際の昇温速度が1℃/秒程度で半田付けが良好であったものの、昇温速度が20℃/秒以上になると良好に半田付けを行うことができなかったが、本発明による金属−セラミックス回路基板の製造方法の実施の形態により製造された金属−セラミックス回路基板では、昇温速度が20℃/秒以上でも良好に半田付けを行うことができる。   In the metal-ceramic circuit board manufacturing method in which the metal circuit board is bonded to the ceramic substrate according to the embodiment of the metal-ceramic circuit board manufacturing method according to the present invention, the metal circuit board does not have to be washed after being rust-proofed. A metal-ceramic circuit board with good solder wettability can be produced. In particular, in the conventional metal-ceramic circuit board, the soldering temperature was good at a temperature rising rate of about 1 ° C./second during soldering, but the soldering was good when the temperature rising rate was 20 ° C./second or more. In the metal-ceramic circuit board manufactured by the embodiment of the method for manufacturing a metal-ceramic circuit board according to the present invention, soldering can be performed well even at a temperature rising rate of 20 ° C./second or more. It can be carried out.

以下、本発明による金属−セラミックス回路基板の製造方法の実施例について詳細に説明する。   Examples of the method for producing a metal-ceramic circuit board according to the present invention will be described in detail below.

[実施例1〜3]
まず、セラミックス基板として長さ56mm、幅47mm、厚さ0.63mmの平面形状が略矩形のAlN基板を用意し、このセラミックス基板の両面に、活性金属として2質量%のTiを含むAg−Cuろう材をスクリーン印刷で塗布し、その上に、それぞれ長さ56mm、幅47mm、厚さ0.25mmの平面形状が略矩形の無酸素銅からなる銅板を配置し、真空雰囲気中において850℃で30分間加熱してセラミックス基板と銅板を接合して、金属−セラミックス接合基板を作製した。
[Examples 1 to 3]
First, an AlN substrate having a length of 56 mm, a width of 47 mm, and a thickness of 0.63 mm is prepared as a ceramic substrate, and the surface of the ceramic substrate is Ag-Cu containing 2% by mass of Ti as an active metal on both surfaces. A brazing material is applied by screen printing, and a copper plate made of oxygen-free copper having a substantially rectangular shape with a length of 56 mm, a width of 47 mm, and a thickness of 0.25 mm is disposed on the brazing material. The ceramic substrate and the copper plate were bonded by heating for 30 minutes to produce a metal-ceramic bonding substrate.

このようにして作製した金属−セラミックス接合基板の銅板上にアルカリ剥離型のエッチングレジストを所定の形状に印刷した後、銅板とろう材の不要部分を塩化第二銅のエッチング液などで除去し、水酸化ナトリウム水溶液でエッチングレジストを剥離することにより、一方の銅板に回路パターンを形成した。   After printing an alkali peeling type etching resist in a predetermined shape on the copper plate of the metal-ceramic bonding substrate thus prepared, unnecessary portions of the copper plate and the brazing material are removed with an etching solution of cupric chloride, etc. A circuit pattern was formed on one copper plate by peeling off the etching resist with an aqueous sodium hydroxide solution.

次に、前処理として硫酸と過酸化水素水からなる化学研磨液に30秒間浸漬することによって銅板の表面を化学研磨した後、市販の非ベンゾトリアゾール(非BTA)系の防錆剤(千代田ケミカル株式会社製のC−71N)の濃度がそれぞれ0.05体積%(実施例1)、0.03体積%(実施例2)、0.015体積%(実施例3)になるように水で希釈した水溶液中に55℃で1分間浸漬して防錆処理を行った。   Next, as a pretreatment, the surface of the copper plate is chemically polished by immersing it in a chemical polishing solution comprising sulfuric acid and hydrogen peroxide solution for 30 seconds, and then a commercially available non-benzotriazole (non-BTA) rust inhibitor (Chiyoda Chemical). Co., Ltd. (C-71N) with a concentration of 0.05% by volume (Example 1), 0.03% by volume (Example 2), and 0.015% by volume (Example 3). Rust prevention treatment was performed by immersing in the diluted aqueous solution at 55 ° C. for 1 minute.

なお、防錆処理の使用した水溶液中の防錆剤の濃度は、以下のようなヨウ素価法により求めた。まず、防錆剤の水溶液1Lを正確に採取した後、ウィイス液(和光純薬工業株式会社製の一塩化ヨウ素の酢酸溶液の試薬)6.25mLを正確に採取して防錆液に添加し、30秒間攪拌して常温で暗所に1時間以上放置した。次に、100g/Lのヨウ化カリウム溶液5mLを正確に採取して添加し、スターラーで攪拌した後、0.1モル/Lのチオ硫酸ナトリウム標準液で滴定した。この溶液が微黄色になったら、10g/Lのデンプン溶液を約5滴加えて滴定を続け、溶液の青〜褐色が消失するときを終点とした。このときの0.1モル/Lのチオ硫酸ナトリウム標準液の使用量をB(mL)とする。また、防錆剤の水溶液の希釈水のみで同様のブランクテストを行い、このときの0.1モル/Lのチオ硫酸ナトリウム標準液の使用量をA(mL)とし、防錆剤の濃度(体積%)=0.015×(A−B)×F−0.001から、防錆剤の濃度を算出した(なお、式中、Fは0.1モル/Lのチオ硫酸ナトリウム標準液のファクタであり、F=1.005の標準液を使用した)。   The concentration of the rust inhibitor in the aqueous solution used for the rust prevention treatment was determined by the following iodine value method. First, after accurately collecting 1 L of an aqueous solution of a rust inhibitor, 6.25 mL of a Wiis solution (a reagent for iodine monochloride acetic acid solution manufactured by Wako Pure Chemical Industries, Ltd.) is accurately collected and added to the rust inhibitor. The mixture was stirred for 30 seconds and left in a dark place at room temperature for 1 hour or longer. Next, 5 mL of a 100 g / L potassium iodide solution was accurately collected and added, stirred with a stirrer, and titrated with a 0.1 mol / L sodium thiosulfate standard solution. When this solution turned slightly yellow, about 5 drops of 10 g / L starch solution was added to continue the titration, and the end point was when the blue to brown color of the solution disappeared. The amount of 0.1 mol / L sodium thiosulfate standard solution used at this time is defined as B (mL). In addition, the same blank test was performed only with the diluted water of the rust inhibitor aqueous solution, and the amount of 0.1 mol / L sodium thiosulfate standard solution used at this time was A (mL), and the concentration of the rust inhibitor ( (Volume%) = 0.015 × (A−B) × F−0.001 to calculate the concentration of the rust inhibitor (wherein F is a 0.1 mol / L sodium thiosulfate standard solution). Factor, F = 1.005 standard solution was used).

このように防錆処理を行った金属−セラミックス接合基板の半田濡れ性を評価する10mm×10mmの部分に厚さ0.15mmのSnAgCu系板半田を載せた。次に、水素100%の雰囲気中において昇温速度30℃/秒で加熱して320℃(半田付け温度)で260秒間(半田付け温度保持時間)保持し、放冷後、半田濡れ性を評価する部分の面積(100mm)に対して溶融半田が濡れて占有する面積の割合(半田の濡れ広がり率)を測定した。なお、半田の濡れ広がり率の評価基準として、半田の濡れ広がり率が99%以上の場合に半田濡れ性が非常に良好(表1において◎で示す)、95%以上の場合に半田濡れ性が良好(表1において○で示す)であるとし、95%未満の場合に半田濡れ性が不良(表1において×で示す)であるとした。その結果、半田濡れ性は、実施例1では良好、実施例2〜3では非常に良好であった。 A SnAgCu-based plate solder having a thickness of 0.15 mm was placed on a 10 mm × 10 mm portion for evaluating the solder wettability of the metal / ceramic bonding substrate subjected to the rust prevention treatment in this way. Next, it is heated in a 100% hydrogen atmosphere at a heating rate of 30 ° C./second, held at 320 ° C. (soldering temperature) for 260 seconds (soldering temperature holding time), allowed to cool, and then evaluated for solder wettability. The ratio of the area occupied by the molten solder wetted with respect to the area (100 mm 2 ) of the soldering area (the solder spreading ratio) was measured. As an evaluation standard for the solder wetting spread rate, solder wettability is very good (indicated by “◎” in Table 1) when the solder wet spreading rate is 99% or more, and when the solder wetting spread rate is 95% or more. The solder wettability was judged to be poor (indicated by x in Table 1) when it was good (indicated by ◯ in Table 1) and less than 95%. As a result, the solder wettability was good in Example 1, and very good in Examples 2-3.

また、防錆処理を行った金属−セラミックス接合基板を恒温恒湿試験機により85℃で湿度85%に200時間保持した後、外観を目視する試験を行った。なお、この恒温恒湿試験の評価基準として、変色がほとんどない場合に非常に良好(表1において◎で示す)、変色が僅かな場合に良好(表1において○で示す)、変色が顕著な場合に不良(表1において×で示す)であるとした。その結果、恒温恒湿試験の結果は、実施例1〜3ではいずれも良好であった。   Moreover, the test | inspection which visually observes an external appearance was done, after hold | maintaining the metal-ceramics bonding board | substrate which performed the antirust process at 85 degreeC and 85% of humidity for 200 hours with a constant temperature and humidity tester. In addition, as an evaluation standard of this constant temperature and humidity test, it is very good when there is almost no discoloration (indicated by 1 in Table 1), good when there is little discoloration (indicated by ○ in Table 1), and discoloration is remarkable. In some cases, it was determined to be defective (indicated by x in Table 1). As a result, the results of the constant temperature and humidity test were all good in Examples 1 to 3.

[比較例1〜4]
実施例1〜3と同様の方法により、金属−セラミックス接合基板を作製し、回路パターンを形成し、化学研磨した後、市販の非ベンゾトリアゾール(非BTA)系の防錆剤(千代田ケミカル株式会社製のC−71N)の濃度がそれぞれ1.5体積%(比較例1)、0.2体積%(比較例2)、0.1体積%(比較例3)、0.01体積%(比較例3)になるように水で希釈した以外は、実施例1〜3と同様の方法により防錆処理を行った。
[Comparative Examples 1-4]
A metal-ceramic bonding substrate was prepared by the same method as in Examples 1 to 3, a circuit pattern was formed, and after chemical polishing, a commercially available non-benzotriazole (non-BTA) rust inhibitor (Chiyoda Chemical Co., Ltd.) The concentration of C-71N produced is 1.5% by volume (Comparative Example 1), 0.2% by volume (Comparative Example 2), 0.1% by volume (Comparative Example 3), and 0.01% by volume (Comparison). Rust prevention treatment was carried out by the same method as in Examples 1 to 3 except that it was diluted with water so as to be Example 3).

このように防錆処理を行った金属−セラミックス接合基板について、実施例1〜3と同様の方法により、半田濡れ性の評価と恒温恒湿試験を行ったところ、半田濡れ性は、比較例4では良好であったが、比較例1〜3では不良であり、恒温恒湿試験の結果は、比較例1〜3では非常に良好であったが、比較例4では不良であった。   For the metal / ceramic bonding substrate thus subjected to the rust prevention treatment, the solder wettability was evaluated and the constant temperature and humidity test was performed in the same manner as in Examples 1 to 3. Was good in Comparative Examples 1 to 3, and the results of the constant temperature and humidity test were very good in Comparative Examples 1 to 3, but poor in Comparative Example 4.

[実施例4〜6]
実施例1〜3と同様の方法により、金属−セラミックス接合基板を作製し、回路パターンを形成し、化学研磨した後、市販の非ベンゾトリアゾール(非BTA)系の防錆剤(千代田ケミカル株式会社製のY−8591)を使用した以外は、それぞれ実施例1〜3と同様の方法により防錆処理を行った。
[Examples 4 to 6]
A metal-ceramic bonding substrate was prepared by the same method as in Examples 1 to 3, a circuit pattern was formed, and after chemical polishing, a commercially available non-benzotriazole (non-BTA) rust inhibitor (Chiyoda Chemical Co., Ltd.) Rust prevention treatment was performed in the same manner as in Examples 1 to 3, except that Y-8591) was used.

このように防錆処理を行った金属−セラミックス接合基板について、実施例1〜3と同様の方法により、半田濡れ性の評価と恒温恒湿試験を行ったところ、半田濡れ性は、実施例4〜5では良好、実施例6では非常に良好であり、恒温恒湿試験の結果は、実施例4〜6ではいずれも良好であった。   For the metal / ceramic bonding substrate subjected to the rust prevention treatment in this manner, evaluation of solder wettability and constant temperature and humidity test were performed in the same manner as in Examples 1 to 3. -5 was good, Example 6 was very good, and the results of the constant temperature and humidity test were all good in Examples 4-6.

[比較例5〜6]
実施例1〜3と同様の方法により、金属−セラミックス接合基板を作製し、回路パターンを形成し、化学研磨した後、市販の非ベンゾトリアゾール(非BTA)系の防錆剤(千代田ケミカル株式会社製のY−8591)の濃度がそれぞれ1.5体積%(比較例5)、0.2体積%(比較例6)になるように水で希釈した以外は、実施例4〜6と同様の方法により防錆処理を行った。
[Comparative Examples 5-6]
A metal-ceramic bonding substrate was prepared by the same method as in Examples 1 to 3, a circuit pattern was formed, and after chemical polishing, a commercially available non-benzotriazole (non-BTA) rust inhibitor (Chiyoda Chemical Co., Ltd.) The same as in Examples 4 to 6 except that the concentration of Y-8591) made by water is 1.5% by volume (Comparative Example 5) and 0.2% by volume (Comparative Example 6). Rust prevention treatment was performed by the method.

このように防錆処理を行った金属−セラミックス接合基板について、実施例1〜3と同様の方法により、半田濡れ性の評価と恒温恒湿試験を行ったところ、半田濡れ性は、比較例5〜6ではいずれも不良であり、恒温恒湿試験の結果は、比較例5〜6ではいずれも非常に良好であった。   For the metal / ceramic bonding substrate subjected to the rust prevention treatment as described above, when the solder wettability evaluation and the constant temperature and humidity test were performed in the same manner as in Examples 1 to 3, the solder wettability was Comparative Example 5. The results of the constant temperature and humidity test were very good in Comparative Examples 5 to 6.

[比較例7〜11]
実施例1〜3と同様の方法により、金属−セラミックス接合基板を作製し、回路パターンを形成し、化学研磨した後、市販のベンゾトリアゾール(BTA)系の防錆剤(日本マクドーミット株式会社製のMetex M−667)の濃度がそれぞれ1.5体積%(比較例7)、0.2体積%(比較例8)、0.05体積%(比較例9)、0.03体積%(比較例10)、0.015体積%(比較例11)になるように水で希釈した水溶液中に室温で1分間浸漬して防錆処理を行った。
[Comparative Examples 7 to 11]
A metal-ceramic bonding substrate was prepared by the same method as in Examples 1 to 3, a circuit pattern was formed, and after chemical polishing, a commercially available benzotriazole (BTA) rust inhibitor (manufactured by Nippon McDomit Ltd.) The concentration of Metex M-667) is 1.5% by volume (Comparative Example 7), 0.2% by volume (Comparative Example 8), 0.05% by volume (Comparative Example 9), and 0.03% by volume (Comparative Example). 10), and was immersed in an aqueous solution diluted with water so as to be 0.015% by volume (Comparative Example 11) at room temperature for 1 minute to perform rust prevention treatment.

このように防錆処理を行った金属−セラミックス接合基板について、実施例1〜3と同様の方法により、半田濡れ性の評価と恒温恒湿試験を行ったところ、半田濡れ性は、比較例7〜11ではいずれも不良であったが、恒温恒湿試験の結果は、比較例7では良好であり、比較例8〜11ではいずれも非常に良好であった。   For the metal / ceramic bonding substrate subjected to the rust prevention treatment as described above, when the solder wettability evaluation and the constant temperature and humidity test were performed in the same manner as in Examples 1 to 3, the solder wettability was Comparative Example 7. The results of the constant temperature and humidity test were good in Comparative Example 7 and very good in Comparative Examples 8 to 11.

[比較例12〜16]
実施例1〜3と同様の方法により、金属−セラミックス接合基板を作製し、回路パターンを形成し、化学研磨した後、市販のベンゾトリアゾール(BTA)系の防錆剤(千代田ケミカル株式会社製のC−71DE)の濃度がそれぞれ1.5体積%(比較例12)、0.2体積%(比較例13)、0.05体積%(比較例14)、0.03体積%(比較例15)、0.015体積%(比較例16)になるように水で希釈した水溶液中に55℃で1分間浸漬して防錆処理を行った。
[Comparative Examples 12 to 16]
A metal-ceramic bonding substrate was prepared by the same method as in Examples 1 to 3, a circuit pattern was formed, and after chemical polishing, a commercially available benzotriazole (BTA) rust inhibitor (manufactured by Chiyoda Chemical Co., Ltd.). C-71DE) concentrations of 1.5% by volume (Comparative Example 12), 0.2% by volume (Comparative Example 13), 0.05% by volume (Comparative Example 14), and 0.03% by volume (Comparative Example 15) ), And was immersed in an aqueous solution diluted with water so as to be 0.015% by volume (Comparative Example 16) at 55 ° C. for 1 minute for rust prevention treatment.

このように防錆処理を行った金属−セラミックス接合基板について、実施例1〜3と同様の方法により、半田濡れ性の評価と恒温恒湿試験を行ったところ、半田濡れ性は、比較例12〜16ではいずれも不良であったが、恒温恒湿試験の結果は、比較例12〜16ではいずれも非常に良好であった。   For the metal / ceramic bonding substrate subjected to the rust-proofing treatment as described above, when the solder wettability evaluation and the constant temperature and humidity test were performed in the same manner as in Examples 1 to 3, the solder wettability was found to be Comparative Example 12. Although all were unsatisfactory in -16, the result of the constant temperature and humidity test was very favorable in Comparative Examples 12-16.

これらの実施例および比較例の結果を表1に示す。   The results of these examples and comparative examples are shown in Table 1.

Figure 2014181346
Figure 2014181346

Claims (4)

セラミックス基板の少なくとも一方の面に接合した金属回路板の表面を、防錆剤の濃度が0.013〜0.07体積%の非ベンゾトリアゾール系の防錆剤の水溶液で防錆処理することを特徴とする、金属−セラミックス回路基板の製造方法。 The surface of the metal circuit board bonded to at least one surface of the ceramic substrate is rust-prevented with an aqueous solution of a non-benzotriazole rust inhibitor having a rust inhibitor concentration of 0.013 to 0.07% by volume. A method for producing a metal-ceramic circuit board, which is characterized. 前記防錆剤の濃度がヨウ素価法によって求められた濃度であることを特徴とする、請求項1に記載の金属−セラミックス回路基板の製造方法。 The method for producing a metal-ceramic circuit board according to claim 1, wherein the concentration of the rust inhibitor is a concentration determined by an iodine value method. 前記金属回路板が銅回路板であることを特徴とする、請求項1または2に記載の金属−セラミックス回路基板の製造方法。 The method for producing a metal-ceramic circuit board according to claim 1 or 2, wherein the metal circuit board is a copper circuit board. 前記防錆処理の前に、前記金属回路板の表面を化学研磨することを特徴とする、請求項1乃至3のいずれかに記載の金属−セラミックス回路基板の製造方法。 The method for producing a metal-ceramic circuit board according to any one of claims 1 to 3, wherein the surface of the metal circuit board is chemically polished before the antirust treatment.
JP2013054595A 2013-03-18 2013-03-18 Metal-ceramic circuit board manufacturing method Active JP6162986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054595A JP6162986B2 (en) 2013-03-18 2013-03-18 Metal-ceramic circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054595A JP6162986B2 (en) 2013-03-18 2013-03-18 Metal-ceramic circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2014181346A true JP2014181346A (en) 2014-09-29
JP6162986B2 JP6162986B2 (en) 2017-07-12

Family

ID=51700364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054595A Active JP6162986B2 (en) 2013-03-18 2013-03-18 Metal-ceramic circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP6162986B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117501A (en) * 1982-12-23 1984-07-06 Nippon Zeon Co Ltd Hydrogenation of conjugated diene polymer
JPS6156286A (en) * 1984-07-25 1986-03-20 Toshiba Battery Co Ltd Alkali battery
JPH06322551A (en) * 1993-05-10 1994-11-22 Shikoku Chem Corp Treating agent for copper and copper alloy
US20030068532A1 (en) * 2001-09-28 2003-04-10 Nobuyoshi Tsukaguchi Metal/ceramic bonding article
JP2003197827A (en) * 2001-12-25 2003-07-11 Toshiba Corp Semiconductor device and its manufacturing method
JP2004158884A (en) * 2004-02-16 2004-06-03 Toshiba Corp Semiconductor device and method for manufacturing the same
JP3537417B2 (en) * 2001-12-25 2004-06-14 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2005064241A (en) * 2003-08-12 2005-03-10 Murata Mfg Co Ltd Wiring board and its manufacturing method
JP2007081217A (en) * 2005-09-15 2007-03-29 Hitachi Metals Ltd Method of manufacturing circuit board, circuit board, and semiconductor module
WO2007111757A2 (en) * 2006-03-22 2007-10-04 Macdermid, Incorporated Precoat composition for organic solderability preservative
JP2012231035A (en) * 2011-04-26 2012-11-22 Fujifilm Corp Molded circuit board and manufacturing method thereof
JP5545234B2 (en) * 2011-01-31 2014-07-09 三菱電機株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117501A (en) * 1982-12-23 1984-07-06 Nippon Zeon Co Ltd Hydrogenation of conjugated diene polymer
JPS6156286A (en) * 1984-07-25 1986-03-20 Toshiba Battery Co Ltd Alkali battery
JPH06322551A (en) * 1993-05-10 1994-11-22 Shikoku Chem Corp Treating agent for copper and copper alloy
US20030068532A1 (en) * 2001-09-28 2003-04-10 Nobuyoshi Tsukaguchi Metal/ceramic bonding article
JP2003112980A (en) * 2001-09-28 2003-04-18 Dowa Mining Co Ltd Metal-ceramic joined body
JP2003197827A (en) * 2001-12-25 2003-07-11 Toshiba Corp Semiconductor device and its manufacturing method
JP3537417B2 (en) * 2001-12-25 2004-06-14 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2005064241A (en) * 2003-08-12 2005-03-10 Murata Mfg Co Ltd Wiring board and its manufacturing method
JP2004158884A (en) * 2004-02-16 2004-06-03 Toshiba Corp Semiconductor device and method for manufacturing the same
JP2007081217A (en) * 2005-09-15 2007-03-29 Hitachi Metals Ltd Method of manufacturing circuit board, circuit board, and semiconductor module
WO2007111757A2 (en) * 2006-03-22 2007-10-04 Macdermid, Incorporated Precoat composition for organic solderability preservative
JP2009530846A (en) * 2006-03-22 2009-08-27 マクダーミッド インコーポレーテッド Undercoat composition for organic soldering protection formation
JP5545234B2 (en) * 2011-01-31 2014-07-09 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2012231035A (en) * 2011-04-26 2012-11-22 Fujifilm Corp Molded circuit board and manufacturing method thereof

Also Published As

Publication number Publication date
JP6162986B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
KR100382056B1 (en) Manufacture of Printed Circuit Boards
JP6799479B2 (en) Manufacturing method of metal-ceramic circuit board
WO2015029478A1 (en) Method for manufacturing ceramic circuit board
JP4733468B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
JP7448617B2 (en) Manufacturing method of ceramic circuit board
JP2007123883A (en) Method of forming plating layer of print circuit board and print circuit board manufactured by the method
JP6243792B2 (en) Manufacturing method of circuit board on which solder is solidified, manufacturing method of circuit board on which electronic parts are mounted, and cleaning composition for flux
JP5741971B2 (en) Method for manufacturing metal-ceramic bonding circuit board
JP2012511105A (en) Electroless palladium plating solution and usage
JP2003060111A (en) Method for manufacturing ceramic circuit board
JP6162986B2 (en) Metal-ceramic circuit board manufacturing method
JP5337760B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
JP2018040030A (en) Surface treatment method of copper component and production method of semiconductor packaging substrate
CA2326049A1 (en) Method for coating surfaces of copper or of a copper alloy with a tin or tin alloy layer
JP2011211217A (en) Manufacturing method for metal-ceramic junction circuit board
TWI545813B (en) Method of roughening surface of thermoelectric material
JP2011241428A (en) Sealing agent and sealing method
JP2020105543A (en) Immersion gold plating solution and immersion gold plating method
JP4409990B2 (en) A method of manufacturing a solder circuit board.
JP7334438B2 (en) Insulated circuit board manufacturing method and its insulated circuit board
CN108754466B (en) Anti-rat-bite tin deposition liquid for copper-based surface, chemical tin deposition method of anti-rat-bite tin deposition liquid and anti-rat-bite copper substrate
JPH04338692A (en) Manufacture of metal base circuit board
JP2000160351A (en) Electroless silver plating solution for electronic parts
WO2020079977A1 (en) Surface treatment solution, and method for treating surface of nickel-containing material
JP5458198B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170616

R150 Certificate of patent or registration of utility model

Ref document number: 6162986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250