JPS61267265A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS61267265A
JPS61267265A JP10914085A JP10914085A JPS61267265A JP S61267265 A JPS61267265 A JP S61267265A JP 10914085 A JP10914085 A JP 10914085A JP 10914085 A JP10914085 A JP 10914085A JP S61267265 A JPS61267265 A JP S61267265A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
negative electrode
layer
tetrazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10914085A
Other languages
Japanese (ja)
Inventor
Mitsuo Hiruma
光生 晝間
Nobuaki Chiba
千葉 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10914085A priority Critical patent/JPS61267265A/en
Publication of JPS61267265A publication Critical patent/JPS61267265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a alkaline battery of long life, by providing a negative electrode current collector whose copper or copper alloy surface layer is coated with a film containing a tetrazole compound, to suppress the generation of hydrogen gas to prevent a rupture and a liquid leak. CONSTITUTION:The surface of a copper or copper alloy layer is coated with a film containing tetrazole compound so that hydrogen gas is prevented from being generated due to an oxide, oil and a fine powder of metal clinging to the copper or copper alloy layer, to rupture a container, and a liquid leak is kept from occurring due to holing corrosion or the like. An alkaline battery of long life is thus provided. The film containing the tetrazole compound adheres to the surface of the copper or copper alloy layer to prevent rust. An example of the tetrazole compound is 5-amino-1H-tetrazole.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は負極集電体を改良したアルカリ電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to an alkaline battery with an improved negative electrode current collector.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えば、ボタン型酸化銀電池の場合では、一般に負極集
電体(負極容器)としてステンレスと銅又は銅合金との
二層クラツド板、或いはニッケルとステンレスと銅又は
銅合金との三層クラツド板を、その銅又は銅合金側が容
器の内側となるように絞り加工したものが使用されてい
る。負極容器の銅層又は銅合金の面は、アルカリ電解液
の存在により負極活物質の氷化亜鉛と接触してアマルガ
ム化と亜鉛メッキとが行なわれる。このため、銅層又は
銅合金層は亜鉛より責な金属であるにもかかわらず、亜
鉛と接触しても水素ガスの発生は抑制される。しかしな
がら、絞り加工等により造られた負極容器の銅層又は銅
合金層の表面には、クラツド板製造、スリット加工、打
抜き絞り加工等の工程において、銅の酸化物の生成、潤
滑油の汚れやゴミ、またステンレス、ニッケル等の金属
の符(細粉が付着する。ステンレス、ニッケル等の金属
は水素過電圧が小さいので、負極容器にアルカリ電解液
と亜鉛とを充填した際に、水素ガスが発生する。また、
負極容器の表面に銅の酸化物、油。
For example, in the case of a button-type silver oxide battery, a two-layer clad plate of stainless steel and copper or a copper alloy, or a three-layer clad plate of nickel, stainless steel, and copper or a copper alloy is generally used as the negative electrode current collector (negative electrode container). , which is drawn so that the copper or copper alloy side is on the inside of the container is used. The surface of the copper layer or copper alloy of the negative electrode container comes into contact with the frozen zinc of the negative electrode active material due to the presence of the alkaline electrolyte, and is amalgamated and galvanized. Therefore, even though the copper layer or copper alloy layer is a more dangerous metal than zinc, generation of hydrogen gas is suppressed even if the copper layer or copper alloy layer comes into contact with zinc. However, on the surface of the copper layer or copper alloy layer of the negative electrode container made by drawing, etc., copper oxides are formed, lubricating oil stains, etc. Dust, metal marks such as stainless steel and nickel (fine powder) adhere to them. Metals such as stainless steel and nickel have a small hydrogen overvoltage, so hydrogen gas is generated when the negative electrode container is filled with alkaline electrolyte and zinc. Also,
Copper oxide and oil on the surface of the negative electrode container.

ゴミ等の被膜が形成されると、アルカリ電解液がさる状
態で氷化亜鉛と接触した場合に、銅層又は銅合金層が氷
化と亜鉛メッキがなされるまでに長時間を要する。この
ため、銅層又は銅合金層から水素ガスが発生する。電池
製造時は負極容器に氷化亜鉛及びアルカリ電解液を充填
後、すぐに電池を封口するので、水素ガスの発生は封口
された電池内で続くこ吉になる。このようにして水素ガ
スの発生が起こると、電池内部−こ水素ガスが充満して
内圧が高まり、破裂や漏液の原因となる。
When a film of dust or the like is formed, when the alkaline electrolyte comes into contact with frozen zinc, it takes a long time for the copper layer or copper alloy layer to freeze and become galvanized. Therefore, hydrogen gas is generated from the copper layer or copper alloy layer. During battery manufacturing, the negative electrode container is filled with frozen zinc and an alkaline electrolyte, and then the battery is immediately sealed, so the generation of hydrogen gas continues inside the sealed battery. When hydrogen gas is generated in this manner, the inside of the battery is filled with hydrogen gas, increasing the internal pressure and causing rupture or leakage.

このようなことから、電池組立前に負極集電体の表面の
銅層もしくは銅合金層にアルカリ脱脂処理を行い油、ゴ
ミ等を除去し、更lこ酸洗処理を行い鋼酸化物を除去し
た負極容器が用いられるようになった。しかしならが、
アルカリ脱脂処理や酸洗処理だけでは負極容器の表面ζ
こ付着した低細粉等を完全に除去することができず、電
池の組立後において水素ガスの発生が起こる。
For this reason, before battery assembly, the copper layer or copper alloy layer on the surface of the negative electrode current collector is subjected to alkaline degreasing treatment to remove oil, dirt, etc., and then pickling treatment to remove steel oxides. A new negative electrode container came into use. However,
Alkaline degreasing or pickling alone can damage the surface of the negative electrode container.
The attached low-fine powder cannot be completely removed, and hydrogen gas is generated after the battery is assembled.

なお、上述した問題点はボタン型アルカリ電池に限らず
、円筒型アルカリマンガン電池の負極集電体としての銅
又は銅合金の集電棒においても孔食を招き、これにより
負極集電体と絶縁バッキングとの接合面の密着性を損な
うため、電池内部の1   電解液が外部に漏液し易く
なるという欠点を有する。
The above-mentioned problem is not limited to button-type alkaline batteries, but also causes pitting corrosion in copper or copper alloy current collector rods used as negative electrode current collectors in cylindrical alkaline manganese batteries, which causes damage to the negative electrode current collector and insulating backing. This has the disadvantage that the electrolyte inside the battery tends to leak to the outside because it impairs the adhesion of the bonding surface with the battery.

そこで、本願出願人はこれらの問題点を解決すべきこと
から、下記のようなアルカリ電池を既に提案した。即ち
、このアルカリ電池は負極容器又は集電体表面の銅層又
は銅合金層を過酸化水素と硫酸とからなる化学研摩液で
研摩した後、ベンゾトリアゾール化合物で負極容器又は
集電体を処理し被膜を形成したものである。このペンゾ
ール化合物は特に銅表面への吸着性に優れ銅層もしくは
銅合金層の面を保護して防錆効果を発揮する特長を有す
る。これにより、清浄化された銅層もしくは銅合金層の
表面を保護することができ、酸化物。
Therefore, in order to solve these problems, the applicant has already proposed the following alkaline battery. That is, this alkaline battery is manufactured by polishing the copper layer or copper alloy layer on the surface of the negative electrode container or current collector with a chemical polishing solution consisting of hydrogen peroxide and sulfuric acid, and then treating the negative electrode container or current collector with a benzotriazole compound. It has a coating formed on it. This penzole compound has the advantage of being particularly adsorbent to the copper surface, protecting the surface of the copper layer or copper alloy layer, and exhibiting a rust-preventing effect. This protects the surface of the cleaned copper layer or copper alloy layer and prevents oxides from forming.

油、金属の微細粉ζこよる水素ガスの発生、容器硫裂を
防止し、かつ孔食等による漏液を防止することができた
It was possible to prevent the generation of hydrogen gas caused by oil and fine metal powder, sulfur cracking of the container, and prevent liquid leakage due to pitting corrosion.

更に、本出願人は研究を推し進めているうちに5−アミ
ノ−IH−テトラゾールがベンゾトリアゾールよりも優
れていることが判明した。5−アミノ−IH−テトラゾ
ールがベンゾトリアゾールよりも優れている理由として
、被膜の耐アルカリ性が良いこと、接触している亜鉛陰
極との反応がないこと、また亜鉛に対する腐食抑制作用
を持つことによりガス発生が少ないなどの理由を挙げる
ことができる。
Furthermore, while conducting research, the applicant found that 5-amino-IH-tetrazole is superior to benzotriazole. The reasons why 5-amino-IH-tetrazole is superior to benzotriazole are that the coating has good alkali resistance, that it does not react with the zinc cathode it is in contact with, and that it has a corrosion-inhibiting effect on zinc, making it highly resistant to gases. Reasons include the low occurrence of this disease.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題に鑑みなされたもので、電池組立後
における水素ガスの発生を抑制し、破裂や漏液を防止し
た高寿命のアルカリ電池を提供することを目的とする。
The present invention was made in view of the above problems, and an object thereof is to provide a long-life alkaline battery that suppresses the generation of hydrogen gas after battery assembly and prevents bursting and leakage.

〔発明の概要〕[Summary of the invention]

本発明は表面の銅層もしくは銅合金層にテトラゾール系
化合物を含む被膜を形成してなる負極集電体を備えたこ
とを特徴とするものである。
The present invention is characterized by comprising a negative electrode current collector formed by forming a coating containing a tetrazole compound on the surface copper layer or copper alloy layer.

上記テトラゾール系化合物を含む被膜は銅層もしくは銅
合金層の表面に吸着して防錆効果を発揮する。かかるテ
トラゾール系化合物としては、例えば5−アミノ−IH
−テトラゾール、IH−テトラゾール、1−メチルテト
ラゾール或いは2−メチルテトラゾール等を挙げること
ができる。
The film containing the above-mentioned tetrazole compound adsorbs to the surface of the copper layer or copper alloy layer and exhibits a rust-preventing effect. Examples of such tetrazole compounds include 5-amino-IH
Examples include -tetrazole, IH-tetrazole, 1-methyltetrazole, and 2-methyltetrazole.

こうした被膜を銅層もしくは銅合金層に形成するiこは
、通常、水やアルコールなどの溶媒に溶解し溶液への浸
漬、或いは該溶液の塗布により行なわれる。この場合の
テトラゾール系化合物の濃度は0.01〜1.0重量%
、より好ましくは0,05〜0.2重量%の範囲にする
ことが望ましい。
Formation of such a coating on a copper layer or copper alloy layer is usually carried out by dissolving it in a solvent such as water or alcohol and immersing it in the solution, or by coating the solution. In this case, the concentration of the tetrazole compound is 0.01 to 1.0% by weight
, more preferably in the range of 0.05 to 0.2% by weight.

なお、研摩した銅層もしくは銅合金屑にテトラゾール系
化合物と共に両イオン性界面活性剤を加えた被膜を形成
してもよい。こうした両イオン性界面活性剤の添加によ
り、銅層もしくは銅合金層lこ数5A〜数10OAのご
く薄い吸着膜を形成し、濡れ性を改善するき共に、銅層
もしくは銅合金層の酸化被膜生成を防止する。また、テ
トラゾール系化合物の銅層もしくは銅合金層への吸着量
を促進し、それら層に対して吸着性の高い防錆被膜を形
成できる。更に、銅層もしくは銅合金層の孔食や粒界に
存在する弱い部分を補強し、銅や亜鉛の孔食反応に対す
る物理的な隔壁の役目をなす。かかる両イオン性界面活
性剤としては、特に−分子中にアミノ基又はアミノ残基
とカルボキシル基とを同時に含有するものが望ましい。
Note that a coating may be formed by adding an amphoteric surfactant to the polished copper layer or copper alloy scraps together with a tetrazole compound. By adding such an amphoteric surfactant, a very thin adsorption film with a thickness of 5 to 10 OA per layer is formed on the copper layer or copper alloy layer, improving wettability, and an oxide film on the copper layer or copper alloy layer is formed. Prevent generation. Furthermore, the adsorption amount of the tetrazole-based compound to the copper layer or copper alloy layer can be promoted, and a highly adsorbent anticorrosive coating can be formed on these layers. Furthermore, it reinforces pitting corrosion in the copper layer or copper alloy layer and weak parts existing at grain boundaries, and acts as a physical barrier against pitting reactions of copper and zinc. As such amphoteric surfactants, those containing both an amino group or an amino residue and a carboxyl group in the molecule are particularly desirable.

具体的には、次式(1)〜(4)で表わされる化合物、
又はグリシン、アラニン、バニン、セリン等を挙げるこ
とができる。
Specifically, compounds represented by the following formulas (1) to (4),
Alternatively, glycine, alanine, vanine, serine, etc. can be mentioned.

R,−(NH−(CH7)m)ncooM ・、、 ・
、、・・−・−+31水素原子、ナトリウム、又はCH
,、C00M基、LはC00M基、CH2C00M基又
はCH(OH) CH2,S 03M基を示す。〕 上記両イオン性界面活性剤の中で特に、式(1)。
R, -(NH-(CH7)m)ncooM ・,, ・
,...--+31 hydrogen atoms, sodium, or CH
,,C00M group, L represents a C00M group, a CH2C00M group, or a CH(OH)CH2,S03M group. ] Among the above amphoteric surfactants, formula (1) is particularly preferred.

(2)のアルキルモノ(又はジ)アラネートが適してい
る。このような両イオン性界面活性剤を前述した水やア
ルコールの溶媒中に溶解させる場合は、その濃度を0.
01〜0.5重量%、特に0.1〜0.2重量%の範囲
にするこ吉が好ましい。
(2) Alkyl mono(or di)alanates are suitable. When such an amphoteric surfactant is dissolved in the above-mentioned water or alcohol solvent, the concentration should be 0.
A range of 0.01 to 0.5% by weight, particularly 0.1 to 0.2% by weight is preferred.

〔発明の効果〕〔Effect of the invention〕

本発明によれば銅層もしくは銅合金層の表面にテトラゾ
ール系化合物を含む被膜を形成することで、銅層もしく
は銅合金層に付舊した酸化物、油、全開の微細粉による
水素ガスの発生、容器破裂を防止し、かつ孔食等による
漏液を防止することができ高寿命のアルカリ電池を得る
ことができる。
According to the present invention, by forming a film containing a tetrazole compound on the surface of the copper layer or copper alloy layer, hydrogen gas is generated by oxides, oil, and fine powder attached to the copper layer or copper alloy layer. Therefore, an alkaline battery with a long life can be obtained, which can prevent container rupture and leakage due to pitting corrosion, etc.

さらに、テトラゾール系化合物と共に両イオン性界面活
性剤を添加することにより、銅層もしくは銅合金層に薄
い吸着膜が形成されるため、濡れ性を改善して酸化被膜
生成を防止できるさともに、テトラゾール系化合物の吸
着が良好になり吸着性の高い防錆被膜を形成することが
できる。
Furthermore, by adding an amphoteric surfactant together with a tetrazole compound, a thin adsorption film is formed on the copper layer or copper alloy layer, which improves wettability and prevents the formation of an oxide film. The system compounds can be adsorbed well, and a rust-preventive coating with high adsorption properties can be formed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 まず、ニッケル層1.ステンレス層2.及び銅層3(厚
さ30μm)からなる厚& 0.3 vmの三層クラツ
ド板を絞り加工して第1図に示すボタン型7間脱脂処理
した後、水洗いする。つづいて、10チ硫酸溶液で30
秒間処理した後、再び水洗いすも更に、テトラゾール系
化合物として5−アミノ−IH−テトラゾールを0.1
00重量%含水溶液(液温60℃)に30秒間浸漬して
銅層表面に5−アミノ−IH−テトラゾールの被膜を形
成した。
Example 1 First, nickel layer 1. Stainless steel layer 2. A three-layer clad plate having a thickness of &0.3 vm consisting of copper layer 3 (thickness 30 μm) was drawn, degreased between the button shapes 7 shown in FIG. 1, and then washed with water. Next, 30% with 10% sulfuric acid solution.
After treating for seconds, the soot was washed again with water and further added 0.1% of 5-amino-IH-tetrazole as a tetrazole compound.
A film of 5-amino-IH-tetrazole was formed on the surface of the copper layer by immersing it in a 00% by weight aqueous solution (liquid temperature: 60° C.) for 30 seconds.

こうした研摩処理、5−アミノ−IH−テトラゾール被
膜が形成された負極容器を用いて第2図に示す酸化銀電
池8R54(外径11.6 wux 、高さ3.05m
5 )を組立てた。即ち、第2図において5はニッケル
メッキした銅板よりなる正極容器、6は該正極容器5内
に充填された酸化銀活物質に電導剤として黒鉛を添加し
てなる正極合剤である。7はイオン透過性のセパレータ
、8はアルカリ電解液を含浸させた多孔性繊維物質から
なる電解液保持紘9は負極活物質としての氷化亜鉛であ
る。10は前記正極容器5と負極容器4との間を絶縁す
ると共に、その間隙を密封する絶縁バッキングで、正極
容器5の開口部を内側に湾曲させて封口している。
Using this polishing treatment and the negative electrode container on which the 5-amino-IH-tetrazole film was formed, the silver oxide battery 8R54 (outer diameter 11.6 wux, height 3.05 m) shown in FIG.
5) was assembled. That is, in FIG. 2, 5 is a positive electrode container made of a nickel-plated copper plate, and 6 is a positive electrode mixture made by adding graphite as a conductive agent to the silver oxide active material filled in the positive electrode container 5. Reference numeral 7 denotes an ion-permeable separator, and 8 denotes an electrolyte holding cell 9 made of a porous fibrous material impregnated with an alkaline electrolyte, which is frozen zinc as a negative electrode active material. Reference numeral 10 denotes an insulating backing that insulates between the positive electrode container 5 and the negative electrode container 4 and seals the gap therebetween, and the opening of the positive electrode container 5 is curved inward to seal it.

実施例2 第1図に示す負極容器4を実施例と同様にアルカリ脱脂
処理ならびに酸洗処理した後、5−アミノ−IH−テト
ラゾールを0.10重量%とラウリルモノアネラー)N
a塩を0.2重量%含む水溶液(液温60℃)に60秒
間浸漬して、その銅層に複合被膜を形成したものを用い
た以外、第2図図示と同構造の酸化銀電池を組立てた。
Example 2 After the negative electrode container 4 shown in FIG. 1 was subjected to alkali degreasing treatment and pickling treatment in the same manner as in Example, 0.10% by weight of 5-amino-IH-tetrazole and lauryl monoaneller (N) were added.
A silver oxide battery with the same structure as shown in Figure 2 was used, except that a composite film was formed on the copper layer by immersing it in an aqueous solution containing 0.2% by weight of a-salt (liquid temperature: 60°C) for 60 seconds. Assembled.

比較例1 第1図に示す負極容器4を上記実施例1と同様にアルカ
リ脱脂処理ならびに酸洗処理した後、乾燥したものを用
いた以外、第2図図示と同構造の酸化銀電池組立てた。
Comparative Example 1 A silver oxide battery was assembled with the same structure as shown in FIG. 2, except that the negative electrode container 4 shown in FIG. .

比較例2 第1図(こ示す負極容器4を上記実施例1と同様にアル
カリ脱脂処理した後、ベンゾトリアゾールを用いて銅層
表面に被膜を形成したものを用いた以外、第2図図示と
同構造の酸化銀電池を組立てた。
Comparative Example 2 Figure 1 (Same as shown in Figure 2 except that the negative electrode container 4 shown here was subjected to alkaline degreasing treatment in the same manner as in Example 1, and then a film was formed on the surface of the copper layer using benzotriazole. A silver oxide battery with the same structure was assembled.

しかして、本実施例1,2及び比較例1,2の電池10
0個について、温度60℃、湿度90%の試験槽中に貯
蔵した後の漏液個数を10倍の顕微鏡で測定したところ
、下記表に示す結果を得た。また、同実施例1,2及び
比較例1,2の電池100個について、同様な温度、湿
度の試験槽に3力月間貯蔵した後の水素ガス発生個数を
調べた。その結果を同表に併記した。なお、この試験に
おいて、水素ガス発生により電池高さが0.5am以上
変化した電池を水素ガス発生電池として判定した。
Therefore, the batteries 10 of Examples 1 and 2 and Comparative Examples 1 and 2
After storage in a test tank at a temperature of 60° C. and a humidity of 90%, the number of leaking samples was measured using a microscope with a magnification of 10 times, and the results shown in the table below were obtained. Furthermore, 100 batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were stored in a test chamber at the same temperature and humidity for 3 months, and then the number of hydrogen gas generated was investigated. The results are also listed in the same table. In this test, a battery in which the battery height changed by 0.5 am or more due to hydrogen gas generation was determined to be a hydrogen gas generating battery.

表 上表より明らかな如く、アルカリ脱脂処理をした負極容
器を備えた電池(比較例1)は貯蔵日数が20日では漏
液個数が2個であるが、40日間貯蔵すると急激に漏液
個数が増加する。
As is clear from the table above, the battery (Comparative Example 1) equipped with an alkali-degreased negative electrode container had two leaks when stored for 20 days, but the number of leaks suddenly increased after storage for 40 days. increases.

また、アルカリ脱脂処理更にベンゾトリアゾールの被膜
を形成した負極容器を備えた電池(比較例2)は貯蔵日
数40日では若干数の漏液が認められるが、貯蔵日数が
増すにつれて漏液個数が急激に増加する傾向にある。
In addition, a battery equipped with a negative electrode container treated with alkaline degreasing and coated with benzotriazole (Comparative Example 2) shows some leakage after 40 days of storage, but as the number of storage days increases, the number of leaks rapidly increases. There is a tendency to increase.

これに対して、アルカリ脱脂処理し、更に5−アミノ−
IH−テトラゾールの被膜を形成した負極容器を備えた
本発明の電池(実施例1)は貯蔵日数40日では若干数
の漏液が認められるが、日数が増しても比較例1のよう
に漏液する電池の個数が急激に増加することがなく、ま
た比較例2と比べてもその増加は緩やかである。
On the other hand, it was subjected to alkaline degreasing treatment and further 5-amino-
The battery of the present invention (Example 1) equipped with a negative electrode container coated with IH-tetrazole showed some leakage after 40 days of storage, but no leakage occurred as in Comparative Example 1 even after storage for 40 days. There is no sudden increase in the number of batteries that drain, and the increase is gradual compared to Comparative Example 2.

一方、5−アミノ−IH−テトラゾールと両イオン性界
面活性剤の複合被膜をアルカリ脱脂後ζこ形成した負極
容器を備えた電池(実施例2)では、実施例1に比べて
より一層、漏液した電池の個数が減少する。
On the other hand, in a battery (Example 2) equipped with a negative electrode container in which a composite film of 5-amino-IH-tetrazole and an amphoteric surfactant was formed after alkaline degreasing, the leakage rate was even greater than in Example 1. The number of drained batteries is reduced.

また、ガス発生不良についても、本発明の電池はわずか
実施例1では1個、実施例2では0個であり、比較例1
,2ζこ比べて不良率を著しく改善できることがわかる
Regarding gas generation defects, the batteries of the present invention had only 1 battery in Example 1, 0 batteries in Example 2, and 1 battery in Comparative Example 1.
, 2ζ, it can be seen that the defective rate can be significantly improved.

なお、本発明は上記実施例に示すボタン型アルカリ電池
のみに限らず、第3図に示す筒形アルカリ電池にも同様
に適用できる。即ち、第3図中の11は正極端子を兼ね
た正極容器であり、この容器11内番こは正極合剤12
が加圧充填されている。
Note that the present invention is not limited to the button-type alkaline battery shown in the above embodiment, but can be similarly applied to the cylindrical alkaline battery shown in FIG. That is, 11 in FIG. 3 is a positive electrode container that also serves as a positive electrode terminal, and the number inside this container 11 is the positive electrode mixture 12.
is filled under pressure.

この正極合剤12の内側には不織布製のセパレータ13
を介して負極活物質としての水化亜鉛14が充填されて
いる。前記正極容器11の開口部には合成樹脂製の絶縁
バッキング15が挿着され、該容器11の上部を内方向
に折曲するこ吉により該バッキング15が締め付け、密
着されている。
A separator 13 made of non-woven fabric is placed inside this positive electrode mixture 12.
Zinc hydrate 14 as a negative electrode active material is filled through the tube. An insulating backing 15 made of synthetic resin is inserted into the opening of the positive electrode container 11, and the backing 15 is tightened and tightly attached by bending the upper part of the container 11 inward.

このバッキング15上には負極端子を兼ねる封口板16
が取着されており、かつ該封口板16の下面には前記バ
ッキング15及びセパレータ13を貫通して水化亜鉛1
4内に延出された真鍮製の負極集電体17が取り付けら
れている。こうした筒形アルカリ電池の負極集電体17
を実施例と同様にアルカリ脱脂処理した後、酸洗処理し
、更に5−アミノ−IH−テトラゾールの被膜を形成す
ることによって、前述したのと同様な理由によりガス発
生の原因となる不純物を除去でき、更に絶縁バッキング
15との密着性が良好となり、破裂や漏液を確実に減少
させるこ吉ができる。
On this backing 15 is a sealing plate 16 which also serves as a negative electrode terminal.
Zinc hydrate 1 is attached to the lower surface of the sealing plate 16 through the backing 15 and the separator 13.
A negative electrode current collector 17 made of brass and extending into the inside of the housing 4 is attached. Negative electrode current collector 17 of such a cylindrical alkaline battery
was subjected to alkaline degreasing treatment in the same manner as in the example, followed by pickling treatment and further forming a film of 5-amino-IH-tetrazole to remove impurities that cause gas generation for the same reason as mentioned above. Moreover, the adhesion with the insulating backing 15 is improved, and the possibility of rupture and leakage is reliably reduced.

なお、この発明は上記実施例に限定されるものではなく
、要旨を変更しない範囲ζこおいて種々変形して実施す
ることができる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications within the scope of the invention without changing the gist.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における負極集電体を示す拡大
断面図、第2図は同実施例tこよって得られたボタン型
アルカリ電池を示す縦断面図、第3図は本発明の他の実
施例を示す筒形アルカリ電池を示す縦断面図である。
FIG. 1 is an enlarged cross-sectional view showing a negative electrode current collector in an example of the present invention, FIG. 2 is a longitudinal cross-sectional view showing a button-type alkaline battery obtained in Example t, and FIG. FIG. 7 is a longitudinal cross-sectional view showing a cylindrical alkaline battery showing another example.

Claims (2)

【特許請求の範囲】[Claims] (1)表面の銅層もしくは銅合金層にテトラゾール系化
合物を含む被膜を形成してなる負極集電体を備えたこと
を特徴とするアルカリ電池。
(1) An alkaline battery comprising a negative electrode current collector formed by forming a coating containing a tetrazole compound on a copper layer or a copper alloy layer on the surface.
(2)被膜がテトラゾール系化合物と両イオン性界面活
性剤とからなることを特徴とする特許請求の範囲第1項
記載のアルカリ電池。
(2) The alkaline battery according to claim 1, wherein the coating is composed of a tetrazole compound and an amphoteric surfactant.
JP10914085A 1985-05-21 1985-05-21 Alkaline battery Pending JPS61267265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10914085A JPS61267265A (en) 1985-05-21 1985-05-21 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10914085A JPS61267265A (en) 1985-05-21 1985-05-21 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS61267265A true JPS61267265A (en) 1986-11-26

Family

ID=14502611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10914085A Pending JPS61267265A (en) 1985-05-21 1985-05-21 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS61267265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024941A (en) * 2010-11-06 2011-04-20 合肥国轩高科动力能源有限公司 Surface treatment method of negative current collector copper foil of lithium ion battery
US20140199593A1 (en) * 2012-03-23 2014-07-17 Kabushiki Kaisha Toshiba Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024941A (en) * 2010-11-06 2011-04-20 合肥国轩高科动力能源有限公司 Surface treatment method of negative current collector copper foil of lithium ion battery
US20140199593A1 (en) * 2012-03-23 2014-07-17 Kabushiki Kaisha Toshiba Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack

Similar Documents

Publication Publication Date Title
JP2770396B2 (en) Zinc alkaline battery
JPS61267265A (en) Alkaline battery
JPS61267264A (en) Alkaline battery
JPS6156285A (en) Alkali battery
JPS6156286A (en) Alkali battery
JPH0371559A (en) Zinc alkaline battery
JP2003272636A (en) Alkaline battery
JPH08130021A (en) Alkaline battery
JP4618771B2 (en) Button-type alkaline battery
JPS63248065A (en) Zinc alkaline battery
JPH08190901A (en) Button type alkaline battery
JPS63254671A (en) Zinc alkaline cell
JP2956345B2 (en) Alkaline batteries
JP2737233B2 (en) Zinc alkaline battery
JPS63248064A (en) Zinc alkaline battery
JPH0760685B2 (en) Zinc alkaline battery
JP2737232B2 (en) Zinc alkaline battery
JPS63250063A (en) Zinc-alkaline battery
JP2006040701A (en) Alkaline dry battery
JP2737231B2 (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JPS63276871A (en) Zinc alkali cell
JPH0777131B2 (en) Zinc alkaline battery
JPS5840306B2 (en) alkaline battery
JPS5837948B2 (en) alkaline battery