JPS6155048B2 - - Google Patents

Info

Publication number
JPS6155048B2
JPS6155048B2 JP11834576A JP11834576A JPS6155048B2 JP S6155048 B2 JPS6155048 B2 JP S6155048B2 JP 11834576 A JP11834576 A JP 11834576A JP 11834576 A JP11834576 A JP 11834576A JP S6155048 B2 JPS6155048 B2 JP S6155048B2
Authority
JP
Japan
Prior art keywords
light
wavelength
filter
amount
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11834576A
Other languages
Japanese (ja)
Other versions
JPS5343580A (en
Inventor
Sugio Mabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11834576A priority Critical patent/JPS5343580A/en
Publication of JPS5343580A publication Critical patent/JPS5343580A/en
Publication of JPS6155048B2 publication Critical patent/JPS6155048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Filters (AREA)

Description

【発明の詳細な説明】 本発明は反応に伴う吸光度の増加、減少の時間
的変化を測定する場合等に用いる光学的光量の調
整を行なうためのフイルターに関し、特に2波長
法において両波長の光の共通な光軸に挿入するだ
けで各々の波長における光量をほぼ等しく調整す
ることが出来る光量調整用フイルターに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filter for adjusting the amount of optical light used when measuring temporal changes in absorbance increases and decreases associated with reactions, and in particular, in a two-wavelength method, it is possible to adjust the amount of light at both wavelengths. The present invention relates to a light amount adjustment filter that can adjust the amount of light at each wavelength to be approximately equal simply by inserting it into a common optical axis of the filter.

従来臨床検査において血清中の酵素活性を測定
するのに反応の初速度測定が用いられている。こ
の測定において、特にUV法としてNADH―NAD
間の酸化還元に伴う吸光度の増加、減少を測定す
る場合には、反応に支障をきたすことがないよう
に十分な濃度のNADH量が必要となる。そのため
NADHが多くなり測定吸光度が高くなり過ぎ、こ
のように吸光度が高い場合でも精度良くかつ安定
した測定を可能とするためには電源の安定は勿論
のこと、高精度、高安定の増巾器その他を用いて
いる。そしてこの増巾器類に適応するように光学
的光量の調整を行なつて測定吸光度範囲を狭くす
る方法がとられている。
Initial reaction rate measurements have traditionally been used to measure enzyme activity in serum in clinical tests. In this measurement, especially the UV method, NADH-NAD
When measuring the increase or decrease in absorbance due to redox during reaction, a sufficient concentration of NADH is required so as not to interfere with the reaction. Therefore
If the amount of NADH increases, the measured absorbance will become too high.In order to perform accurate and stable measurements even when the absorbance is high, it is necessary to have a stable power source, a high-precision and highly stable amplifier, etc. is used. A method has been adopted to narrow the measurement absorbance range by adjusting the amount of optical light to accommodate these amplifiers.

従来測定吸光度範囲を狭くするためには、第1
図に示すような波長に対する吸収がほぼ一定であ
るいわゆるNDフイルターを光量調整用に使用し
ていた。光量調整用にNDフイルターを使用する
ことは、単一波長で光量測定を行なう場合は問題
がない。しかし検液中の気泡や浮遊物等の影響を
少なくするために利用する2波長法に対しこの
NDフイルターを使用した場合は好ましくない。
この2波長法について第2図に示す光学系をもと
に説明すると、光源ランプ1から発した光はレン
ズ2,3,4および検液が入つた比色セル5を透
過更にレンズ6、NDフイルター7を通つてか
ら、ハーフミラー8により二つの光路に分割され
る。このハーフミラー8により分割された光のう
ちハーフミラー8を通過した光は干渉フイルター
9により検液の最大吸収波長λの光のみが透過
されてミラー10,13にて反射され光電子変換
素子14に達する。またハーラミラー8により反
射された他の光はミラー11により反射され、干
渉フイルター12にて波長λの光のみが透過さ
れ、光電変換素子14に達する。
Conventionally, in order to narrow the measured absorbance range, the first
A so-called ND filter, which has almost constant absorption over wavelengths as shown in the figure, was used to adjust the amount of light. Using an ND filter to adjust the light intensity is not a problem when measuring the light intensity using a single wavelength. However, this method is different from the two-wavelength method used to reduce the effects of air bubbles and suspended matter in the test solution.
It is not preferable to use an ND filter.
This two-wavelength method will be explained based on the optical system shown in FIG. After passing through a filter 7, the light is split into two optical paths by a half mirror 8. Of the light that is split by the half mirror 8, only the light having the maximum absorption wavelength λ1 of the test liquid is transmitted through the interference filter 9 and reflected by the mirrors 10 and 13, which then passes through the photoelectron conversion element 14. reach. Further, the other light reflected by the Haller mirror 8 is reflected by the mirror 11, and only the light of wavelength λ 2 is transmitted through the interference filter 12, and reaches the photoelectric conversion element 14.

ここで例えば符号15にて示す位置等にチヨツ
パーを配置して、ハーフミラー8を透過した光と
ハーフミラー8にて反射された光はこのチヨツパ
ー15により交互に光電変換素子14に達するよ
うにしてあるが、ハーフミラー8の代りにセクタ
ーを配置しても良い。
Here, for example, a chopper is arranged at a position indicated by reference numeral 15, so that the light transmitted through the half mirror 8 and the light reflected by the half mirror 8 alternately reach the photoelectric conversion element 14 by the chopper 15. However, sectors may be arranged instead of the half mirror 8.

このような光学系においてNDフイルター7と
してまず第2図中a1にて示す特性のフイルターを
用いて水等により光学系の零点調整を行ない、次
に検液の最大吸収波長λ付近の波長の光の光量
を増大させるためにa2にて示す特性のNDフイル
ターと変更して測定を行なう。
In such an optical system, the ND filter 7 is first adjusted to the zero point of the optical system using water, etc. using a filter with the characteristics shown in a 1 in Figure 2, and then the wavelength near the maximum absorption wavelength λ 1 of the test liquid is adjusted. In order to increase the amount of light, a ND filter with the characteristics shown in a 2 is used to perform the measurement.

この場合、吸収の少ない波長λの光の光量も
λのそれとほぼ等しい倍率にて増加するために
波長λの光の光量は必要以上に増加し、精密測
定用の微弱光測光用光電変換素子14に対しては
光量が多すぎ不適当なものとなる。それ故に波長
λとλの両方に対し各々別個の独立したND
フイルターを用意する必要があり、不便であり、
また短時間の測定が出来ない等の欠点を有する。
In this case, the amount of light with wavelength λ 2 , which has low absorption, also increases at almost the same magnification as that of λ 1 , so the amount of light with wavelength λ 2 increases more than necessary. The amount of light is too large and inappropriate for the conversion element 14. Therefore each separate independent ND for both wavelengths λ 1 and λ 2
It is necessary to prepare a filter, which is inconvenient,
It also has drawbacks such as not being able to perform short-term measurements.

本発明は上記欠点を解消するものでλとλ
の共通の光軸に一つのフイルターを挿入するだけ
でλとλの光量の調整を両方行ない得るよう
にしたフイルターを提供するものである。
The present invention solves the above-mentioned drawbacks , and the
The purpose of the present invention is to provide a filter that allows adjustment of both the light amounts of λ 1 and λ 2 by simply inserting one filter into the common optical axis of the λ 1 and λ 2 light axes.

本発明の一実施例を図面を参照して説明する。
一実施例として、NADH―NADの測定について
説明する。NADHについては、既に分光吸収特性
がわかつているので、第3図に示すように、夫々
特性曲線b1,b2,b3,b4に示すようなフイルター
を準備する。そしてこのような特性を有するフイ
ルターの具体的な一例としては第4図に示すよう
なものである。この図において、21にて示す部
分は特性b1、22にて示す部分は特性b2、23は
特性b3、24は特性b4に相当する部分でこれらは
波長λに対しては比較的吸収が大で、波長λ
に対しては吸収が少ない色フイルターを材料と
し、その厚さを図示するように変化させたもので
ある。したがつてλに対しては厚さの変化に応
じ透過率が変化し、λに対しては厚さが変化し
ても透過率はほとんど変化なく大であり、第3図
のような特性となる。
An embodiment of the present invention will be described with reference to the drawings.
As an example, measurement of NADH-NAD will be explained. Since the spectral absorption characteristics of NADH are already known, filters are prepared as shown in characteristic curves b 1 , b 2 , b 3 and b 4 , respectively, as shown in FIG. A specific example of a filter having such characteristics is shown in FIG. In this figure, the part indicated by 21 corresponds to the characteristic b 1 , the part indicated by 22 corresponds to the characteristic b 2 , 23 corresponds to the characteristic b 3 , and 24 corresponds to the characteristic b 4 , and these are compared for the wavelength λ 1 . wavelength λ 2
The material used is a color filter with low absorption, and its thickness is varied as shown in the figure. Therefore, for λ 1 , the transmittance changes as the thickness changes, and for λ 2 , the transmittance remains large with almost no change even if the thickness changes, as shown in Figure 3. Becomes a characteristic.

上記実施例においてはNADHについて説明した
が、他の測定項目を測定する場合には、その測定
項目の分光吸収特性に合わせたフイルターを準備
しておけばよい。
In the above embodiment, NADH was explained, but when measuring other measurement items, a filter matching the spectral absorption characteristics of the measurement item may be prepared.

次にこのようなフイルターを用いて測定する場
合について説明する。第2図に示す光学系におい
てNDフイルター7の代りに本発明のフイルター
の21に示す部分を挿入して零点調整を行なう。
この場合λに対しては透過率が大であるので干
渉フイルター12として適当な透過率を有するも
のを使用し、微弱光測光用光電変換素子14にと
つて適当な光量になるようにしておく。次に測定
を行なう場合には波長λに対する光量を増加さ
せるためにフイルター22、フイルター23等を
光路中に挿入すると、波長λの光は増大する
が、λの光の光量はほとんど変化せず、λ
λの光量が両方ともほぼ等しくなる。つまりλ
に対しては検液の吸収も含め光電変換素子にて
測光するのに適した光量とし又λに対しては零
点調整にて予め定めた光量からほとんど変化する
ことなく、両波長の光とも適切な光量にして測光
を開始し得る。
Next, a case of measurement using such a filter will be explained. In the optical system shown in FIG. 2, a portion of the filter of the present invention shown at 21 is inserted in place of the ND filter 7 to perform zero point adjustment.
In this case, the transmittance is large for λ 2 , so use a filter with an appropriate transmittance as the interference filter 12 so that the amount of light is appropriate for the photoelectric conversion element 14 for weak light photometry. . When performing the next measurement, inserting filters 22, 23, etc. into the optical path to increase the amount of light for wavelength λ 1 will increase the amount of light with wavelength λ 1 , but the amount of light for wavelength λ 2 will hardly change. The light amounts at λ 1 and λ 2 are almost equal. In other words, λ
For λ 1 , the amount of light is suitable for photometry with the photoelectric conversion element, including the absorption of the test liquid, and for λ 2 , the amount of light at both wavelengths is almost unchanged from the predetermined amount of light by zero point adjustment. You can also start photometry with an appropriate amount of light.

第5図に示すものは本発明のフイルターを用い
ての2波長法による他の光学系を示すものであ
る。この光学系は干渉フイルター9と干渉フイル
ター12とを一体に保持し、これを軸16のまわ
りに回転させるようにしたもので、したがつて光
路を二つに分けることがなく、そのためハーフミ
ラー8、ミラー10,11,13等を必要としな
い。又二種の干渉フイルターを回転させることに
より波長λ,λの光を交互に光電変換素子1
4に導いているのでチヨツパー15も必要としな
い。又ハーフミラーを使用しないので光量の損失
がなく、光電変換素子の受光面に対し、全く同じ
位置にλとλの光線が当る等の利点がある。
FIG. 5 shows another optical system based on the two-wavelength method using the filter of the present invention. This optical system holds the interference filter 9 and the interference filter 12 together and rotates them around the axis 16. Therefore, the optical path is not divided into two, and therefore the half mirror 8 , mirrors 10, 11, 13, etc. are not required. Furthermore, by rotating two types of interference filters, light of wavelengths λ 1 and λ 2 are alternately transmitted to the photoelectric conversion element 1.
Since it leads to 4, there is no need for a 15th punch. Furthermore, since no half mirror is used, there is no loss in the amount of light, and there are advantages such as the light rays of λ 1 and λ 2 hitting the light receiving surface of the photoelectric conversion element at exactly the same position.

以上のように本発明のフイルターを用い2波長
法による測光を行なつた場合、検液の濃度が大つ
まり検液の吸光度が大であつて、検液の最大吸収
波長λに対する透過率が大になるように、フイ
ルターを調整しても検液の吸収率の少ない波長λ
に対しては零点調整の際の透過率とほぼ等しい
透過率であるので、予め微弱光測定用光電変換素
子に対し適当な光量に設定しておけば、波長λ
に対しても光量が強すぎることがなく、λ,λ
とも、測定開始時には常にほぼ一定の光量で測
定できるので、光電変換後の取扱いが容易にな
る。又吸光度がマイナスになることもない。本発
明フイルターによれば上記のようにλ,λ
対し夫々独立のフイルターを使用する等の方法に
よらなくとも良好に測光し得るので場所的に無理
がなく装置が大型になることもない。
As described above, when photometry is performed by the two-wavelength method using the filter of the present invention, the concentration of the test solution is large, that is, the absorbance of the test solution is large, and the transmittance for the maximum absorption wavelength λ 1 of the test solution is Even if you adjust the filter so that the absorption rate of the test solution is low, the wavelength λ
For wavelength λ 2, the transmittance is almost the same as the transmittance during zero point adjustment, so if the light amount is set appropriately for the photoelectric conversion element for weak light measurement in advance, the wavelength λ 2
The amount of light is not too strong even for λ 1 , λ
In both cases, the measurement can be performed with a substantially constant amount of light at the beginning of the measurement, which facilitates handling after photoelectric conversion. Moreover, the absorbance does not become negative. According to the filter of the present invention, good photometry can be performed without using methods such as using independent filters for λ 1 and λ 2 as described above, so the space is not unreasonable and the device can be large. do not have.

尚、第3図に示すような特性を有するフイルタ
ーとしては第4図に示す色ガラスを用いたものの
他コーテイングによるもの等がある。
Filters having the characteristics shown in FIG. 3 include those using colored glass as shown in FIG. 4, as well as those using coatings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来使用されている光量調整用フイル
ターの特性を示す図、第2図は2波長法による吸
光度測定用光学系の一例を示す図、第3図は本発
明フイルターの特性を示す図、第4図は本発明フ
イルターの一例を示す図、第5図は2波長法によ
る吸光度測定用光学系の他の例を示す図である。 1…光源ランプ、5…検液を入れたセル、6…
光量調整用フイルター、9,12…干渉フイルタ
ー、14…光電変換素子。
Fig. 1 is a diagram showing the characteristics of a conventionally used filter for adjusting the amount of light, Fig. 2 is a diagram showing an example of an optical system for measuring absorbance using the two-wavelength method, and Fig. 3 is a diagram showing the characteristics of the filter of the present invention. , FIG. 4 is a diagram showing an example of the filter of the present invention, and FIG. 5 is a diagram showing another example of an optical system for measuring absorbance using a two-wavelength method. 1...Light source lamp, 5...Cell containing test solution, 6...
Light amount adjustment filter, 9, 12... interference filter, 14... photoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 1 2波長比色測光に用いられる光量調整用フイ
ルターにおいて、測光に使用される二つの波長λ
,λのうち検液の最大吸収波長付近の波長λ
に対する場所による透過率の変化が大で、他の
波長λに対する場所による透過率の変化が小で
あり、かつ、前記波長λ,λで変化する透過
率の差が検液の前記波長λ,λでの吸収率の
差にほぼ等しい特性を有することを特徴とする光
量調整用フイルター。
1 In a light intensity adjustment filter used for two-wavelength colorimetric photometry, the two wavelengths λ used for photometry
1 , λ 2 , the wavelength λ near the maximum absorption wavelength of the test solution
The change in transmittance depending on the location is large for the wavelength λ 1 , and the change in the transmittance depending on the location for the other wavelength λ 2 is small, and the difference in the transmittance changing between the wavelengths λ 1 and λ 2 is large. 1. A light amount adjusting filter characterized by having a characteristic approximately equal to the difference in absorption rate at wavelengths λ 1 and λ 2 .
JP11834576A 1976-10-01 1976-10-01 Filter for regulating light quantity Granted JPS5343580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11834576A JPS5343580A (en) 1976-10-01 1976-10-01 Filter for regulating light quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11834576A JPS5343580A (en) 1976-10-01 1976-10-01 Filter for regulating light quantity

Publications (2)

Publication Number Publication Date
JPS5343580A JPS5343580A (en) 1978-04-19
JPS6155048B2 true JPS6155048B2 (en) 1986-11-26

Family

ID=14734381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11834576A Granted JPS5343580A (en) 1976-10-01 1976-10-01 Filter for regulating light quantity

Country Status (1)

Country Link
JP (1) JPS5343580A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253915A (en) * 1987-04-10 1988-10-20 Matsushita Electric Ind Co Ltd Optical tuner
JP2005338137A (en) * 2004-05-24 2005-12-08 Yokogawa Electric Corp Laser light source apparatus

Also Published As

Publication number Publication date
JPS5343580A (en) 1978-04-19

Similar Documents

Publication Publication Date Title
Millikan A simple photoelectric colorimeter
DK161391D0 (en) METHOD OF PHOTOMETRIC IN VITRO DETERMINING THE CONTENT OF AN ANALYTE IN A SAMPLE DURING MEASUREMENT DIRECTLY TESTED
JPS591977B2 (en) Analysis method using color test paper
Gibson et al. Calibration and operation of the General Electric recording spectrophotometer of the National Bureau of Standards
KR0163788B1 (en) Spectrometric method free from variations of error factors
US5455177A (en) Method for analysis of a medical sample
JPS5939698B2 (en) Method for analyzing components retained in fibrous media
JPS63111446A (en) Analyzing device
JPS6332132B2 (en)
JPS6189543A (en) Method and device for measuring dual beam spectral transmittance
JPS6155048B2 (en)
JPS5892844A (en) Method and device for colorimetric measurement
Goldstein Aspects of scanning microdensitometry: III. The monochromator system
Jackson et al. A New" Bilirubinometer" 1 and Its Use in Estimating Total and Conjugated Bilirubin Serum
Prince Absorption spectrophotometry
RU38934U1 (en) SPECTROPHOTOMETER
Messman et al. Optical transmittance standard reference materials for ultraviolet and visible molecular absorption spectrometry
JPH0142027Y2 (en)
JPS63159736A (en) Concentration measuring method for uranium or plutonium
SU817548A1 (en) Method of determining absorption factor of substance applied onto paper
JPH02280033A (en) Colorimetry inspecting device
JPH05196573A (en) Light value measurement of moving cell
JPS5714744A (en) Apparatus for measuring differential fluorescence
JPS55144529A (en) Optical device for measuring microplate
JPS63273043A (en) Spectrophotometer for continuous measurement