JPS6332132B2 - - Google Patents

Info

Publication number
JPS6332132B2
JPS6332132B2 JP13300980A JP13300980A JPS6332132B2 JP S6332132 B2 JPS6332132 B2 JP S6332132B2 JP 13300980 A JP13300980 A JP 13300980A JP 13300980 A JP13300980 A JP 13300980A JP S6332132 B2 JPS6332132 B2 JP S6332132B2
Authority
JP
Japan
Prior art keywords
hemolysis
jaundice
absorbance
wavelength
chyle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13300980A
Other languages
Japanese (ja)
Other versions
JPS5759151A (en
Inventor
Sugio Mabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP13300980A priority Critical patent/JPS5759151A/en
Publication of JPS5759151A publication Critical patent/JPS5759151A/en
Publication of JPS6332132B2 publication Critical patent/JPS6332132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3148Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using three or more wavelengths

Description

【発明の詳細な説明】 本発明は、生化学試料特に血清中の乳び度、黄
疸度および溶血度の測定法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the degree of chyle, degree of jaundice, and degree of hemolysis in biochemical samples, particularly serum.

乳び、黄疸および溶血等のクロモゲンが、生化
学分析の分野における自動分析装置による一般検
査項目の測定にとつて、妨害物質となることは広
く知られている。ことに、血清の色(黄疸、溶血
等)や濁り(乳び等)は測定、特にエンドポイン
ト測定では、正確性に対して誤差要因となる。そ
こで、従来からクロモゲンによる一般検査項目の
測定値への影響を考慮することが行われており、
その検査結果は、検査員の目視に基づいて、例え
ば検査伝票等に、含有すると思われる量を記号例
えば,,+,−の4段階で表示していた。しか
しこの方法では検査員による個人差が大きく、妨
害クロモゲンの量を定量的に知ることができない
ばかりでなく、近年のように検査が自動化され、
処理検体数が増加してくると、このような外観観
察も困難になる。特開昭54―116283号公報では、
以上の点を考慮して、クロモゲンを定量的に求め
る分析方法を開示している。この発明は、「乳び、
溶血および黄疸の少なくとも1つによるクロモゲ
ンの影響がある試料に光を照射し、その試料の光
学的特性に基づいてクロモゲンを分析するもので
あり、乳び度、溶血度および黄疸度のうち少なく
とも2項目を測定し、好ましくは3項目を測定す
るものである。そして、これらのうち、乳び度
は、可視光波長域のうちの乳びの影響はあるが溶
血および黄疸の影響はない長波長域での適正な2
つの波長における吸光度差を測定して求める。溶
血度は可視光波長域のうち黄疸の影響がない中波
長域での適正な2つの波長における吸光度差の値
および長波長域における測定値に基づいて求め
る。黄疸度は可視光波長域のうちの溶血の影響が
ある短波長域での適正な2つの波長における吸光
度差の値および中波長域における測定値に基づい
て求める。」ことをその内容としている。しかし
ながら、この分析方法によると、使用する波長と
して最低6種類も必要とすること、さらに、乳び
度・黄疸度・溶血度を各測定結果をもとに順序立
てて求めなければならないという煩わしさがあ
る。また、特開昭54―84781号公報に開示された
発明では、「多波長測光の技術を用い、被検液に
対して最低4つ以上の波長における吸光度を測定
し、予め記憶されている被検物質、乳び、溶血お
よび黄疸の各基準スペクトルにより連立方程式を
解いて試料中の被検物質の濃度と乳び度と溶血度
と黄疸度を求め、次いで被検物質の吸収中心近傍
の波長における吸光度と他の各波長の吸光度の比
を求める」ことを内容としている。しかしなが
ら、この発明による分析法では、予じめ標準とな
る乳び、黄疸および溶血の吸収スペクトルを記憶
していなければならず、そのための記憶容量が必
要となること、さらに、乳び、黄疸および溶血に
ついての標準的な吸収スペクトルと実際の血清の
それとでは差があり、必ずしも正確な結果を期待
することができないという欠点がある。また、黄
疸および溶血については、それぞれビリルビンお
よびヘモグロビン等標準的なものがあるが、上記
分析法において最も基本となる乳びについては、
標準的なものが無く、仮りにガラス粉末が代用さ
れるにしても粒子の大きさ等が異なり不適当であ
る。
It is widely known that chromogens such as chyle, jaundice, and hemolysis are substances that interfere with the measurement of general test items by automatic analyzers in the field of biochemical analysis. In particular, serum color (jaundice, hemolysis, etc.) and turbidity (chyle, etc.) can cause errors in accuracy in measurements, especially in endpoint measurements. Therefore, consideration has been given to the influence of chromogen on the measured values of general test items.
The test results are displayed, for example, on the test slip, based on the inspector's visual observation, indicating the amount that is thought to be contained in four levels of symbols, eg, +, -. However, with this method, there are large individual differences among inspectors, and not only is it not possible to quantitatively determine the amount of interfering chromogen, but in recent years, inspections have been automated,
As the number of processed specimens increases, this type of external observation becomes difficult. In Japanese Patent Application Laid-open No. 116283/1983,
In consideration of the above points, an analytical method for quantitatively determining chromogen is disclosed. This invention is based on “Chyle,
A sample that is affected by chromogen due to at least one of hemolysis and jaundice is irradiated with light, and chromogen is analyzed based on the optical characteristics of the sample, and at least two of chylosis, hemolysis, and jaundice are affected. Items are measured, preferably three items. Of these, chylosis is an appropriate value in the long wavelength range of the visible light wavelength range, which is affected by chyle but not by hemolysis and jaundice.
It is determined by measuring the difference in absorbance at two wavelengths. The degree of hemolysis is determined based on the value of the absorbance difference at two appropriate wavelengths in the medium wavelength range, which is not affected by jaundice, in the visible light wavelength range, and the measured value in the long wavelength range. The degree of jaundice is determined based on the absorbance difference value at two appropriate wavelengths in the short wavelength range affected by hemolysis in the visible light wavelength range and the measured value in the medium wavelength range. ” is its content. However, this analysis method requires at least six different wavelengths to be used, and furthermore, the degree of chyle, degree of jaundice, and degree of hemolysis must be determined in order based on each measurement result, which is cumbersome. There is. In addition, the invention disclosed in JP-A No. 54-84781 uses "multi-wavelength photometry technology to measure the absorbance of a sample liquid at least four or more wavelengths, and The concentration, chyle, hemolysis, and jaundice of the test substance in the sample are determined by solving simultaneous equations using the reference spectra of the test substance, chyle, hemolysis, and jaundice, and then the wavelength near the absorption center of the test substance is determined. The content is to find the ratio of the absorbance at each wavelength to the absorbance at each other wavelength. However, in the analysis method according to the present invention, standard absorption spectra for chyle, jaundice, and hemolysis must be memorized in advance, which requires storage capacity. There is a difference between the standard absorption spectrum for hemolysis and that of actual serum, and there is a drawback that accurate results cannot always be expected. In addition, for jaundice and hemolysis, there are standard methods such as bilirubin and hemoglobin, respectively, but for chyle, which is the most basic in the above analysis method,
There is no standard one, and even if glass powder were to be used as a substitute, the particle size would be different and would be inappropriate.

本発明の目的は、上述した種々の欠点を除去
し、血清中の乳び・黄疸・溶血による吸収異常サ
ンプルを容易に検出し、その程度を、乳び・黄
疸・溶血サンプルの吸収スペクトルを記憶するこ
となく容易に求めることのできる血清中の乳び
度、黄疸度および溶血度の測定法を提供しようと
するものである。
The purpose of the present invention is to eliminate the various drawbacks mentioned above, to easily detect abnormal absorption samples due to chyle, jaundice, and hemolysis in serum, and to store the degree of absorption abnormality and absorption spectra of chyle, jaundice, and hemolysis samples. The purpose of the present invention is to provide a method for measuring the degree of chylosity, degree of jaundice, and degree of hemolysis in serum, which can be easily determined without having to do so.

本発明は、生化学試料、特に血清中の乳び、黄
疸および溶血の含有度を、血清に照射した光の波
長と吸光度とを示すスペクトル特性に基づいて測
定する方法において、第1次的には、前記乳び、
黄疸および溶血のすべてに吸収を示す可視域にお
ける短波長を使用することにより吸光度を測定
し、この吸光度が一定値以上の血清については、
乳び、黄疸および溶血の少なくとも1つによる異
常血清と判定し、次いで第2次的には、前記異常
血清についてその乳び、黄疸および溶血の程度
を、少なく共4つの波長による測定の結果得られ
る吸光度を演算して得られる数値を、あらかじめ
設定した数種の基準と比較対照することにより、
乳び、黄疸および溶血のそれぞれに対する標準試
料を用いることなく判定することを特徴とするも
のである。
The present invention primarily provides a method for measuring the content of chyle, jaundice, and hemolysis in a biochemical sample, particularly serum, based on spectral characteristics indicating the wavelength and absorbance of light irradiated to serum. is the chyle,
Absorbance is measured using a short wavelength in the visible range that shows absorption in all cases of jaundice and hemolysis, and for serum with absorbance above a certain value,
It is determined that the abnormal serum is due to at least one of chyle, jaundice, and hemolysis, and then, secondarily, the degree of chyle, jaundice, and hemolysis of the abnormal serum is obtained as a result of measurement using at least four wavelengths. By comparing and contrasting the numerical value obtained by calculating the absorbance with several preset standards,
This method is characterized by the fact that chyle, jaundice, and hemolysis can be determined without using standard samples for each.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は乳び、黄疸および溶血の各サンプルの
分光吸収スペクトルを調べた実験結果を示した図
であり、横軸に波長、特に可視域の波長、縦軸に
吸光度を示して、上記各サンプルについて波長と
吸光度との関係を表わしている。この図から次の
ことが明らかとなつた。
Figure 1 shows the experimental results of examining the spectral absorption spectra of chyle, jaundice, and hemolysis samples.The horizontal axis shows wavelength, especially wavelength in the visible range, and the vertical axis shows absorbance. It shows the relationship between wavelength and absorbance for a sample. The following became clear from this figure.

(1) 実線で示した乳びサンプル曲線1は、短波長
域から長波長域にかけて可視波長域全般にわた
つてなだらかな曲線を描きながら下降して行
く。いま、波長410nm,480nmおよび570nmの
ときの乳びサンプル曲線1上の各点1a,1b
および1cにおける吸光度に着目すると、波長
410nmと波長480nmにおける吸光度差Δ1E410
―480と、波長480nmと波長570nmにおける吸
光度差Δ1E480―570とはほぼ等しい。
(1) The chyle sample curve 1 shown by the solid line descends while drawing a gentle curve over the entire visible wavelength region from the short wavelength region to the long wavelength region. Now, each point 1a, 1b on the chyle sample curve 1 at wavelengths of 410nm, 480nm and 570nm
Focusing on the absorbance at 1c and 1c, the wavelength
Absorbance difference between 410nm and wavelength 480nm Δ1E410
-480 and the absorbance difference Δ1E480-570 between wavelengths of 480 nm and 570 nm are almost equal.

(2) 点線で示した黄疸サンプル曲線2は、短波長
410nm〜480nmのほぼ中間部において最高の吸
光度を示し、以後波長570nm近辺まで下降す
る。上記(1)と同様に、波長410nm,480nmおよ
び570nmのときの黄疸サンプル曲線2上の各点
2a,2bおよび2cにおける吸光度に着目す
ると、波長410nmと波長480nmにおける吸光度
はほぼ等しく、波長480nmと波長570nmとの吸
光差は著しく大きい。
(2) Jaundice sample curve 2 shown by the dotted line has a short wavelength.
It exhibits the highest absorbance approximately midway between 410 nm and 480 nm, and then decreases to a wavelength of around 570 nm. Similarly to (1) above, focusing on the absorbance at each point 2a, 2b, and 2c on the jaundice sample curve 2 at wavelengths of 410nm, 480nm, and 570nm, the absorbance at wavelengths of 410nm and 480nm is almost equal; The difference in absorption with the wavelength of 570 nm is extremely large.

(3) 鎖線で示した溶血サンプル曲線3は、短波長
410nm付近で最大の吸光度を示した後、急激に
降下し、以後若干の起伏の軌跡を描くものの、
全体として、波長620nm近辺までなだらかに下
降する。前記(1)および(2)の場合と同様に、波長
410nm,480nmおよび570nmのとき溶血サンプ
ル曲線3上の各点3a,3bおよび3cにおけ
る吸光度に着目すると、波長480nmと波長
570nmの吸光度はほぼ等しく、波長410nmと波
長480nmとの吸光度差は著しく大きい。
(3) Hemolysis sample curve 3 shown by the chain line has a short wavelength.
After showing maximum absorbance around 410 nm, it drops rapidly, and after that it traces a slightly undulating trajectory.
Overall, the wavelength gradually decreases to around 620 nm. As in cases (1) and (2) above, the wavelength
Focusing on the absorbance at each point 3a, 3b, and 3c on the hemolysis sample curve 3 at 410nm, 480nm, and 570nm, we can see that the wavelength 480nm and the wavelength
The absorbance at 570 nm is almost equal, and the difference in absorbance between wavelengths of 410 nm and 480 nm is extremely large.

(4) 長波長域、例えば波長660nm以上では、黄疸
サンプル曲線2および溶血サンプル曲線3によ
る吸光度はほとんど零を示す。
(4) In a long wavelength range, for example, a wavelength of 660 nm or more, the absorbance according to the jaundice sample curve 2 and the hemolysis sample curve 3 is almost zero.

(5) 短波長域、例えば波長410nm付近では、乳び
サンプル曲線1、黄疸サンプル曲線2および溶
血サンプル曲線3のいずれの曲線も高い吸光度
を示す。
(5) In a short wavelength region, for example, around a wavelength of 410 nm, all of the curves of chyle sample curve 1, jaundice sample curve 2, and hemolysis sample curve 3 show high absorbance.

上述したように、第1図の実験結果図から種々
の事実関係が判明した。本発明による血清中の乳
び度、黄疸度および溶血度の測定法は、上述の関
係を有効かつ適切に利用することにより、容易に
乳び、黄疸および溶血の程度を判定することがで
きるようにしたものである。以下において、その
利用例を挙げ、本発明方法の一実施例とする。
As mentioned above, various facts have been revealed from the experimental results shown in FIG. The method for measuring the degree of chyle, jaundice, and hemolysis in serum according to the present invention makes it possible to easily determine the degree of chyle, jaundice, and hemolysis by effectively and appropriately utilizing the above-mentioned relationships. This is what I did. In the following, an example of its use will be given as an example of the method of the present invention.

(1) 血清または希釈した血清の吸光度を可視域の
短波長、例えば410nmで測定し、ある数値以上
であれば乳び、黄疸または溶血いずれかの異常
サンプルであるという判断をする。
(1) The absorbance of serum or diluted serum is measured at a short wavelength in the visible range, for example 410 nm, and if it exceeds a certain value, it is determined that the sample is abnormal, such as chyle, jaundice, or hemolysis.

(2) 次に、異常サンプルについては、次のように
しておのおのその程度を測定する。
(2) Next, measure the degree of each abnormal sample as follows.

乳び度の測定―黄疸および溶血による吸収
の影響がほとんど無い可視域の長波長、例え
ば660nmの吸光度を測定し、その吸光度の大
きさにより乳び度を測定する。
Measurement of chyle - Absorbance at a long wavelength in the visible range, for example 660 nm, which is almost unaffected by absorption due to jaundice and hemolysis, is measured, and the degree of chyle is determined by the magnitude of the absorbance.

黄疸度の測定―黄疸に特異的吸収を示す波
長近傍、例えば480nmとほぼ等しい吸光度を
示す波長、例えば410nmと、黄疸サンブルで
吸光度の少ない波長、例えば570nmとを使用
し、波長410nmと480nmとの吸光度差
Δ2E410―480と、波長480nmと570nmとの吸
光度差Δ2E480―570との比K2=Δ2E410―
480/Δ2E480―570を求める。そして、K2が
小さい値、例えば1以下ならば黄疸であると
し、波長480nmと570nmのときの吸光度差の
大きさより黄疸度を測定する。
Measurement of jaundice degree - Use a wavelength near the wavelength that shows specific absorption for jaundice, for example, 480 nm, and a wavelength that shows almost the same absorbance as 480 nm, for example, and a wavelength that has low absorbance in the jaundice sample, for example 570 nm. Ratio of absorbance difference Δ2E410−480 to absorbance difference Δ2E480−570 between wavelengths 480 nm and 570 nm K2 = Δ2E410−
Find 480/Δ2E480−570. Then, if K2 is a small value, for example, 1 or less, it is assumed that the patient has jaundice, and the degree of jaundice is determined from the magnitude of the difference in absorbance between wavelengths of 480 nm and 570 nm.

溶血度の測定―溶血に特異的吸収を示す波
長近傍、例えば410nmと、溶血サンプルで吸
収が少なくかつほぼ等しい2波長、例えば
480nmと570nmとを使用し、波長410nmと
480nmとの吸光度差Δ3E410―480と波長
480nmと570nmとの吸光度差Δ3E480―570と
の比K3=Δ3E410―480/Δ3E480―570を求
める。そして、K3が大きな値、例えば2以
上ならば溶血であるとし、波長410nmと
480nmとの吸光度差の大きさより溶血度を求
める。このように本発明においては、
410nm,480nm,570nmおよび660nmの4つ
の波長の光を用いるだけで乳び、黄疸および
溶血の有無を定性的に検出できると共に乳び
度、黄疸度および溶血度を定量的に求めるこ
とができる。すなわち、本発明では乳び、黄
疸、溶血のいずれにも吸収が大きい短波長
(410nm)と、黄疸、溶血の吸収の殆んどな
い長波長(660nm)と、黄疸の吸収が殆んど
ない第1の中波長(570nm)と、黄疸で吸収
が大きく、溶血に対しては第1の中波長とほ
ぼ等しい少ない吸収を示す第2の中波長
(480nm)との4つの波長を用いて乳び度、
溶血度、黄疸度を正確に測定することができ
る。ただし、溶血の程度が著しい場合には、
波長410nmのときの吸光度が通常の測定範囲
OD.2を越える場合があるので、溶血度の判
定は波長410nm以外の溶血サンプルの特異的
吸収の表われる他の波長、例えば570nmと、
吸収の更に少ない波長、例えば600nmとの吸
光度を使用してもよい。
Measurement of the degree of hemolysis - one near the wavelength that exhibits specific absorption for hemolysis, e.g. 410 nm, and two wavelengths at which the hemolyzed sample has low and almost equal absorption, e.g.
480nm and 570nm are used, and wavelength 410nm and
Absorbance difference Δ3E410-480 and wavelength with 480nm
Find the ratio K3=Δ3E410−480/Δ3E480−570 of the absorbance difference Δ3E480−570 between 480 nm and 570 nm. If K3 is a large value, for example 2 or more, it is considered to be hemolysis, and the wavelength is 410 nm.
Determine the degree of hemolysis from the difference in absorbance from 480 nm. In this way, in the present invention,
By simply using light of four wavelengths, 410 nm, 480 nm, 570 nm, and 660 nm, the presence or absence of chyle, jaundice, and hemolysis can be qualitatively detected, and the degree of chyle, jaundice, and hemolysis can be determined quantitatively. That is, in the present invention, the short wavelength (410 nm) has high absorption for all of chyle, jaundice, and hemolysis, the long wavelength (660 nm) has almost no absorption for jaundice and hemolysis, and the long wavelength (660 nm) has almost no absorption for jaundice. Using four wavelengths, the first medium wavelength (570 nm) and the second medium wavelength (480 nm), which has a large absorption due to jaundice and a small absorption approximately equal to the first medium wavelength against hemolysis, are used to detect breast cancer. frequency,
The degree of hemolysis and jaundice can be measured accurately. However, if the degree of hemolysis is significant,
Absorbance at wavelength 410nm is the normal measurement range
Since OD.2 may be exceeded, the degree of hemolysis should be determined using wavelengths other than 410 nm, such as 570 nm, where the specific absorption of the hemolyzed sample appears.
Absorbance at even less absorbing wavelengths, such as 600 nm, may also be used.

なお、本発明は上述した例に限ることな
く、本発明の範囲で種々の利用の仕方があ
る。上掲の各波長も例示にすぎない。
Note that the present invention is not limited to the above-mentioned examples, and can be used in various ways within the scope of the present invention. The wavelengths listed above are also merely examples.

以上説明したように、本発明の測定法によれ
ば、乳び、黄疸および溶血の各サンプル曲線の示
す波長と吸光度との関係を十分に把握することに
より、これらの関係を利用して血清中の乳び、黄
疸および溶血を検出し、かつこれらの程度を測定
することができるから、従来例の如く、乳び、黄
疸および溶血等の標準的物質を用いる必要がな
く、特に入手の困難な乳びの吸収スペクトルを基
本にすることなしに、血清中の外観異常サンプル
の検出を行うことができるという利点を有する。
As explained above, according to the measurement method of the present invention, by fully understanding the relationship between the wavelength and absorbance shown by each sample curve for chyle, jaundice, and hemolysis, serum Since it is possible to detect chyle, jaundice, and hemolysis, and to measure the degree of these, there is no need to use standard substances for chyle, jaundice, and hemolysis, which are particularly difficult to obtain, as in conventional methods. This method has the advantage that samples with abnormal appearance in serum can be detected without relying on the absorption spectrum of chyle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は血清中の乳び、黄疸および溶血の各サ
ンプルについて、波長と吸光度との関係を示した
図である。 1…乳びサンプル曲線、2…黄疸サンプル曲
線、3…溶血サンプル曲線。
FIG. 1 is a diagram showing the relationship between wavelength and absorbance for each sample of chyle, jaundice, and hemolysis in serum. 1... Chyle sample curve, 2... Jaundice sample curve, 3... Hemolysis sample curve.

Claims (1)

【特許請求の範囲】 1 生化学試料、特に血清中の乳び、黄疸および
溶血の含有度を、血清に照射した光の波長と吸光
度とを示すスペクトル特性に基づいて測定する方
法において、第1次的には、前記乳び、黄疸およ
び溶血のすべてに吸収を示す可視域における短波
長を使用することにより吸光度を測定し、この吸
光度が一定値以上の血清については、該血清中の
乳び、黄疸および溶血の少なくとも1つによる血
清と判定し、 次いで第2次的には、前記血清について、 黄疸および溶血の双方による吸収が殆どない第
1の波長λ1における吸光度の大きさから乳び度を
測定し、 黄疸および溶血による吸収の大きな第2の波長
λ2、黄疸による吸収は大きいが溶血による吸収の
小さい第3の波長λ3および黄疸および溶血の双方
による吸収の小さい第4の波長λ4における吸光度
をそれぞれ求め、第3の波長λ3における吸光度と
第2の波長λ2における吸光度との差ΔE32およ
び第3の波長λ3における吸光度と第4の波長λ4
おける吸光度との差ΔE34をそれぞれ求め、前
記の吸光度の差ΔE34の値から黄疸度を測定し、
前記の吸光度の差ΔE32の値から溶血度を測定
することにより少なくとも4波長による吸光度を
用いて測定することを特徴とする血清中の乳び
度、黄疸度および溶血度の測定方法。
[Scope of Claims] 1. A method for measuring the content of chyle, jaundice, and hemolysis in a biochemical sample, especially serum, based on spectral characteristics indicating the wavelength and absorbance of light irradiated to the serum, comprising: Next, the absorbance is measured using a short wavelength in the visible range that shows absorption in all of the chyle, jaundice, and hemolysis, and if the absorbance is above a certain value, the chyle in the serum is , the serum is determined to be due to at least one of jaundice and hemolysis, and then secondarily, the serum is determined to be chyle due to the magnitude of absorbance at the first wavelength λ 1 , where there is almost no absorption due to both jaundice and hemolysis. A second wavelength λ 2 with high absorption due to jaundice and hemolysis, a third wavelength λ 3 with high absorption due to jaundice but low absorption due to hemolysis, and a fourth wavelength with low absorption due to both jaundice and hemolysis. The absorbance at λ 4 is determined , and the difference ΔE 3 - 2 between the absorbance at the third wavelength λ 3 and the absorbance at the second wavelength λ 2 and the absorbance at the third wavelength λ 3 and the absorbance at the fourth wavelength λ 4 are determined. and the difference ΔE 3 - 4 is determined, and the degree of jaundice is measured from the value of the difference ΔE 3 - 4 in the absorbance.
A method for measuring chyle, jaundice, and hemolysis in serum, characterized in that the degree of hemolysis is measured from the value of the difference in absorbance ΔE 3 - 2 , thereby measuring the degree of hemolysis using absorbance at at least four wavelengths.
JP13300980A 1980-09-26 1980-09-26 Measuring method for degree of chyle, jaundice and hemolysis in serum Granted JPS5759151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13300980A JPS5759151A (en) 1980-09-26 1980-09-26 Measuring method for degree of chyle, jaundice and hemolysis in serum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13300980A JPS5759151A (en) 1980-09-26 1980-09-26 Measuring method for degree of chyle, jaundice and hemolysis in serum

Publications (2)

Publication Number Publication Date
JPS5759151A JPS5759151A (en) 1982-04-09
JPS6332132B2 true JPS6332132B2 (en) 1988-06-28

Family

ID=15094648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13300980A Granted JPS5759151A (en) 1980-09-26 1980-09-26 Measuring method for degree of chyle, jaundice and hemolysis in serum

Country Status (1)

Country Link
JP (1) JPS5759151A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179655A (en) * 1984-02-28 1985-09-13 Tsubosaka Denki Kk Device for inspecting bodily fluid
JP2514660Y2 (en) * 1989-11-06 1996-10-23 日新電機株式会社 Standard oil storage container for measuring dissolved gas in oil
FR2719903B1 (en) * 1994-05-11 1996-07-19 Secomam Sa Method and device for analyzing the composition of a liquid using a spectrophotometer with multiple detection ranges.
CA2231305C (en) * 1997-03-11 2007-03-20 Merrit Nyles Jacobs Improved analyzer throughput featuring through-the-tip analysis
CA2245422A1 (en) * 1998-07-14 2000-01-14 Ortho-Clinical Diagnostics, Inc. Improved analyzer throughput featuring through-the-tip analysis
EP2645086A3 (en) 2006-03-16 2014-03-12 Sysmex Corporation Sample analyzer
JP4986487B2 (en) * 2006-03-30 2012-07-25 シスメックス株式会社 Blood clotting time measurement device
JP4925703B2 (en) 2006-03-30 2012-05-09 シスメックス株式会社 Blood coagulation analyzer
JP5214206B2 (en) * 2007-10-01 2013-06-19 川澄化学工業株式会社 Plasma color identification device and blood component separation device
JP5320313B2 (en) * 2010-01-22 2013-10-23 株式会社日立ハイテクノロジーズ Automatic analyzer
DE102013205346A1 (en) 2013-03-26 2014-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lanthanoid complex-based spectroscopic hemoglobin determination in a liquid biological medium
EP3933409A1 (en) * 2020-07-03 2022-01-05 F. Hoffmann-La Roche AG Photometric interference determination

Also Published As

Publication number Publication date
JPS5759151A (en) 1982-04-09

Similar Documents

Publication Publication Date Title
EP1460414B1 (en) Concentration measuring method
US7663738B2 (en) Method for automatically detecting factors that disturb analysis by a photometer
US7303922B2 (en) Reagentless analysis of biological samples by applying mathematical algorithms to smoothed spectra
US4125372A (en) Method and device for testing liquids
US4710458A (en) Nylon strips for medical assay
CA1158890A (en) Photometric analyser for studying automatically complex solutions
AU2002359193A1 (en) Method for quantitative hemoglobin determination in undiluted unhemolyzed whole blood
Peuchant et al. Determination of serum cholesterol by near-infrared reflectance spectrometry
US4027971A (en) Method of simultaneously counting blood cells
US20200182778A1 (en) Device and method for blood hemoglobin measurement without carboxyhemoglobin interference
JPS6332132B2 (en)
EP1023583B1 (en) Method for measurement of blood substitutes
EP3359950B1 (en) Dried blood sample analysis
US4324556A (en) Portable COHB analyzer
JP3203798B2 (en) How to measure chromogen
US5258308A (en) Method, kit and apparatus for verifying calibration and linearity of vertical photometers
EP0097472B1 (en) Method of determining calcium in a fluid sample
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
Szigeti Estimation of oxyhaemoglobin and of methaemoglobin by a photoelectric method
US4279506A (en) Photometric apparatus and methods for counting the particulate components of blood
US5939327A (en) Measurement of bile pigments in serum or plasma
Levinson Kinetic centrifugal analyzer and manual determination of serum urea nitrogen, with use of o-phthaldialdehyde reagent.
US4455376A (en) Photometric methods for counting the particulate components of blood
CN112816425B (en) Method for optimizing whole blood sample detection flow by utilizing HGB calibration capability
Ressler et al. Improved method for determining serum protein concentrations in the far ultraviolet.