JPH02280033A - Colorimetry inspecting device - Google Patents

Colorimetry inspecting device

Info

Publication number
JPH02280033A
JPH02280033A JP10234389A JP10234389A JPH02280033A JP H02280033 A JPH02280033 A JP H02280033A JP 10234389 A JP10234389 A JP 10234389A JP 10234389 A JP10234389 A JP 10234389A JP H02280033 A JPH02280033 A JP H02280033A
Authority
JP
Japan
Prior art keywords
measurement
light
color
data
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10234389A
Other languages
Japanese (ja)
Inventor
Moritoshi Miyamoto
守敏 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10234389A priority Critical patent/JPH02280033A/en
Publication of JPH02280033A publication Critical patent/JPH02280033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish objective measurement with high measuring accuracy by irradiating a reacted reagent with measuring light, comparing the data of measurement of reflected light reflected from the reagent with reference color data and performing the inspection of a sample to be inspected. CONSTITUTION:Before inspection, the respective colors of a color chart 27 are read by a measuring end 2 and the intensity components of the respective colors are stored in a storage arithmetic part 21 as the reference data. Next, the sample to be inspected is made to adhere to the reagent on an inspection surface 26 so that color reaction may occur. Then, the inspection surface 26 is irradiated with the measuring light from the measuring end 2 and the reflected light is inputted in photodetectors 18-20 so as to measure and arithmetically operate the intensity rates of the respective colors. By comparing the data of measurement with the reference color data and obtaining coincident or the most approximate data, the arithmetic part 21 measures the sample to be inspected to display on an output part 22. Thus, a device capable of objective measurement with high measuring accuracy is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被検試料による試薬の呈色反応を測色して被検
試料の検査を行う装置、例えば血液検査や尿検査等の分
野に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an apparatus for testing a test sample by measuring the color reaction of a reagent caused by the test sample, for example, in the field of blood testing, urine testing, etc. .

[従来の技術] 血液検査の一例として例えは血糖値を測定する一方法と
して、グルコースを感知すると色が変化する試薬か予相
された試験紙に、被検者から採血した血液を付着させ、
試験紙の呈色度合から血糖値を測定する検査か知られる
[Prior Art] As an example of a blood test, for example, as a method of measuring blood sugar level, blood collected from a subject is attached to a reagent or pre-prepared test strip that changes color when glucose is detected, and
It is known whether the test measures blood sugar levels based on the degree of coloration of the test strip.

その他、尿や唾液等の体液の検査でも、試薬の呈色状態
を測色する同様の検査が一般的に行われている。
Similar tests that measure the color of reagents are also commonly used to test body fluids such as urine and saliva.

[発明が解決しようとしている課題] しかしながら従来は、試薬の呈色度合を測定者が試験紙
を提供しているメーカーから提示される基準色(標iI
色)と肉眼で比較して検査するため客観的な測定が困難
である。
[Problems to be Solved by the Invention] However, conventionally, the measurer has measured the degree of coloration of a reagent using the reference color (marker II) provided by the manufacturer of the test strip.
It is difficult to measure objectively because the test is performed by comparing the color (color) with the naked eye.

又、様々な試薬に対応てきる汎用性のある測定器を提供
しようとしても、試薬毎にそれぞれ異なる基準色データ
を持っているため、装置の汎用化は困難であった。
Further, even if an attempt was made to provide a versatile measuring device that can be used with various reagents, it was difficult to make the device general-purpose because each reagent has different reference color data.

[発明の目的] 本発明は様々な試薬による様々な項目の検査が行える汎
用性の高い測色検査装置の提供を目的とする。更には測
定精度の高く客観的な測定ができる装置の提供を目的と
する。
[Object of the Invention] An object of the present invention is to provide a highly versatile colorimetric testing device that can test various items using various reagents. Furthermore, it is an object of the present invention to provide a device that can perform objective measurements with high measurement accuracy.

[課題を解決するための手段] 上述した課題を解決する本発明は、被検試料との反応に
よる試薬の呈色反応を測色して被検試料の検査を行う測
色検査装置において、前記反応した試薬に測定光を照射
する照射手段と、前記反応した試薬で反射される反射光
を測定する測定手段と、該測定手段の測定データを基準
色データと比較することにより被検試料の検査を行う手
段を有することを特徴とする測色検査装置である。
[Means for Solving the Problems] The present invention, which solves the above-mentioned problems, provides a colorimetric testing device for testing a test sample by colorimetrically measuring the color reaction of a reagent caused by reaction with a test sample. An irradiation means for irradiating measurement light onto the reacted reagent, a measurement means for measuring the reflected light reflected by the reacted reagent, and inspection of the test sample by comparing the measurement data of the measurement means with reference color data. This is a colorimetric inspection device characterized by having means for performing.

[実施例コ 以下本発明の実施例を図面を用いて詳細に説明する。[Example code] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1実施例であり、図中28は装置本
体であり、本体28には測定用光ファイバ1が接続され
、ファイバ先端部には光照射及び反射光受光用の測定端
2か露出している。光源3は白色光源であり、該光源3
から出射された光はレンズ4を経て、ハーフミラ−5で
分岐される。
FIG. 1 shows a first embodiment of the present invention. In the figure, 28 is a main body of the device. An optical fiber 1 for measurement is connected to the main body 28, and the fiber tip is used for measurement for light irradiation and reflected light reception. Two ends are exposed. The light source 3 is a white light source;
The light emitted from the lens passes through a lens 4 and is split by a half mirror 5.

該ハーフミラ−5て反射した光は集光レンズ6で集光さ
れ、ファイバlの端部に入射し、ファイバ内を伝わって
測定端2に達する。又、ハーフミラ−5を透過した光は
レンズ7を経て光検出器8で光源3の変動を検知・補正
するための参照光として検出される。光検出器8の出力
は記憶演算部21に接続されている。
The light reflected by the half mirror 5 is condensed by a condenser lens 6, enters the end of the fiber 1, travels inside the fiber, and reaches the measurement end 2. The light transmitted through the half mirror 5 passes through the lens 7 and is detected by the photodetector 8 as reference light for detecting and correcting fluctuations in the light source 3. The output of the photodetector 8 is connected to a storage/arithmetic unit 21 .

方、測定端2からファイバ1に入射した光の内、ハーフ
ミラ−5を透過した光は、ダイクロイックミラー9で赤
色光の波長以上の波長の光が反射、それ以下の光が透過
する。反射した光はバンドパスフィルタ12により赤色
光(700nm付近)のみが波長選択されて、レンズ1
5を経て赤色光強度か光検出器18で測光される。又、
ダイクロイックミラー9を透過した光は、ダイクロイッ
クミラー10で緑色光以上の波長の光が反射、それ以下
の光が透過する。ダイクロイックミラー10で反射され
た光はバンドパスフィルタにより緑色光(546nm付
近)のみが波長選択され、レンズ16を経て緑色光強度
か光検出器19にて測光される。タイクロイックミラー
10を透過した光は全反射ミラー11で反射され、バン
ドパスフィルタ14により青色光(435nm付近)の
みが波長選択されて、レンズ20を経て青色光強度が光
検出器20にて測光される。これら赤緑青の三色の光強
度をそれぞれ測光した光検出器18乃至20の出力は記
憶演算部21に接続される。
On the other hand, of the light that is incident on the fiber 1 from the measurement end 2, the light that has passed through the half mirror 5 is reflected by the dichroic mirror 9, and the light with a wavelength longer than the wavelength of the red light is transmitted, while the light with a wavelength shorter than that is transmitted. The wavelength of the reflected light is selected by the bandpass filter 12 so that only red light (near 700 nm) is transmitted to the lens 1.
5, the intensity of the red light is measured by a photodetector 18. or,
The light transmitted through the dichroic mirror 9 is reflected by the dichroic mirror 10, and the light having wavelengths longer than green light is transmitted. From the light reflected by the dichroic mirror 10, only green light (near 546 nm) is wavelength-selected by a bandpass filter, passes through a lens 16, and the intensity of the green light is measured by a photodetector 19. The light transmitted through the tychroic mirror 10 is reflected by the total reflection mirror 11, and only the blue light (near 435 nm) is wavelength-selected by the bandpass filter 14, and the intensity of the blue light is measured by the photodetector 20 after passing through the lens 20. be done. The outputs of the photodetectors 18 to 20, which respectively measure the light intensity of these three colors of red, green, and blue, are connected to a storage calculation section 21.

記憶演算部21には演算結果を出力する出力部22、装
置全体の制御を行う制御部23が接続されている。制御
部23には測定開始スイッチ、光ぞ原3が接続されてい
る。
Connected to the storage calculation section 21 are an output section 22 that outputs calculation results, and a control section 23 that controls the entire device. A measurement start switch and a light source 3 are connected to the control unit 23 .

次に以上の構成における、検査面の測色の動作原理を説
明する。
Next, the operating principle of colorimetry of the inspection surface in the above configuration will be explained.

初期状態では光源3は消灯している。測定者が測定スイ
ッチを押すと、制御部23は光源を消灯したまま測定端
2に入射する測定部がらの自然光を光検出器18乃至2
oにて3色それぞれ強度検出する。それぞれの測光強度
はノイ、ズ成分として記憶演算部21に記憶される。
In the initial state, the light source 3 is off. When the measurer presses the measurement switch, the control section 23 directs the natural light from the measurement section that enters the measurement end 2 with the light source turned off to the photodetectors 18 and 2.
The intensity of each of the three colors is detected at o. Each photometric intensity is stored in the storage calculation unit 21 as a noise component.

次Q瞬間、制御部23は光源3を点灯させ、ファイバ1
に光を導き、測定端2から白色光を測定部に照射する。
At the next Q moment, the control unit 23 turns on the light source 3 and lights up the fiber 1.
The measuring section is irradiated with white light from the measuring end 2.

測定部で反射した光の内、再びファイバの測定端2に入
射した光は、先と同扛に3色の光強度成分がそれぞれ測
光される。
Of the light reflected by the measuring section, the light that enters the measuring end 2 of the fiber again is subjected to photometry of the light intensity components of the three colors, respectively.

この測光の測定値は照射される白色光の反射光と共に、
外部から混入する自然光のノイズ成分も含んでいる。そ
こで記憶演算部21では、測光された各色の光強度から
先のノイズ成分の強度を減算し、減算した各色値を測定
データとして採用する。モして各色成分の強度の割合か
ら色度合を判断する。
This photometric measurement value, together with the reflected light of the irradiated white light,
It also includes noise components from natural light coming in from the outside. Therefore, the storage calculation unit 21 subtracts the intensity of the previous noise component from the measured light intensity of each color, and employs the subtracted color values as measurement data. The chromaticity is determined from the ratio of the intensity of each color component.

次に実際の測定手順を説明する。Next, the actual measurement procedure will be explained.

第1図で25は試験紙であり、例えば血糖値測定用の検
査試薬が検査面26の部分に塗布され、患者の血液と反
応させることにより、血液中のグルコース量に応じて検
査面26の部分が呈色反応を示す。なお、検査項目は血
糖値には限らず、コレステロール値、あるいは糖尿値等
呈色反応を示すものであれば何でも良い。
In FIG. 1, 25 is a test strip. For example, a test reagent for blood sugar level measurement is applied to the test surface 26, and by reacting with the patient's blood, the test reagent is applied to the test surface 26 according to the amount of glucose in the blood. Some parts show a color reaction. Note that the test item is not limited to blood sugar level, but may be anything that shows a color reaction, such as cholesterol level or sugar level.

又、27は試薬提供メーカーから提示される基準色のカ
ラーチャートであり、呈色反応の色とカラーチャート上
のどの色が一致、あるいはどの色に一番近いかを見るこ
とにより血糖値の測定が可能となる。
In addition, 27 is a color chart of standard colors presented by the reagent supplier, and the blood sugar level can be measured by seeing which color on the color chart matches or is closest to the color of the color reaction. becomes possible.

先ず検査前に、カラーチャート27の各色を順にファイ
バ測定端で読取り、各色の強度成分を基準データとして
装置内の記憶演算部21に予め記憶させておく。
First, before the inspection, each color of the color chart 27 is read in order with the fiber measurement end, and the intensity component of each color is stored in advance in the storage calculation section 21 in the apparatus as reference data.

なお、使用する各種の試薬の基準色データが予め分かっ
ている場合には、予め各種試薬の基準色データを装置内
のメモリにそれぞれ記憶させておき、使用する試薬に応
じて切換えて使用するようにしても良い。
If the standard color data for each type of reagent to be used is known in advance, the standard color data for each type of reagent can be stored in the memory of the device in advance, and the data can be switched depending on the reagent to be used. You can also do it.

採取した患者の血液を試験紙25の検査面26の試薬に
付着させて反応させる。これにより検査面26は血液中
のグルコース量に応じた呈色反応を示す。
The collected blood of the patient is attached to the reagent on the test surface 26 of the test paper 25 and reacted. As a result, the test surface 26 exhibits a color reaction depending on the amount of glucose in the blood.

次にこの試験紙の検査面26に測定端2を近接させ、測
定スイッチ24を押すと、試薬の呈色度合すなわち各色
の強度割合が測定演算される。記(g演算部21におい
ては、この測定データを記憶演算部21に予め記憶され
る基準色データと比較し、測定データか基準色データの
中で一致する、あるいは一番近いデータを求めることに
より、患者の血液の血糖値を得ることができる。又は、
測定データと隣り合う2色の基準データの中間値を血糖
値とすればより正確である。この結果は出力部22に表
示する。
Next, when the measuring end 2 is brought close to the test surface 26 of the test paper and the measuring switch 24 is pressed, the degree of coloration of the reagent, that is, the intensity ratio of each color is measured and calculated. (g The calculation unit 21 compares this measurement data with the reference color data stored in advance in the storage calculation unit 21, and finds the data that matches or is the closest between the measurement data and the reference color data. , the blood glucose level of the patient's blood can be obtained; or,
It is more accurate if the blood sugar level is set as the intermediate value between the measurement data and the reference data of two adjacent colors. This result is displayed on the output section 22.

なお、本実施例において使用する光源は白色光源でなく
ても、少なくとも測定する波長を含む光源(例えば3色
のLED等)であれば使用可能である。
Note that the light source used in this embodiment does not have to be a white light source, but any light source that includes at least the wavelength to be measured (for example, three-color LED) can be used.

又、本実施例では光源3を消灯した状7態での自然光を
測光しておき、これをノイズ成分として差し引いたが、
測定の際に測定端2を測定部に密着させ外部光が入らな
いようにすればノイズ成分である自然光の測定は不要と
なる。その際、−例として測定@2に第3図のような遮
光性の傘状部材29を設けて外部光を遮るようにすれば
より好ましい。
In addition, in this example, natural light was photometered in seven states with the light source 3 turned off, and this was subtracted as a noise component.
If the measurement end 2 is brought into close contact with the measurement section during measurement to prevent external light from entering, measurement of natural light, which is a noise component, becomes unnecessary. In this case, it is more preferable to provide a light-shielding umbrella-shaped member 29 as shown in FIG. 3 in the measurement @2 to block external light.

[実施例2コ 次に本発明の第2実施例を第2図を用いて説明する。図
中30は装置本体を示し、該装置内の部材31は赤緑青
の3色のLEDアレイであり、制御部39の制御により
各色独立に点灯、あるいは同時に複数色点灯させること
ができる。LED31から発光した光はレンズ32によ
り集光されファイバ33の端部に入射する。ファイバ3
3により測定面に導かれ該測定面で反射した光の内、フ
ァイバ33と対構造のファイバ34の端部に入射した光
は、ファイバ34を伝ってレンズ35で集光され光検出
器36で強度測光される。光検出器36の出力は記憶演
算部37に接続されている。記憶演算部37は出力部3
8、制御部39と接続されている。
[Embodiment 2] Next, a second embodiment of the present invention will be described with reference to FIG. In the figure, numeral 30 indicates the main body of the device, and a member 31 in the device is an LED array of three colors, red, green, and blue, and each color can be turned on independently or a plurality of colors can be turned on at the same time under the control of a control section 39. The light emitted from the LED 31 is focused by a lens 32 and enters the end of the fiber 33. fiber 3
Of the light guided to the measurement surface by 3 and reflected at the measurement surface, the light that enters the end of the fiber 34 paired with the fiber 33 travels through the fiber 34 and is focused by the lens 35 and collected by the photodetector 36. The intensity is photometered. The output of the photodetector 36 is connected to a storage calculation section 37. The memory calculation section 37 is the output section 3
8. Connected to the control unit 39.

以上の構成による色度合測定の原理を次に説明する。先
の実施例と同様、測定スイッチ40が押されると、ます
LED31を消灯させた状、態で自然光の強度を測定し
、ノイズ成分として記憶演算部37に記憶させる。次に
LED31の赤色LEDを発光させ、赤色成分として測
光して記憶(pi算郡部37記憶させる。同様に緑色L
ED、青色LEDを時系列的に順次発光させて緑色成分
、青色成分を測光し記憶演算部37にそれぞれ記憶させ
る。
The principle of chromaticity measurement using the above configuration will be explained next. As in the previous embodiment, when the measurement switch 40 is pressed, the intensity of natural light is measured with the LED 31 turned off, and is stored in the storage calculation section 37 as a noise component. Next, the red LED of the LED 31 is made to emit light, and the red component is measured and stored (stored in the pi calculation section 37.Similarly, the green L
The ED and the blue LED are caused to emit light sequentially in time series, and the green and blue components are measured and stored in the storage calculation section 37, respectively.

各成分の測光が終ると、記憶演算部37では各色成分か
ら先に測定した自然光のノイズ成分を減算し、この各成
分を測定データとする。厳密には自然光の各色成分を求
めて、これを各色成分の測光値から差し引くぺぎである
が、構成が簡素な本実施例の方法でも大きな測定誤差と
はならない。
When the photometry of each component is completed, the storage calculation unit 37 subtracts the noise component of the natural light measured previously from each color component, and uses these components as measurement data. Strictly speaking, each color component of natural light is determined and subtracted from the photometric value of each color component, but the method of this embodiment, which has a simple configuration, does not result in large measurement errors.

又、ファイバ33及び34の測定端部を測定面に密着し
て外部光が入らないようにすれば自然光の測定は不要と
なる。先と同様第3図のような構造としCも良いことは
勿論である。
Furthermore, if the measurement ends of the fibers 33 and 34 are brought into close contact with the measurement surface to prevent external light from entering, measurement of natural light becomes unnecessary. It goes without saying that the structure shown in FIG. 3 and C is also good as before.

本実施例における実際の測定手順は、先の実施例と同様
、検査に先立ち基準色のカラーチャート27を予め記憶
させた後に、試験紙25の検査面26の呈色状態を測定
する。この測定データを基準色データと比較することに
より検査を行う。
In the actual measurement procedure in this embodiment, as in the previous embodiment, the color chart 27 of the reference color is stored in advance prior to the test, and then the coloring state of the test surface 26 of the test paper 25 is measured. Inspection is performed by comparing this measurement data with reference color data.

本実施例によれば、光照射用と受光用で別々の光学系を
用いる構成のため、先の実施例に比へてにハーフミラ−
による光量ロスが無い。又、複数色のLEDを用い各色
を別々に測光するため、受光光学系か簡素となる。
According to this embodiment, since separate optical systems are used for light irradiation and light reception, a half mirror is used as compared to the previous embodiment.
There is no loss of light amount due to Furthermore, since multiple color LEDs are used and each color is photometered separately, the light receiving optical system is simple.

[実施例3] 本発明の別の実施例としては、光源に白色光源あるいは
測定する複数色を含む光源を用い、受光光学系の光路中
に高速で複数種の中から交換可能な波長選択フィルタを
設け、フィルタの選択により各色を単一の光検出器で時
系列的に順次測定する。波長選択フィルタを交換する手
段の一例としては、円周状に各色フィルタが配されるタ
ーレットを高速回転させるようにずれは良い。
[Embodiment 3] In another embodiment of the present invention, a white light source or a light source containing multiple colors to be measured is used as the light source, and a wavelength selection filter that can be replaced from among a plurality of types at high speed is provided in the optical path of the light receiving optical system. , and each color is measured sequentially in time series using a single photodetector by selecting a filter. An example of a means for exchanging wavelength selection filters is to rotate a turret on which each color filter is circumferentially arranged at a high speed, so that the wavelength selection filter can be shifted at high speed.

なお、以上説明してきた全ての実施例においては3色の
光強度成分を測光して検査を行ったが、3色には限らず
2色以上の複数色であれば良い。
Note that in all the embodiments described above, the inspection was performed by photometrically measuring the light intensity components of three colors, but the measurement is not limited to three colors, but may be any plurality of colors of two or more colors.

又、以上の実施例では基準色データを予め記憶した上で
試験紙を測定して検査を行ったが、これとは逆に測定の
後に基準色データを取り込んで比較しても良い。
Further, in the above embodiments, the reference color data was stored in advance and then the test paper was measured and inspected, but on the contrary, the reference color data may be taken in after the measurement and compared.

さらに基準色データは可視光領域には限らず、それ以外
の領域を含むものであっても測定可能である。
Furthermore, the reference color data is not limited to the visible light region, and can be measured even if it includes other regions.

[発明の効果] 以上本発明によれば、特定の試薬に限定されずどのよう
な呈色反応でも測定できるため、汎用性があり幅広い分
野の検査が可能となる。
[Effects of the Invention] As described above, according to the present invention, any color reaction can be measured without being limited to a specific reagent, so it is versatile and enables testing in a wide range of fields.

又、測定の際には複数の色成分に分解して各色成分を測
定するため精確な検査が可能となる。
Further, during measurement, since each color component is separated into a plurality of color components and each color component is measured, accurate inspection becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の構成図、第2図は本発明
の第2実施例の構成図、第3図は測定端部の改良形態、 であり、図中の主な符号は、 1.33.34・・・・光ファイノて、3・・・・白色
光源、5・・・・ノ\−フミラー91,10・・・・グ
イクロイックミラー24.40・・・・測定スイッチ、 25・・・・試験紙、26・・・・検査面、27・・・
・基準色カラーチャート、 31・・・・3色LEDアレイ、 第2図 第32
Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a block diagram of the second embodiment of the present invention, and Fig. 3 is an improved form of the measuring end. 1.33.34... optical fiber, 3... white light source, 5... nof mirror 91, 10... gikroic mirror 24.40... Measuring switch, 25...test paper, 26...test surface, 27...
・Reference color chart, 31... 3-color LED array, Figure 2, Figure 32

Claims (1)

【特許請求の範囲】 1、被検試料との反応による試薬の呈色反応を測色して
被検試料の検査を行う測色検査装置において、 前記反応した試薬に測定光を照射する照射手段と、 前記反応した試薬で反射される反射光を測定する測定手
段と、 該測定手段の測定データを基準色データと比較すること
により、被検試料の検査を行う手段を有することを特徴
とする測色検査装置。 2、前記測定光は複数種の測定波長を少なくとも含み、
前記測定データは前記複数種の測定波長毎に対応したデ
ータである請求項1記載の測色検査装置。 3、前記照射手段は複数種の測定波長の測定光を時系列
的に順に照射する請求項2記載の測色測定装置。
[Scope of Claims] 1. In a colorimetric testing device that tests a test sample by measuring the color reaction of a reagent due to reaction with a test sample, the irradiation means irradiates the reacted reagent with measurement light. and a measuring means for measuring reflected light reflected by the reacted reagent; and means for inspecting a test sample by comparing measurement data of the measuring means with reference color data. Colorimetric inspection device. 2. The measurement light includes at least a plurality of types of measurement wavelengths,
2. The colorimetric inspection apparatus according to claim 1, wherein the measurement data corresponds to each of the plurality of measurement wavelengths. 3. The colorimetric measurement device according to claim 2, wherein the irradiation means irradiates measurement light having a plurality of types of measurement wavelengths in chronological order.
JP10234389A 1989-04-21 1989-04-21 Colorimetry inspecting device Pending JPH02280033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10234389A JPH02280033A (en) 1989-04-21 1989-04-21 Colorimetry inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10234389A JPH02280033A (en) 1989-04-21 1989-04-21 Colorimetry inspecting device

Publications (1)

Publication Number Publication Date
JPH02280033A true JPH02280033A (en) 1990-11-16

Family

ID=14324851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10234389A Pending JPH02280033A (en) 1989-04-21 1989-04-21 Colorimetry inspecting device

Country Status (1)

Country Link
JP (1) JPH02280033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080438A1 (en) * 2005-01-28 2006-08-03 Mochida Pharmaceutical Co., Ltd. Immunochromatographic test instrument and semiquantitative method using the same
JP2008116450A (en) * 1997-05-23 2008-05-22 Becton Dickinson & Co Light source apparatus, light source and optical system associated with automated microbiological test
WO2012157685A1 (en) * 2011-05-16 2012-11-22 ユニバーサル・バイオ・リサーチ株式会社 Optical measurement device for reaction vessel and method therefor
JP2016505301A (en) * 2012-12-10 2016-02-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Medical device or system for measuring hemoglobin levels during an accident using a camera-projector system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116450A (en) * 1997-05-23 2008-05-22 Becton Dickinson & Co Light source apparatus, light source and optical system associated with automated microbiological test
WO2006080438A1 (en) * 2005-01-28 2006-08-03 Mochida Pharmaceutical Co., Ltd. Immunochromatographic test instrument and semiquantitative method using the same
JP4988546B2 (en) * 2005-01-28 2012-08-01 持田製薬株式会社 Immunochromatographic test device and semi-quantitative method using the same
WO2012157685A1 (en) * 2011-05-16 2012-11-22 ユニバーサル・バイオ・リサーチ株式会社 Optical measurement device for reaction vessel and method therefor
CN103688159A (en) * 2011-05-16 2014-03-26 环球生物研究株式会社 Optical measurement device for reaction vessel and method therefor
JP5991967B2 (en) * 2011-05-16 2016-09-14 ユニバーサル・バイオ・リサーチ株式会社 Photometric device for reaction vessel and method thereof
US11099132B2 (en) 2011-05-16 2021-08-24 Universal Bio Research Co., Ltd. Optical measurement device for reaction vessel and method therefor
US11656179B2 (en) 2011-05-16 2023-05-23 Universal Bio Research Co., Ltd. Optical measurement device for reaction vessel and method therefor
JP2016505301A (en) * 2012-12-10 2016-02-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Medical device or system for measuring hemoglobin levels during an accident using a camera-projector system
US9968282B2 (en) 2012-12-10 2018-05-15 Koninklijke Philips N.V. Medical device or system for measuring hemoglobin levels during accidents using a camera-projector system

Similar Documents

Publication Publication Date Title
JP3559975B2 (en) Analysis method using test pieces
CA2173014C (en) Fiber optic diffuse light reflectance sensor
US4867946A (en) Device for evaluating test strips
KR100219252B1 (en) Analytical system with means for detecting too small sample volumes
JP2000504115A (en) Programmable standard device for use in devices and methods for non-invasive measurement of light absorbing compounds
US4792689A (en) Method for obtaining a ratio measurement for correcting common path variations in intensity in fiber optic sensors
EP0438550B1 (en) Optical read system
JPS617445A (en) Oxidizing degree judging apparatus of copper oxide film
US20230324307A1 (en) Circuit board with onboard light sources
JPH02280033A (en) Colorimetry inspecting device
GB2096352A (en) Fluorescence spectroscopy
WO2021207898A1 (en) Sample analysis device and method
JPH0735744A (en) Analytic method for urine
JP2000227399A (en) Preliminary screening device of blood test body
JPH11248622A (en) Urinalysis device
JP3045566B2 (en) Bacterial test equipment
JP2000304694A (en) Method and apparatus for grading of tea leaf
CN115244382A (en) Sample analysis method and device
CN214408685U (en) Food analyzer based on total reflection refraction method
JPH0227262A (en) Automatic urine examination apparatus
JPS59230533A (en) Reflected light analyser for medical diagnosis
JPS6135508B2 (en)
WO2024026853A1 (en) Screening test strip-based reading and measurement method
JPS617446A (en) Surface measuring device of linear body
WO1999008080A1 (en) Tone discrimination apparatus and tone discrimination diagram