JPS63159736A - Concentration measuring method for uranium or plutonium - Google Patents

Concentration measuring method for uranium or plutonium

Info

Publication number
JPS63159736A
JPS63159736A JP61306349A JP30634986A JPS63159736A JP S63159736 A JPS63159736 A JP S63159736A JP 61306349 A JP61306349 A JP 61306349A JP 30634986 A JP30634986 A JP 30634986A JP S63159736 A JPS63159736 A JP S63159736A
Authority
JP
Japan
Prior art keywords
light
plutonium
uranium
concentration
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61306349A
Other languages
Japanese (ja)
Inventor
Yoshibumi Ito
義文 伊藤
Toru Takashina
徹 高品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61306349A priority Critical patent/JPS63159736A/en
Publication of JPS63159736A publication Critical patent/JPS63159736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To securely correct the drift of a measured value due to the damage of an optical system and to measure concentration with high accuracy by providing an interference filter, an optical fiber for light projection, a fiber for photodetection, etc. CONSTITUTION:A sector 7 to which the interference filter is fitted is rotated by a motor 8 to send light beams with respective wavelengths alternately. Then their interference light is sent by an optical system such as a reflecting mirror 9, etc., to the projection-side optical fiber 10. Then, light which is absorbed and attenuated by uranium or plutonium is photodetected by a sensor and then sent to a light emission and reception part through the photodetection-side fiber 11. Here, light which is converged 12 is photodetected 13 and amplified 14, and a gain controller 15 adjusts the light so that reference light intensity is equal. Then, a sample holder 16 identifies from a sample number recognized with the rotation period signal of the sector 7 and the result is outputted 17 as a concentration signal. Thus, the drift of the measured value due to the damage of the optical system is corrected and high-accuracy measurement is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核燃料再処理施設におけるウランまたはプルト
ニウムの濃度測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the concentration of uranium or plutonium in a nuclear fuel reprocessing facility.

〔従来の技術〕[Conventional technology]

ウランまたはプルトニウムの吸光性を利用して濃度を測
定する挿入型濃度計は、光源、特定の波長を選択する干
渉フィルター、選定波長光を伝送する光ファイバ、接液
カバーガラス、液中を透過する光を反射するミラー反射
光を伝送する光ファイバ、反射光の強さを電気信号に変
換する受光素子よりなり、ウランまたはプルトニウムの
吸光度を測定することによシ、濃度を求めている。
Insertion type densitometers, which measure concentration using the light absorption properties of uranium or plutonium, consist of a light source, an interference filter that selects a specific wavelength, an optical fiber that transmits light of the selected wavelength, a cover glass in contact with the liquid, and a light that passes through the liquid. It consists of an optical fiber that transmits the reflected light, and a light receiving element that converts the intensity of the reflected light into an electrical signal.The concentration is determined by measuring the absorbance of uranium or plutonium.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、吸光性を利用する濃度分析計では試料液と接
液カバーガラス及び反射ミラーよりなる光学系の接触が
避けられないため、光学系の汚染、損傷により測定値が
ドリフトする欠点があった。特に、核燃料再処理施設に
おいて使用される場合には、高放射線下にさらされるた
め光学系の損傷は著しく、従って、損傷による測定値の
ドリフトを校正する技術が重要であつた。
However, in concentration analyzers that utilize light absorption, contact between the sample liquid and the optical system consisting of a liquid-contacted cover glass and a reflecting mirror is unavoidable, resulting in the disadvantage that measured values may drift due to contamination or damage to the optical system. In particular, when used in a nuclear fuel reprocessing facility, the optical system is exposed to high radiation, resulting in significant damage, and therefore, a technique for calibrating the drift of measured values due to damage is important.

本発明は従来の光学系を用いるウランまたはプルトニウ
ムの濃度測定方法の欠点を解消し、光学系の損傷による
測定値のドリフトを確実に校正し、精度の高い濃度測定
を可能とするウランまたはプルトニウムの濃度測定方法
を提供しようとするものである。
The present invention eliminates the drawbacks of the conventional method for measuring the concentration of uranium or plutonium using an optical system, reliably calibrates the drift of measured values due to damage to the optical system, and enables highly accurate concentration measurement of uranium or plutonium. This paper attempts to provide a method for measuring concentration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は使用済核燃料を再処理する施設で、ウランまた
はプルトニウムを含む液の濃度を該物質の吸光性を利用
して、測定する光源及び特定の波長を選択する干渉フィ
ルタ、選択波長光を伝送する光ファイバ、接液カバーガ
ラス、液中を透過する光を反射するミラー、反射光を伝
送する光ファイバ、反射光の強さを電気信号に変換する
受光素子よりなるウランまたはプルトニウムの挿入型濃
度計においてウランまたはプルトニウムの吸収波長光の
吸収強度及びつ2ランまたはプルトニウムの非吸収波長
光の吸収強度を利用する事を特徴とするウランまたはプ
ルトニウムの濃度測定方法である。
The present invention is a facility that reprocesses spent nuclear fuel, and uses a light source to measure the concentration of a liquid containing uranium or plutonium by utilizing the light absorbing properties of the substance, an interference filter that selects a specific wavelength, and a light source with a selected wavelength that is transmitted. An insertion-type concentration of uranium or plutonium consisting of an optical fiber that transmits the light, a cover glass that comes into contact with the liquid, a mirror that reflects the light that passes through the liquid, an optical fiber that transmits the reflected light, and a photodetector that converts the intensity of the reflected light into an electrical signal. This is a method for measuring the concentration of uranium or plutonium, which uses the absorption intensity of light at an absorption wavelength of uranium or plutonium and the absorption intensity of light at a non-absorption wavelength of uranium or plutonium.

〔作用〕 本発明者等は、光学系の損傷について研究する中で、原
子価4価のウラン、6価のウラン、3価のプルトニウム
、4価のプルトニウム、及び6価のプルトニウムの可視
領域における吸収スペクトルを詳細に観察したところ、
波長700um において、ウラン及びプルトニウムの
吸収係数が著しく小さくなシ、濃度にほとんど影響され
ないことが確認できた。そこで、この波長700nmの
光を参照光として、ウランまたはプルトニウムの吸光度
を測定した結果、光学系の汚染損傷による測定値のドリ
フトが著しく小さくすることができた。
[Function] While researching damage to optical systems, the present inventors discovered that tetravalent uranium, hexavalent uranium, trivalent plutonium, tetravalent plutonium, and hexavalent plutonium in the visible region. A detailed observation of the absorption spectrum revealed that
It was confirmed that at a wavelength of 700 um, the absorption coefficients of uranium and plutonium are extremely small and are almost unaffected by concentration. Therefore, as a result of measuring the absorbance of uranium or plutonium using this light with a wavelength of 700 nm as a reference light, it was possible to significantly reduce the drift in measured values due to contamination and damage to the optical system.

〔実施例〕〔Example〕

第1図に本発明の1実施例である挿入型分光々度肝の全
体図を示す。本計器は発光・受光部1、光導部2、セン
サー3よシなる。第2図に発光・受光部の詳細を示す。
FIG. 1 shows an overall view of an insertion type spectrophotometer according to an embodiment of the present invention. This meter consists of a light emitting/receiving section 1, a light guide section 2, and a sensor 3. Figure 2 shows details of the light emitting/light receiving section.

発光部は、電源装置4、ランプ5(吸収波長がウランや
プルトニウムの場合可視光域となるため、タングステン
ハライド光源等を用いる)集光レンズ6及び特定の波長
が選択できる干渉フィルタの取り付けられたセクタ7よ
妙なる。干渉フィルタは、ウラン及びプルトニウムの原
子価により次の様な波長を用いる。
The light emitting unit is equipped with a power supply device 4, a lamp 5 (a tungsten halide light source or the like is used since the absorption wavelength is in the visible light range in the case of uranium or plutonium), a condensing lens 6, and an interference filter that can select a specific wavelength. Sector 7 is strange. The interference filter uses the following wavelengths depending on the valence of uranium and plutonium.

σ(IV)・・・650nm U (M) ・ψ・420nm Pu (n[)   ・−拳  s 6o  n。σ(IV)...650nm U (M)・ψ・420nm Pu (n[)   ・-Fist s 6o n.

pu(■) −−−470nm Pu(■)・@11852nm また、参照光用の700 nmの干渉フィルタを用いる
。これらの干渉フィルタが取付けられたセクターはモー
タ8により回転され、交互に各々の波長を送光する。
pu(■)---470nm Pu(■)@11852nm Also, a 700 nm interference filter for reference light is used. The sectors to which these interference filters are attached are rotated by a motor 8, and transmit each wavelength alternately.

各々の干渉光は反射ミラー9等の光学系により、投光用
光ファイバ10に送られる。
Each of the interference lights is sent to a projection optical fiber 10 by an optical system such as a reflection mirror 9.

次にウランやプルトニウムにより吸収され減衰した光は
、センサー3で受光された後、受光用ファイバ11によ
り発光・受光部1に送られる。ここでは集光レンズ12
により集められた光をシリコン13等からなる受光素子
に受はブリメインアンプ14で増幅した後自動ゲインコ
ントロール(ムGo ) 15にて、前述の参照光強度
が同一となる様に調整される。すなわち、ここでウラン
またはプルトニウムの吸収強度は参照光強度の比の値に
変換されることになる。
Next, the light absorbed and attenuated by uranium or plutonium is received by the sensor 3 and then sent to the light emitting/light receiving section 1 by the light receiving fiber 11. Here, the condenser lens 12
The light collected is received by a light receiving element made of silicon 13 or the like, and after being amplified by a main amplifier 14, it is adjusted by an automatic gain control (Go) 15 so that the above-mentioned reference light intensity becomes the same. That is, the absorption intensity of uranium or plutonium is converted into a value of the ratio of the reference light intensity.

その後サンプルホールド(8/H)16にてセクター7
の回転周期信号により認識されるサンプル番号により同
定した後濃度信号として出力計17よシ出力される。
Then sector 7 at sample hold (8/H) 16
After identification by the sample number recognized by the rotation period signal, the output total 17 outputs it as a concentration signal.

本実施例によυ得られた原子価4価のウランの測定例を
第3図に示す。測定波長は520nm。
FIG. 3 shows an example of measurement of tetravalent uranium obtained in this example. The measurement wavelength was 520 nm.

参照光波長は700nm、被検液のウラン濃度は120
fウラン/lであった。第S図より、520nm  の
吸収光度は時間とともに減少しているにもかかわらず、
吸収強度と参照光強度の比は安定した値を示すことがわ
かる。
The reference light wavelength is 700 nm, and the uranium concentration of the test liquid is 120.
f uranium/l. From Figure S, even though the absorption luminous intensity at 520 nm decreases with time,
It can be seen that the ratio between the absorption intensity and the reference light intensity shows a stable value.

〔発明の効果〕 本発明は上記構成を採用することにより、特に、参照光
として、波長700nmの光を利用し、ウランまたはプ
ルトニウムの吸収強度を参照光強度の比の値として測定
し、ウランまたはプルトニウムの濃度を決定することに
より、光学系の汚染、損傷による測定値のドリフトが著
しく小さくなシ、安定した計測が行えるようになった。
[Effects of the Invention] By adopting the above configuration, the present invention uses light with a wavelength of 700 nm as a reference light, measures the absorption intensity of uranium or plutonium as a ratio value of the reference light intensity, and By determining the concentration of plutonium, it has become possible to perform stable measurements with significantly less drift in measured values due to contamination or damage to the optical system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の全体図、第2図は第1図の
発光・受光部詳細図、第3図は実施例の吸収光度を示す
グラフである。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is an overall view of one embodiment of the present invention, FIG. 2 is a detailed view of the light emitting/light receiving portion of FIG. 1, and FIG. 3 is a graph showing the absorption luminous intensity of the embodiment. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] 使用済核燃料を再処理する施設で、ウランまたはプルト
ニウムを含む液の濃度を該物質の吸光性を利用して、測
定する光源及び特定の波長を選択する干渉フイルタ、選
択波長光を伝送する光フアイバ、接液カバーガラス、液
中を透過する光を反射するミラー、反射光を伝送する光
フアイバ、反射光の強さを電気信号に変換する受光素子
よりなるウランまたはプルトニウムの挿入型濃度計にお
いてウランまたはプルトニウムの吸収波長光の吸収強度
及びウランまたはプルトニウムの非吸収波長光の吸収強
度を利用する事を特徴とするウランまたはプルトニウム
の濃度測定方法。
A facility that reprocesses spent nuclear fuel uses a light source to measure the concentration of a liquid containing uranium or plutonium by using the light absorbing properties of the substance, an interference filter that selects a specific wavelength, and an optical fiber that transmits light of the selected wavelength. , a uranium or plutonium insertion type densitometer consisting of a liquid-contacted cover glass, a mirror that reflects light transmitted through the liquid, an optical fiber that transmits the reflected light, and a photodetector that converts the intensity of the reflected light into an electrical signal. Alternatively, a method for measuring the concentration of uranium or plutonium, characterized by using the absorption intensity of light at an absorption wavelength of plutonium and the absorption intensity of light at a non-absorption wavelength of uranium or plutonium.
JP61306349A 1986-12-24 1986-12-24 Concentration measuring method for uranium or plutonium Pending JPS63159736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61306349A JPS63159736A (en) 1986-12-24 1986-12-24 Concentration measuring method for uranium or plutonium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306349A JPS63159736A (en) 1986-12-24 1986-12-24 Concentration measuring method for uranium or plutonium

Publications (1)

Publication Number Publication Date
JPS63159736A true JPS63159736A (en) 1988-07-02

Family

ID=17956012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306349A Pending JPS63159736A (en) 1986-12-24 1986-12-24 Concentration measuring method for uranium or plutonium

Country Status (1)

Country Link
JP (1) JPS63159736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536534A (en) * 2004-05-07 2007-12-13 ヘルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Equipment for analyzing or absorbing small amounts of liquid media by light
JP2017125747A (en) * 2016-01-13 2017-07-20 三菱重工業株式会社 Probe-type elemental analysis device, and elemental analysis method
JP2018025527A (en) * 2016-08-09 2018-02-15 ケプコ ニュークリア フューエル カンパニー リミテッド METHOD FOR ANALYZING SINTERED DENSITY FOR URANIUM OXIDE (UOx), USING SPECTROPHOTOMETER
CN114136883A (en) * 2021-11-22 2022-03-04 杭州谱育科技发展有限公司 Detection system and method for multivalent plutonium element in nuclear fuel reprocessing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536534A (en) * 2004-05-07 2007-12-13 ヘルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Equipment for analyzing or absorbing small amounts of liquid media by light
JP2017125747A (en) * 2016-01-13 2017-07-20 三菱重工業株式会社 Probe-type elemental analysis device, and elemental analysis method
JP2018025527A (en) * 2016-08-09 2018-02-15 ケプコ ニュークリア フューエル カンパニー リミテッド METHOD FOR ANALYZING SINTERED DENSITY FOR URANIUM OXIDE (UOx), USING SPECTROPHOTOMETER
CN114136883A (en) * 2021-11-22 2022-03-04 杭州谱育科技发展有限公司 Detection system and method for multivalent plutonium element in nuclear fuel reprocessing

Similar Documents

Publication Publication Date Title
CA1115545A (en) Spectrophotometer
EP0250959B1 (en) Method of calibrating reflectance measuring devices
JPS6140520A (en) Spectrophotometer
EP0274403A2 (en) Light absorption analyser
JPH09281039A (en) Method and apparatus for measurement of concentration of alcohol in gas mixture by making use of absorption of radiation
JPH0131130B2 (en)
JPS63159736A (en) Concentration measuring method for uranium or plutonium
WO2005100955A1 (en) Method and apparatus for determining the absorption of weakly absorbing and/or scattering liquid samples
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
JP2002098631A (en) Smaller sample concentration measuring apparatus
US4775237A (en) Electro-optical detection system
JPH0222687Y2 (en)
JPS62278436A (en) Fluorescence light measuring method and apparatus
Frings et al. Calibration and monitoring of spectrometers and spectrophotometers.
JP3755997B2 (en) Liquid chromatograph
WO1986000406A1 (en) Automatic monochromator-testing system
JPH09133628A (en) Analyzer provided with built-in composite element
JPH04125431A (en) Spectrophotometer
KR820001025B1 (en) Infrared analysis equipment for gas
JP2761215B2 (en) Fluorescent color measurement device
JPH03214040A (en) Light analyzing apparatus
JPH0549930B2 (en)
JP2005345173A (en) Medical photometer
SU1704042A1 (en) Method of checking two-beam photometer with synchronous detection
SU1693394A1 (en) Device for measuring relative spectral sensitivity of photo detectors