JPH03214040A - Light analyzing apparatus - Google Patents

Light analyzing apparatus

Info

Publication number
JPH03214040A
JPH03214040A JP930890A JP930890A JPH03214040A JP H03214040 A JPH03214040 A JP H03214040A JP 930890 A JP930890 A JP 930890A JP 930890 A JP930890 A JP 930890A JP H03214040 A JPH03214040 A JP H03214040A
Authority
JP
Japan
Prior art keywords
light
sample
intensity
sample cell
irradiation surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP930890A
Other languages
Japanese (ja)
Inventor
Shinichi Kikuchi
真一 菊池
Ichiro Yoshino
一郎 吉野
Takeshi Shikamata
健 鹿又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP930890A priority Critical patent/JPH03214040A/en
Publication of JPH03214040A publication Critical patent/JPH03214040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To correct the measured value more accurately by forming the central line of projected luminous flux at an approximately vertical pattern with respect to the surface of a sample cell on which the light is projected, detecting the intensity of the reflected light at the illuminated surface, and obtaining the intensity of the monitoring light. CONSTITUTION:A light axis L of a collimate lens 16 is not formed in a correct vertical pattern but in an approximately vertical pattern with respect to a light-projected surface 20a of a sample cell 20. Thus, reflected exciting light is condensed in the vicinity of an output slit 14 of a spectroscopic monochrometer 12 for the exciting light through the lens 16. Then, the reflected light is detected with a photodetector 24A which is provided at this light condensing position. The light undergoes amplification 32 and A/D conversion 36 and the signal is inputted into a divider 40 as a divisor for the output value of the A/D converter 36. In this constitution, the reflectivity of the light-projected surface 20a is constant and not related to the absorbance of a sample 22. Therefore, it is not necessary to change the constant of a constant multiplier 41 even if the sample 22 is an unknown sample. Furthermore, since the intensity of the received light at the light-projected surface 20a is not affected with bubbles generated in the cell 20, the output of a photodetector 30 can be corrected more accurately.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は蛍光分光光度計又はUV検出器等の光分析装置
に関する。
The present invention relates to optical analysis devices such as fluorescence spectrophotometers or UV detectors.

【従来の技術】[Conventional technology]

第4図は従来の蛍光分光光度計の原理構成を示す。 光源1 0から放射された連続光のうち、 特定波 長の光が励起光分光用モノクロメータ12で選択されて
出射スリット14から射出され、コリメートレンズ16
で集光され、ビームスプリッタ18を透過して試料セル
20内の試料22に照射される。ビームスプリッタ18
で反射された光は、光検出器24で受光され、その光強
度に応じた電気信号に変換される。試料22は励起光を
受けて蛍光を発し、この蛍光は、コリメートレンズ26
で集光されて蛍光分光用モノクロメータ28に入射する
。蛍光分光用モノクロメータ28は、この入射光のうち
特定波長の光を選択して出射し、その光強度が光検出器
30で検出される。光検出器24及び30の検出信号は
それぞれ、了ンブ32.34で増幅され、A/D変換器
36.38でデジタル変換され、次いで除算器40に供
給されて、A/D変換器38の出力値がA/D変換器3
6の出力値で除せられ、その結果が定数倍器41で定数
倍され、表示器42に表示される。 励起光分光用モノクロメータ12の選択波長を固定して
蛍光分光用モノクロメータ28の選択波長を走査するこ
とにより、発光スペクトルが得られ、逆に、蛍光分光用
モノクロメータ28の選択波長を固定して励起光分光用
モノクロメータ12の選択波長を走査することにより、
励起スペクトルが得られる。 この蛍光分光光度計によれば、光源10の出力が時間的
に変動しても、上記除算により補正される。 ところが、光検出器24の受光強度は試料22の受光強
度に完全には比例しない。これは、試料セル20の寸法
が比較的小さい場合(液体クロマトグラフ用の場合、試
料セル20の横断内面は1.8mmX5mm程度)には
、コリメートレンズ16の収差に因り出射スリット14
から出た光が広がるたt、ビームスプリッタ18を通っ
た励起光の全てを試料22に照射することができないこ
と、及び、光源10の輝度分布の局所性に起因する。 また、ビームスプリッタ18が汚れたり破損したりする
と、測定値が信頼できなくなったり測定不能になったり
する。 このような問題点を解決するために、ビームスプリッタ
18を用いずに、試料セル20を透過した光を光検出器
24で検出する構成が提案されている(特願昭58−1
74833号公報)。
FIG. 4 shows the basic configuration of a conventional fluorescence spectrophotometer. Among the continuous light emitted from the light source 10, light with a specific wavelength is selected by the excitation light spectroscopy monochromator 12 and emitted from the output slit 14, and is emitted from the collimating lens 16.
The light is focused by the beam splitter 18 and irradiated onto the sample 22 in the sample cell 20 . Beam splitter 18
The light reflected by the photodetector 24 is received by the photodetector 24 and converted into an electrical signal according to the intensity of the light. The sample 22 emits fluorescence upon receiving the excitation light, and this fluorescence is transmitted through the collimating lens 26.
The light is focused and enters a monochromator 28 for fluorescence spectroscopy. The monochromator 28 for fluorescence spectroscopy selects and emits light of a specific wavelength from among the incident light, and the light intensity is detected by the photodetector 30. The detection signals of the photodetectors 24 and 30 are each amplified by amplifiers 32 and 34, digitally converted by A/D converters 36 and 38, and then supplied to a divider 40 to be input to the A/D converter 38. The output value is A/D converter 3
6, and the result is multiplied by a constant in a constant multiplier 41 and displayed on a display 42. An emission spectrum is obtained by fixing the selected wavelength of the monochromator 12 for excitation light spectroscopy and scanning the selected wavelength of the monochromator 28 for fluorescence spectroscopy; conversely, by fixing the selected wavelength of the monochromator 28 for fluorescence spectroscopy, By scanning the selected wavelength of the monochromator 12 for excitation light spectroscopy,
An excitation spectrum is obtained. According to this fluorescence spectrophotometer, even if the output of the light source 10 fluctuates over time, it is corrected by the above division. However, the intensity of light received by the photodetector 24 is not completely proportional to the intensity of light received by the sample 22. When the dimensions of the sample cell 20 are relatively small (in the case of liquid chromatography, the transverse inner surface of the sample cell 20 is approximately 1.8 mm x 5 mm), the exit slit 14 is caused by the aberration of the collimating lens 16.
This is due to the spread of the light emitted from the beam splitter, the inability to irradiate the sample 22 with all of the excitation light that has passed through the beam splitter 18, and the locality of the brightness distribution of the light source 10. Further, if the beam splitter 18 becomes dirty or damaged, the measured value becomes unreliable or becomes impossible to measure. In order to solve such problems, a configuration has been proposed in which the light transmitted through the sample cell 20 is detected by the photodetector 24 without using the beam splitter 18 (Japanese Patent Application No. 58-1
74833).

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、この透過光モニタ方式では、試料セル20内に
気泡が発生した場合、上記補正が正確に行われない。ま
た、試料22の光吸収の強さに応じて定数倍器41の定
数を設定変更する必要があるが、未知試料の場合には変
更不可能であるため、上記補正が正確に行なわれない。 本発明の目的は、このような問題点に鑑み、試料セル内
での気泡の発生や試料の吸光度に影響されずに、より正
確に測定値を補正することができる光分析装置を提供す
ることにある。
However, in this transmitted light monitoring method, if bubbles are generated within the sample cell 20, the above correction cannot be performed accurately. Furthermore, it is necessary to change the setting of the constant of the constant multiplier 41 according to the intensity of light absorption of the sample 22, but this cannot be changed in the case of an unknown sample, so the above correction cannot be performed accurately. In view of these problems, an object of the present invention is to provide an optical analyzer that can more accurately correct measured values without being affected by the generation of bubbles in the sample cell or the absorbance of the sample. It is in.

【課題解決手段及びその作用効果】[Problem solving means and their effects]

この目的を達成するために、本発明では、試料が入れら
れる透明の試料セルと、特定波長又は多波長の光束を該
試料に照射する照射光学系と、該試料から発せられた蛍
光の特定波長若しくは多波長の強度、又は、該試料を透
過した光の特定波長若しくは多波長の強度を検出する検
出光学系と、該照射光のモニター光強度を検出する手段
と、該モニター光強度に対する該検出光学系による光強
度を求める光強度補正手段とを有する、蛍光分光光度計
又はUV検出器等の光分析装置において、該試料セルの
光照射面に対し照射光束の中心線が略垂直(垂直を除く
)になるようにし、該モニター光強度検出手段は、照射
光の該照射面での反射光の強度を検出する光検出器で構
成している。 本発明では、試料セルの光照射面の反射率が定であるの
で、光照射面の受光強度が試料の受光強度に比例する。 また、光照射面の反射率は試料の吸光度とは無関係であ
る。さらに、光照射面の受光強度は、試料セル内に発生
する気泡の影響を受けることがない。 したがって、試料セル内での気泡の発生や試料の吸光度
に影響されずに、より正確に測定値を補正することがで
きる。 また、ビームスプリッタを用いていないので、その汚れ
や損傷の心配がなく、装置の信頼性が向上する。 試料セルの光照射面に、該照射面からの反射光東の幅が
試料を透過する光束の幅に等しくなるように、反射防止
マスクを付ければ、試料セルの寸法が小さくても、光照
射面での反射光の強度と試料を通る光の強度の比は一定
になる。このため、上記効果がより確実に達成される。 また、試料セルの光照射面を、試料セル内壁面の該照射
面に対向する面に対し、略平行(平行を除く)にすれば
、試料セルの光照射面と反対側の面での反射光がモニタ
ー光強度検出用光検出器に到達しないので、上記効果が
より確実に達成される。
In order to achieve this objective, the present invention includes a transparent sample cell into which a sample is placed, an irradiation optical system that irradiates the sample with a light beam of a specific wavelength or multiple wavelengths, and a specific wavelength of fluorescence emitted from the sample. or a detection optical system for detecting the intensity of multiple wavelengths, or the intensity of a specific wavelength or multiple wavelengths of light transmitted through the sample, a means for detecting the monitor light intensity of the irradiated light, and the detection for the monitor light intensity. In an optical analysis device such as a fluorescence spectrophotometer or a UV detector, which has a light intensity correction means for determining the light intensity by an optical system, the center line of the irradiated light beam is approximately perpendicular to the light irradiation surface of the sample cell. The monitor light intensity detection means is constituted by a photodetector that detects the intensity of reflected light of the irradiation light on the irradiation surface. In the present invention, since the reflectance of the light irradiation surface of the sample cell is constant, the light reception intensity of the light irradiation surface is proportional to the light reception intensity of the sample. Further, the reflectance of the light irradiated surface is unrelated to the absorbance of the sample. Furthermore, the intensity of light received by the light irradiation surface is not affected by bubbles generated within the sample cell. Therefore, the measured value can be corrected more accurately without being affected by the generation of bubbles in the sample cell or the absorbance of the sample. Furthermore, since a beam splitter is not used, there is no need to worry about it getting dirty or damaged, improving the reliability of the device. If an anti-reflection mask is attached to the light irradiation surface of the sample cell so that the width of the reflected light east from the irradiation surface is equal to the width of the light flux that passes through the sample, light irradiation can be prevented even if the sample cell is small in size. The ratio of the intensity of light reflected by the surface to the intensity of light passing through the sample becomes constant. Therefore, the above effects can be achieved more reliably. In addition, if the light irradiation surface of the sample cell is made approximately parallel (excluding parallelism) to the surface of the sample cell inner wall facing the irradiation surface, reflection on the surface opposite to the light irradiation surface of the sample cell can be avoided. Since the light does not reach the photodetector for monitoring light intensity detection, the above effect can be achieved more reliably.

【実施例】【Example】

以下、図面に基づいて本発明の一実施例を説明する。 (1)第1実施例 第1図は本発明に係る光分析装置が適用された蛍光分光
光度計の構成を示す。第4図と同一構成要素には同一符
号を付してその説明を省略する。 この分光光度計では、コリメートレンズ16の光軸りを
試料セル20の光照射面20aに対し略垂直(垂直を除
く)にしている。これにより、光照射面20aで反射さ
れた励起光は、コリメートレンズ16を通って出射スリ
ット14の近くに集光される。この集光位置に対応して
、励起光分光用モノクロメータ12に光検出器24Aが
配設されている。光検出器24への出力は、アンプ32
で増幅され、A/D変換器36でデジタル変換され、A
/D変換器38の出力値に対する除数として除算器40
へ供給される。 光照射面20aでの励起光の反射率は通常5%程度であ
り、モニタ光強度としては充分である。 上記構成によれば、光照射面20aの反射率が一定、す
なわち光照射面20aの受光強度が試料22の受光強度
に比例する。また、光照射面20aの反射率は試料22
の吸光度とは無関係であるため、試料22が未知試料で
あっても定数倍器41の定数を変更する必要がない。さ
らに、光照射面20aの受光強度は、試料セル20内に
発生する気泡の影響を受けることがない。したがって、
第4図に示す構成よりもより正確に光検出器30の出力
を補正することができる。 また、ビームスプリッタ18を用いていないので、その
汚れや損傷の心配がなく、装置の信頼性が向上する。 (2)第2実施例 第2図は蛍光分光光度計で使用される試料セル20の断
面を示す。この試料セル20の、励起光が照射される光
照射面20aには、スリット状の反射防止マスク44が
被着されている。その開口は長方形であり、横巾は試料
セル20の内壁幅に等しくなっている。すなわち、光照
射面20aからの反射光東の幅は、試料22を通過する
光束の幅に等しくなっている。 したがって、試料セル200寸法が小さいために、励起
光を波長走査したときに、コリメートレンズ16の収差
に因り光照射面20Hに対する入射光束の幅が変動して
も、光照射面20aでの反射光の強度と試料22を通る
光の強度の比は一定になる。このため、上記第1実施例
で述べた効果がより確実に達成される。 (3)第3実施例 第3図は蛍光分光光度計で使用される試料セル2OAの
断面を示す。この試料セル2OAは、励起光が照射され
る光照射面208′が、光照射面20a°に対向する内
壁面20bに略平行(平行を除く)になっている。 したがって、光照射面20a’ 上のP点に入射した光
は、その一部(約5%)が反射され、残り(約95%)
が試料セル2OAの内壁QSRを通り、試料セル2OA
の外壁Sでその一部が反射され、これが試料セル2OA
の内壁点り、Uを通り、光照射面20a′上の点Vを通
って入射方向と略反対方向へ戻る。この戻り方向は、P
点での反射光の方向とずれるため、第1図に示す光検出
器24Aには到達しない。 なあ、試料セル2OAの屈折率は約1.5であり、液体
クロマトグラフで使用する溶媒の屈折率は通常1.3〜
1.6であるので、試料22と試料セル2OAとの間の
相対屈折率は1に近く、点Q、R,T及びUでの反射光
(反射率的0.8%程度)は無視することができる。 他の構成は第1実施例と同一である。本実施例によれば
、試料セル2OAの光照射面20a  と反対側の面で
の反射光が光検出器24Aに到達しないので、上記第1
実施例で述べた効果がより確実に達成される。 なお、本発明には外にも種々の変形例が含まれる。 例えば、上記実施例において、励起光分光用モノクロメ
ータ12又は蛍光分光用モノクロメータ28のいずれか
一方を省略した構成であってもよい。 また、上記実施例では本発明を蛍光分光光度計に適用し
た場合を説明したが、本発明はUV検出器にも適用する
ことができる。この場合、光検出器30は試料セルを透
過した光の強度を検出する。
Hereinafter, one embodiment of the present invention will be described based on the drawings. (1) First Embodiment FIG. 1 shows the configuration of a fluorescence spectrophotometer to which an optical analysis device according to the present invention is applied. Components that are the same as those in FIG. 4 are given the same reference numerals and their explanations will be omitted. In this spectrophotometer, the optical axis of the collimating lens 16 is approximately perpendicular (excluding perpendicular) to the light irradiation surface 20a of the sample cell 20. Thereby, the excitation light reflected by the light irradiation surface 20a passes through the collimator lens 16 and is focused near the output slit 14. A photodetector 24A is arranged in the monochromator 12 for excitation light spectroscopy corresponding to this light focusing position. The output to the photodetector 24 is provided by an amplifier 32.
is amplified by A/D converter 36 and digitally converted by
divider 40 as a divisor for the output value of /D converter 38
supplied to The reflectance of the excitation light on the light irradiation surface 20a is usually about 5%, which is sufficient for monitoring light intensity. According to the above configuration, the reflectance of the light irradiation surface 20a is constant, that is, the light reception intensity of the light irradiation surface 20a is proportional to the light reception intensity of the sample 22. Furthermore, the reflectance of the light irradiation surface 20a is the same as that of the sample 22.
Since it has nothing to do with the absorbance of , there is no need to change the constant of the constant multiplier 41 even if the sample 22 is an unknown sample. Furthermore, the intensity of light received by the light irradiation surface 20a is not affected by bubbles generated within the sample cell 20. therefore,
The output of the photodetector 30 can be corrected more accurately than the configuration shown in FIG. 4. Furthermore, since the beam splitter 18 is not used, there is no need to worry about its dirt or damage, and the reliability of the apparatus is improved. (2) Second Embodiment FIG. 2 shows a cross section of a sample cell 20 used in a fluorescence spectrophotometer. A slit-shaped anti-reflection mask 44 is attached to the light irradiation surface 20a of the sample cell 20, which is irradiated with the excitation light. The opening is rectangular and the width is equal to the width of the inner wall of the sample cell 20. That is, the width of the reflected light from the light irradiation surface 20a is equal to the width of the light beam passing through the sample 22. Therefore, because the dimensions of the sample cell 200 are small, even if the width of the incident light flux to the light irradiation surface 20H changes due to the aberration of the collimating lens 16 when the wavelength of the excitation light is scanned, the reflected light on the light irradiation surface 20a The ratio of the intensity of the light passing through the sample 22 to the intensity of the light passing through the sample 22 becomes constant. Therefore, the effects described in the first embodiment can be achieved more reliably. (3) Third Embodiment FIG. 3 shows a cross section of a sample cell 2OA used in a fluorescence spectrophotometer. In this sample cell 2OA, a light irradiation surface 208' to which excitation light is irradiated is approximately parallel (excluding parallelism) to an inner wall surface 20b facing the light irradiation surface 20a. Therefore, a portion (approximately 5%) of the light incident on point P on the light irradiation surface 20a' is reflected, and the remainder (approximately 95%)
passes through the inner wall QSR of sample cell 2OA, and
A part of it is reflected by the outer wall S of the sample cell 2OA.
The light passes through the inner wall point U, passes through point V on the light irradiation surface 20a', and returns in a direction substantially opposite to the direction of incidence. This return direction is P
The reflected light does not reach the photodetector 24A shown in FIG. 1 because it deviates from the direction of the reflected light at the point. By the way, the refractive index of the sample cell 2OA is about 1.5, and the refractive index of the solvent used in liquid chromatographs is usually 1.3 to 1.5.
1.6, the relative refractive index between the sample 22 and the sample cell 2OA is close to 1, and the reflected light at points Q, R, T, and U (approximately 0.8% in terms of reflectance) is ignored. be able to. The other configurations are the same as in the first embodiment. According to this embodiment, since the reflected light from the surface opposite to the light irradiation surface 20a of the sample cell 2OA does not reach the photodetector 24A, the first
The effects described in the examples are more reliably achieved. Note that the present invention includes various other modifications. For example, in the above embodiment, either the monochromator 12 for excitation light spectroscopy or the monochromator 28 for fluorescence spectroscopy may be omitted. Further, in the above embodiments, the case where the present invention is applied to a fluorescence spectrophotometer has been described, but the present invention can also be applied to a UV detector. In this case, the photodetector 30 detects the intensity of light transmitted through the sample cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光分析装置が適用された第1実施
例の蛍光分光光度計の原理構成を示す。 第2図は本発明の第2実施例の試料セルの構成を示す横
断面図、 第3図は本発明の第3実施例の試料セルの構成を示す横
断面図である。 第4図は従来の蛍光分光光度計の原理構成図である。 図中、 10は光源 I2は励起光分光用モノクロメータ 14は出射スリット 16.26はコリメートレンズ 18はビームスプリッタ 0.20Δは試料セル 4.24A、30は光検出器 8は蛍光分光用モノクロメータ lは定数倍器 4は反射防止マスク
FIG. 1 shows the basic configuration of a fluorescence spectrophotometer according to a first embodiment to which an optical analysis device according to the present invention is applied. FIG. 2 is a cross-sectional view showing the structure of a sample cell according to a second embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the structure of a sample cell according to a third embodiment of the present invention. FIG. 4 is a diagram showing the basic structure of a conventional fluorescence spectrophotometer. In the figure, 10 is a light source I2 is a monochromator for excitation light spectroscopy 14 is an exit slit 16, 26 is a collimating lens 18 is a beam splitter 0.20Δ is a sample cell 4.24A, and 30 is a photodetector 8 is a monochromator for fluorescence spectroscopy. l is a constant multiplier 4 is an anti-reflection mask

Claims (1)

【特許請求の範囲】 1)、試料(22)が入れられる透明の試料セル(20
)と、 光束を該試料に照射する照射光学系(10〜16)と、 該試料から発せられた蛍光の強度又は該試料を透過した
光の強度を検出する検出光学系(26〜30)と、 該照射光のモニター光強度を検出する手段と、該モニタ
ー光強度に対する該検出光学系による光強度を求める光
強度補正手段(32〜40)と、を有する光分析装置に
おいて、 該試料セルの光照射面に対し照射光束の中心線(L)が
略垂直(垂直を除く)になるようにし、該モニター光強
度検出手段は、照射光の該照射面での反射光の強度を検
出する光検出器(24A)であることを特徴とする光分
析装置。 2)、前記試料セルの光照射面に、該照射面からの反射
光束の幅が該試料を透過する光束の幅に等しくなるよう
に、反射防止マスク(44)を付けたことを特徴とする
請求項1記載の光分析装置。 3)、前記試料セルの光照射面(20a′)を、該試料
セル内壁面の該照射面に対向する面(20b)に対し、
略平行(平行を除く)にしたことを特徴とする請求項1
記載の光分析装置。
[Claims] 1) A transparent sample cell (20) into which a sample (22) is placed;
), an irradiation optical system (10 to 16) that irradiates the sample with a luminous flux, and a detection optical system (26 to 30) that detects the intensity of fluorescence emitted from the sample or the intensity of light transmitted through the sample. , an optical analyzer having a means for detecting a monitor light intensity of the irradiation light, and a light intensity correction means (32 to 40) for determining the light intensity by the detection optical system with respect to the monitor light intensity, The center line (L) of the irradiated light beam is made to be approximately perpendicular (excluding perpendicular) to the light irradiation surface, and the monitor light intensity detection means detects the intensity of the reflected light of the irradiation light on the irradiation surface. An optical analysis device characterized by being a detector (24A). 2) An anti-reflection mask (44) is attached to the light irradiation surface of the sample cell so that the width of the light beam reflected from the irradiation surface is equal to the width of the light beam transmitted through the sample. The optical analysis device according to claim 1. 3), the light irradiation surface (20a') of the sample cell is connected to the surface (20b) of the inner wall surface of the sample cell that faces the irradiation surface,
Claim 1 characterized in that they are substantially parallel (excluding parallel).
The optical analysis device described.
JP930890A 1990-01-18 1990-01-18 Light analyzing apparatus Pending JPH03214040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP930890A JPH03214040A (en) 1990-01-18 1990-01-18 Light analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP930890A JPH03214040A (en) 1990-01-18 1990-01-18 Light analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH03214040A true JPH03214040A (en) 1991-09-19

Family

ID=11716844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP930890A Pending JPH03214040A (en) 1990-01-18 1990-01-18 Light analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH03214040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008631A (en) * 2006-06-27 2008-01-17 Fujifilm Corp Sensor, sensing device, and sensing method
JP2013178123A (en) * 2012-02-28 2013-09-09 Dainippon Screen Mfg Co Ltd Electromagnetic wave response measuring device
CN106197665A (en) * 2015-04-29 2016-12-07 中国科学院苏州纳米技术与纳米仿生研究所 Spectrum test device and method of testing thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375535A (en) * 1986-09-18 1988-04-05 Shimadzu Corp Chromatoscanner
JPH01109245A (en) * 1987-10-21 1989-04-26 Hitachi Ltd Fluorescent photometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375535A (en) * 1986-09-18 1988-04-05 Shimadzu Corp Chromatoscanner
JPH01109245A (en) * 1987-10-21 1989-04-26 Hitachi Ltd Fluorescent photometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008631A (en) * 2006-06-27 2008-01-17 Fujifilm Corp Sensor, sensing device, and sensing method
JP4762801B2 (en) * 2006-06-27 2011-08-31 富士フイルム株式会社 Sensor, sensing device
JP2013178123A (en) * 2012-02-28 2013-09-09 Dainippon Screen Mfg Co Ltd Electromagnetic wave response measuring device
CN106197665A (en) * 2015-04-29 2016-12-07 中国科学院苏州纳米技术与纳米仿生研究所 Spectrum test device and method of testing thereof
CN106197665B (en) * 2015-04-29 2018-11-09 中国科学院苏州纳米技术与纳米仿生研究所 Spectrum test device and its test method

Similar Documents

Publication Publication Date Title
JPS628729B2 (en)
JPS6116010B2 (en)
US6067156A (en) Wavelength calibration and tracking methods and apparatus
JPS58174833A (en) Fluorescent luminous intensity meter
EP3748339B1 (en) Device for gas analysis using raman spectroscopy
JPH038686B2 (en)
JPH04232840A (en) Photo-detector for capillary chromatography
US4533246A (en) Photometer for measuring atomic fluorescence
EP1447651B1 (en) Optical measuring device with wavelength-selective light source
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
JP4797233B2 (en) Compact sample concentration measuring device
JPH03214040A (en) Light analyzing apparatus
JPH0989763A (en) Atomic absorption spectrophotometer
JP4737896B2 (en) Sample concentration measuring device
JP2898489B2 (en) Equipment for spectrophotometric analysis
JP7486178B2 (en) Spectroscopic equipment
US20090173891A1 (en) Fluorescence detection system
JPH10115583A (en) Spectrochemical analyzer
JPS6175203A (en) Apparatus for measuring thickness of film
JPH11142241A (en) Measuring apparatus for spectral transmittance
JP2000206047A (en) Spectrum-measuring device
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
JP2895816B2 (en) ICP emission spectrometer
JPS6388430A (en) Absolute reflection factor measuring apparatus
JP2000074742A (en) Spectroscope and light spectrum analyzer