JPS62278436A - Fluorescence light measuring method and apparatus - Google Patents

Fluorescence light measuring method and apparatus

Info

Publication number
JPS62278436A
JPS62278436A JP12101586A JP12101586A JPS62278436A JP S62278436 A JPS62278436 A JP S62278436A JP 12101586 A JP12101586 A JP 12101586A JP 12101586 A JP12101586 A JP 12101586A JP S62278436 A JPS62278436 A JP S62278436A
Authority
JP
Japan
Prior art keywords
fluorescence
scattered light
light
intensity
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12101586A
Other languages
Japanese (ja)
Inventor
Satoshi Takahashi
智 高橋
Daizo Tokinaga
時永 大三
Teruaki Kobayashi
映章 小林
Keiichi Nagai
啓一 永井
Kenji Yasuda
健二 保田
Kazunari Imai
一成 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12101586A priority Critical patent/JPS62278436A/en
Publication of JPS62278436A publication Critical patent/JPS62278436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a highly accurate measurement of fluorescence light, by providing a fluorescence light measuring device with a scattered light measuring section for measuring the intensity thereof to correct the effect of the intensity of scattered lights when greatly affecting the highly accurate measurement and quantitative assay of fluorescence light. CONSTITUTION:Radiation 2 from a light source 1 such as high pressure xenon lamp is focused with a lens 3 to be introduced to an excitation wavelength selector 4. An excitation light 5 analyzed with the excitation wavelength selector 4 is focused with a lens 6 to irradiate a sample 7. Fluorescence and scattered light from the sample 7 are collimated with a lens 8 and the lights are made incident on a dichroic mirror 9 which transmits fluorescence component of the light while reflecting the scattered light component thereof in the direction of 45 deg. to separate the fluorescence 10 from the scattered light 11. These lights are focused with lenses 12 and 13 to be introduced to a fluorescence wavelength selector 14 and a scattered light wavelength selector 15 to analyze and then, the intensities of the fluorescence light and the scattered light are measured respectively with photodetectors 16 and 17 such as photoelectric multiplier tube. The measured values thus obtained are sent to a correction computing section 18 to calculate the correct intensity of fluorescence using a specified formula and results are recorded on a recorder 19.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は蛍光測定法及び装置に係り、特に散乱光強度の
強い試料、及び散乱光強度が時間的に変化しやすい試料
の蛍光測定に好適な方法及び装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fluorescence measurement method and apparatus, and is particularly applicable to a sample with a strong scattered light intensity and a fluorescence measurement method where the scattered light intensity changes over time. The present invention relates to a method and apparatus suitable for easy fluorescence measurement of samples.

〔従来の技術〕[Conventional technology]

蛍光強度等を計測するための装置として蛍光光度計が一
般に使用されている。この装置は、基本的に光源、励起
波長選択器、試料室、蛍光波長選択器、及び光検出器の
5つの部分で構成される。
A fluorometer is generally used as a device for measuring fluorescence intensity and the like. This device basically consists of five parts: a light source, an excitation wavelength selector, a sample chamber, a fluorescence wavelength selector, and a photodetector.

通常、紫外・可視域の光を放射するランプを光源とし、
その光をモノクロメータ等の励起波長選択器を通して試
料を励起するのに適当な波長の光に分光し、試料に照射
する。その結果生じる蛍光をモノクロメータ等の蛍光波
長選択器を通して、検出器で受光する。しかし、実際の
蛍光測定においては、目的とする蛍光成分の他に種々の
光成分が検出される。特に、試料が低濃度の場合、また
は試料が高散乱体の場合には、散乱光などの盲蛍光成分
が相対的に増大し、高感度・高精度な蛍光測定を妨げて
いる。そこで高感度・高精度な蛍光測定を行うために種
々の工夫が従来より施されている。
Usually, the light source is a lamp that emits light in the ultraviolet and visible range,
The light is passed through an excitation wavelength selector such as a monochromator and separated into light having a wavelength suitable for exciting the sample, and the light is irradiated onto the sample. The resulting fluorescence is passed through a fluorescence wavelength selector such as a monochromator and received by a detector. However, in actual fluorescence measurement, various light components are detected in addition to the target fluorescence component. In particular, when the concentration of the sample is low or when the sample is a highly scattering substance, blind fluorescent components such as scattered light increase relatively, hindering highly sensitive and highly accurate fluorescence measurements. Therefore, various efforts have been made to perform fluorescence measurements with high sensitivity and precision.

例えば、「ザレビューオブサイエンテイフイク インス
ツルメンツ、 33.(1962年)第1213頁から
第1215頁(The Review of Scie
ntificInstruments、 33 (19
62) pp1213〜1215)に論じられているよ
うに光源強度の変動を補償する方法や、「ネイチャー1
82 (1958年)第1002頁から第1004頁(
Nature 182  (1958) ppio02
−1004)に論じられているような光源の強度分布を
目動的に補正する方法等によって、高精度な蛍光測定を
行っていた。
For example, "The Review of Scientific Instruments, 33. (1962) pp. 1213-1215.
ntificInstruments, 33 (19
62) How to compensate for fluctuations in light source intensity as discussed in pp. 1213-1215) and
82 (1958) pp. 1002-1004 (
Nature 182 (1958) ppio02
-1004), highly accurate fluorescence measurements were carried out using a method of manually correcting the intensity distribution of a light source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来例では、主に光源の時間的変動や光源・分光器
等の装置自体の特性を補正して高精度化をはかつている
。しかし、実際の蛍光測定では、その他に、盲蛍光が目
的とする蛍光成分に混入し、蛍光強度の測定精度・定量
性を悪くしている。盲蛍光としては、■散乱や反射光、
■ラマン散乱光、及びそれらの二次光、■分光器等の光
学系における異常反射によるいわゆる迷光、■その他、
溶媒・蛍光セル等からの蛍光が考えられる。
In the conventional example, high accuracy is achieved mainly by correcting temporal fluctuations in the light source and characteristics of the devices themselves such as the light source and spectrometer. However, in actual fluorescence measurement, blind fluorescence also contaminates the target fluorescence component, impairing the measurement accuracy and quantification of fluorescence intensity. Blind fluorescence includes ■scattered and reflected light,
■Raman scattered light and its secondary light, ■So-called stray light due to abnormal reflection in optical systems such as spectrometers, ■Others,
Fluorescence from solvents, fluorescent cells, etc. is considered.

目的とする蛍光波長以外の成分(散乱光等)はフィルタ
ーやモノクロメータにより減少させろことができるが、
散乱光成分の裾が蛍光波長と重なること等のため完全に
除くことはできず、盲蛍光として検出される。これらは
、試料が低濃度の場合や高散乱体の場合に特に問題とな
る。盲蛍光は。
Components other than the desired fluorescence wavelength (scattered light, etc.) can be reduced using a filter or monochromator, but
Because the tail of the scattered light component overlaps with the fluorescence wavelength, it cannot be completely removed and is detected as blind fluorescence. These are particularly problematic when the sample has a low concentration or is a highly scattering material. Blind fluorescence.

目的とする蛍光成分を持たない外は全く同一状態の標準
試料が用意できる場合に、試料と標準試料の蛍光強度を
交互に測定し差し引くことができる。
When a standard sample that is completely identical except for not having the desired fluorescent component can be prepared, the fluorescence intensities of the sample and the standard sample can be alternately measured and subtracted.

しかし、一般にこのような標準試料を用意することは回
連である。特に、凝集状態の蚕白質、生体膜、及びポリ
マー等の試料自体が高散乱体であり、試料毎の、また同
一試料でも測定部分の違いによって散乱光強度が異なる
ような場合あるいは溶液等で試料自体や他のゴミや気泡
等の散乱体の沈降により散乱光強度が経時的に変化する
場合、浸潤状態の粉体や固体試料で乾燥状態の差によっ
て散乱光強度が変化する場合、試料中の蛍光体が高分子
のときのように試料濃度の変化によって散乱光強度が変
化する場合、それらに対する標準試料を作製することは
非常に困難である。以上述べたような場合等において、
散乱光は蛍光の高精度・定量測定を妨げる大きな要因で
あるが、前記従来例においては、このような散乱光の除
去については十分に配慮されていなかった。
However, preparing such standard samples is generally repeated. In particular, samples such as aggregated silkworm white matter, biological membranes, and polymers are highly scattering substances, and the intensity of scattered light varies from sample to sample or even in the same sample depending on the measurement area, or when the sample is in solution. If the scattered light intensity changes over time due to sedimentation of scatterers such as itself or other dust or air bubbles, or if the scattered light intensity changes due to differences in the drying state of powder or solid samples in an infiltrated state, When the intensity of scattered light changes due to changes in sample concentration, such as when the phosphor is a polymer, it is extremely difficult to prepare standard samples for these changes. In cases such as those mentioned above,
Scattered light is a major factor that hinders highly accurate and quantitative measurement of fluorescence, but in the conventional example, sufficient consideration has not been given to the removal of such scattered light.

本発明の目的は、上記問題点に鑑み、VS定試料が散乱
体の場合、試料毎に散乱光強度が異なる場合、及び散乱
率が測定時間内において変化する場合等、散乱光強度が
蛍光の高精度測定・定量測定に大きく影響する場合に、
その影響を補正し、高精度な蛍光測定を行う方法及び装
置を提供することにある 〔問題点を解決するための手段〕 上記目的は、蛍光測定装置において、蛍光測定部の他に
、新たに散乱光を検出する光学系と散乱光検出器、及び
、′lIA定された蛍光強度に含まれる散乱光強度を計
算し補正する演算部を設けることにより、達成される。
In view of the above-mentioned problems, an object of the present invention is to provide a method in which the intensity of scattered light is different from that of fluorescence when the VS constant sample is a scatterer, when the scattered light intensity differs from sample to sample, and when the scattering rate changes within the measurement time. In cases where high precision measurement/quantitative measurement is significantly affected,
[Means for solving the problem] The above purpose is to provide a method and apparatus for correcting the influence and performing highly accurate fluorescence measurement [Means for solving the problem]. This is achieved by providing an optical system for detecting scattered light, a scattered light detector, and an arithmetic unit that calculates and corrects the scattered light intensity included in the fluorescence intensity determined by 'lIA.

(作用〕 散乱光を検出するための光学系により、試料面及び内部
で生じる散乱光の強度を散乱光検出器により測定する。
(Operation) Using an optical system for detecting scattered light, the intensity of scattered light generated on the sample surface and inside is measured by a scattered light detector.

また、散乱光検出系における透過散乱光強度の全散乱強
度に対する割合と、蛍光測定系において蛍光波長での透
過散乱光強度の全散乱強度に対する割合は、散乱波長及
び蛍光波長の組み合せにより装置自体の定数として決定
する。そこで、補正演算部では、これらの情報を使用し
て、測定された散乱光強度及び蛍光強度から蛍光強度内
に含まれる散乱光強度を計算し、蛍光強度から差し引(
ことにより、正確な蛍光強度を算定し出力する。
In addition, the ratio of the transmitted scattered light intensity to the total scattered intensity in the scattered light detection system and the ratio of the transmitted scattered light intensity to the total scattered intensity at the fluorescence wavelength in the fluorescence measurement system are determined by the combination of the scattering wavelength and the fluorescence wavelength. Determine as a constant. Therefore, the correction calculation unit uses this information to calculate the scattered light intensity included in the fluorescence intensity from the measured scattered light intensity and fluorescence intensity, and subtracts it from the fluorescence intensity (
This allows accurate fluorescence intensity to be calculated and output.

(実施例〕 以下1図面を参照して本発明の一実施例について説明す
る。
(Example) An example of the present invention will be described below with reference to one drawing.

第1図は本発明による蛍光測定装置の構成図である。高
圧キセノンランプや高圧水銀ランプなどの光源1からの
放射光2をレンズ3で集光し、モノクロメータ、ダブル
モノクロメータ、干渉フィルタなどの励起波長選択器4
に導く。励起波長選択器4により分光された励起光5を
レンズ6を用いて集光し、試料7に照射する。なお励起
光5が試料7を励起するのに適当な波長の光となるよう
に励起波長選択器4を調整する。試料から発する蛍光1
0と散乱体11をレンズ8を用いてコリメートするにの
光を、散乱光成分を反射して蛍光成分を透過させるダイ
クロインクミラー9に45″の方向から入射させて、蛍
光10と散乱光11とに分離する。さらにそれぞれをレ
ンズ12゜13で集光して蛍光波長選択器14、散乱波
長選択器15に導き、それぞれを分光したのち光電子増
倍管等の光検出器16.17で蛍光強度、散乱光強度を
測定する。この蛍光強度と散乱光強度を補正演算部18
に送り、正しい蛍光強度を算定し、記録計19にて記録
する。
FIG. 1 is a block diagram of a fluorescence measuring device according to the present invention. Emitted light 2 from a light source 1 such as a high-pressure xenon lamp or a high-pressure mercury lamp is focused by a lens 3, and an excitation wavelength selector 4 such as a monochromator, double monochromator, or interference filter is used.
lead to. The excitation light 5 separated by the excitation wavelength selector 4 is focused using a lens 6 and irradiated onto the sample 7. The excitation wavelength selector 4 is adjusted so that the excitation light 5 has a wavelength suitable for exciting the sample 7. Fluorescence emitted from the sample 1
0 and the scatterer 11 using the lens 8 are incident on the dichroic ink mirror 9 from the direction of 45'', which reflects the scattered light component and transmits the fluorescent component, and the fluorescent light 10 and the scattered light 11 are collimated using the lens 8. Further, each of the lights is focused by a lens 12 and 13, guided to a fluorescence wavelength selector 14 and a scattering wavelength selector 15, and after being separated into spectra, the fluorescence is detected by a photodetector 16 and 17 such as a photomultiplier tube. The fluorescence intensity and the scattered light intensity are measured.The fluorescence intensity and the scattered light intensity are corrected by the calculation unit 18.
The correct fluorescence intensity is calculated and recorded by the recorder 19.

補正演算部18では次のような演算を行う、最初に、レ
ンズ8によってコリメートされた散乱光のうち、ダイク
ロインクミラー9で反射され、レンズ13、散乱波長選
択器15を通り光検出器17で測定される割合をα(λ
ex) (λe買:散乱光波長)とする。また、散乱光
の中で、ダイクロイックミラー9を透過し、レンズ12
.蛍光波長の光を透過するように調整した蛍光波長選択
器14を通り、光検出器16で測定される割合をβ(λ
。。。
The correction calculation unit 18 performs the following calculation. First, the scattered light collimated by the lens 8 is reflected by the dichroic ink mirror 9, passes through the lens 13 and the scattered wavelength selector 15, and is detected by the photodetector 17. Let α(λ
ex) (λe = wavelength of scattered light). Also, among the scattered light, it passes through the dichroic mirror 9 and the lens 12
.. The ratio of light passing through the fluorescence wavelength selector 14 adjusted to transmit light of the fluorescence wavelength and measured by the photodetector 16 is β(λ
. . .

λ。、)(λe、:蛍光波長)とする。α(λθxLβ
(λeX、λeJは散乱光波長、蛍光波長が決定すれば
装置固有の値であるため一度校正を行えば後の校正は不
必要である。なお、これらの校正データをメモリ20に
記憶させておくことにより操作性を向上させることがで
きろ。以上のデータを基に、光検出器16で測定された
蛍光強度(わずかの散乱光強度を含む)をI amIs
sIonとし、光検出器17で測定された散乱光強度を
I 5eatier とすると、補正演算部では を計算する。この値が、混入していた散乱光成分を除い
た真の蛍光強度となる。
λ. , )(λe,: fluorescence wavelength). α(λθxLβ
(Once the scattered light wavelength and fluorescence wavelength are determined, λeX and λeJ are values unique to the device, so once the calibration is performed, subsequent calibration is unnecessary. Note that these calibration data are stored in the memory 20. Based on the above data, the fluorescence intensity (including a slight scattered light intensity) measured by the photodetector 16 is
sIon and the scattered light intensity measured by the photodetector 17 is I 5eater , the correction calculation unit calculates . This value becomes the true fluorescence intensity excluding the mixed scattered light component.

本実施例では、蛍光と散乱光とを分離するためにダイク
ロイックミラー9を使用しているが、蛍光及び散乱光波
長選択器14.15を併用しているため、ダイクロイッ
クミラーの代りにハーフミラ−を使用することができる
。なお、当然のことながらその場合α(λeX) lβ
(λear λe、)の値はその場合に特有の値となる
。また蛍光及び散乱光波長選択器14.15としては2
モノクロメータが有効であるが、散乱光波長選択器15
は、蛍光強度に比べ散乱光強度がはるかに大きい場合に
In this example, a dichroic mirror 9 is used to separate fluorescence and scattered light, but since fluorescence and scattered light wavelength selectors 14 and 15 are also used, a half mirror is used instead of the dichroic mirror. can be used. Of course, in that case α(λeX) lβ
The value of (λear λe,) is a value specific to that case. In addition, as the fluorescence and scattered light wavelength selector 14.15, 2
Although a monochromator is effective, a scattered light wavelength selector 15
is when the scattered light intensity is much larger than the fluorescence intensity.

干渉フィルタ等でも十分である。An interference filter or the like is also sufficient.

また、本実施例では、蛍光と散乱体を同じ方向から集光
し検出しているが、異なった光路により別々の方向から
検出することも可能である。この場合は、一般に散乱光
強度が検出角度によって変化するため、方向の違いに対
する補正をも行う必要がある。
Further, in this embodiment, the fluorescent light and the scatterer are collected and detected from the same direction, but it is also possible to detect them from different directions using different optical paths. In this case, since the scattered light intensity generally changes depending on the detection angle, it is also necessary to correct for the difference in direction.

第2図に、第1図で示した測定装置を使用したときの効
果を示す21!q定図を示す、第2図(a)は散乱体と
して微小なガラス球を含んだフルオレセイン溶液を試料
としたときの、蛍光強度のフルオレセイン濃度依存性を
示す。本測定では励起光波長及び散乱光波長を485n
mとし、蛍光波長を520nmとした。同図の曲線Aは
、本装置を使用したときの8(q定値であり、曲線Bは
、補正演算部における演算を行わないときの光検出器1
6の出力値である。このように、補正演算部を通すこと
により、特に低濃度側の直線性を改善することができた
。また第2図(b)は試料としてシリコン粉末にフルオ
レイン溶液を溶かし込んだものを用い、これを徐々に乾
燥させたときの蛍光強度の変化を示す。曲線Cは、本装
置を用いて補正演算を行ったときのK11l定値、曲線
りは補正演算を行わないときの測定値である。散乱光検
出器と補正演算部を使用することにより、試料の乾燥に
よって増大する散乱光強度の蛍光強度に対する影響を除
くことができ、しかも蛍光の検出と同時に補正すること
ができる。
Figure 2 shows the effect of using the measuring device shown in Figure 1.21! FIG. 2(a), which shows a q constant diagram, shows the dependence of fluorescence intensity on fluorescein concentration when a fluorescein solution containing minute glass spheres as a scatterer is used as a sample. In this measurement, the excitation light wavelength and scattered light wavelength were set to 485n.
m, and the fluorescence wavelength was 520 nm. Curve A in the same figure is the 8 (q constant value) when this device is used, and curve B is the photodetector 1 when no calculation is performed in the correction calculation section.
This is the output value of 6. In this way, by passing the signal through the correction calculation section, it was possible to improve the linearity, especially on the low concentration side. Furthermore, FIG. 2(b) shows the change in fluorescence intensity when a sample prepared by dissolving a fluorine solution into silicon powder is gradually dried. The curve C is the K11l constant value when the correction calculation is performed using this device, and the curved line is the measured value when the correction calculation is not performed. By using the scattered light detector and the correction calculation unit, it is possible to eliminate the influence of the scattered light intensity, which increases due to drying of the sample, on the fluorescence intensity, and moreover, it is possible to correct the fluorescence at the same time as detection.

本実施例によれば、蛍光の検出と同時に散乱光の検出を
行い、補正演算部により補正を行うため、測定時間を短
縮することができる。また、本実施例の励起光学系、蛍
光検出係は通常の蛍光光度計とほとんど同じであるため
、散乱光強度の小さい試料など通常の試料の蛍光測定に
も適用することができる。
According to this embodiment, the scattered light is detected at the same time as the fluorescence is detected, and the correction calculation unit performs the correction, so that the measurement time can be shortened. Furthermore, since the excitation optical system and fluorescence detection section of this embodiment are almost the same as those of a normal fluorometer, it can also be applied to fluorescence measurements of normal samples such as samples with low scattered light intensity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蛍光測定において、散乱光磁度の大き
い試料の場合、試料毎に散乱光強度が異なる場合、同一
試料でも測定部分の違いによって散乱光強度が変化する
場合、さらに測定中に散乱光度計が変化するような試料
の場合等において、測定された蛍光強度内に盲蛍光とし
て混入している散乱光成分の強度を実時間で算定するこ
とができるため、より高精度な蛍光測定を行うことがで
きる。
According to the present invention, in the case of a sample with a large scattered light magnetism in fluorescence measurement, when the scattered light intensity differs from sample to sample, when the scattered light intensity changes depending on the measurement part of the same sample, and when the scattered light intensity changes during measurement. In the case of samples where the scattering photometer changes, etc., the intensity of the scattered light component mixed in as blind fluorescence within the measured fluorescence intensity can be calculated in real time, allowing for more accurate fluorescence measurements. It can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の構成を示すブロック図、
第2図は2本発明の効果を示す測定図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention;
FIG. 2 is a measurement diagram showing the effects of the present invention.

Claims (1)

【特許請求の範囲】 1、蛍光体を励起するための励起光源部及び該励起によ
り生じる蛍光を測定するための蛍光測定部を有する蛍光
測定装置を用いて蛍光を測定する方法において、該蛍光
測定装置に散乱光を測定するための散乱光測定部を設け
て散乱光強度を測定し、該散乱光強度に基づいて蛍光測
定部により測定された蛍光強度に混入している散乱光成
分を算定して補正することを特徴とする蛍光測定法。 2、蛍光体を励起するための励起光源部該励起により生
じる蛍光を測定するための蛍光測定部を有する蛍光測定
装置において、散乱光を測定するための光学系と光検出
器とから成る散乱光測定部および該散乱光測定部で測定
された散乱光強度に基づいて蛍光測定部により測定され
た蛍光強度に混入している散乱光成分を算定して補正す
る補正演算部を設けたことを特徴とする蛍光測定装置。
[Scope of Claims] 1. A method for measuring fluorescence using a fluorescence measurement device having an excitation light source section for exciting a fluorophore and a fluorescence measurement section for measuring fluorescence generated by the excitation, comprising: A scattered light measuring section for measuring scattered light is provided in the device to measure the scattered light intensity, and a scattered light component mixed in the fluorescence intensity measured by the fluorescence measuring section is calculated based on the scattered light intensity. Fluorescence measurement method characterized by correction. 2. Excitation light source section for exciting the fluorophore In a fluorescence measurement device having a fluorescence measurement section for measuring the fluorescence generated by the excitation, a scattered light comprising an optical system for measuring the scattered light and a photodetector. A correction calculation unit that calculates and corrects a scattered light component mixed in the fluorescence intensity measured by the fluorescence measurement unit based on the measurement unit and the scattered light intensity measured by the scattered light measurement unit. Fluorescence measuring device.
JP12101586A 1986-05-28 1986-05-28 Fluorescence light measuring method and apparatus Pending JPS62278436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12101586A JPS62278436A (en) 1986-05-28 1986-05-28 Fluorescence light measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12101586A JPS62278436A (en) 1986-05-28 1986-05-28 Fluorescence light measuring method and apparatus

Publications (1)

Publication Number Publication Date
JPS62278436A true JPS62278436A (en) 1987-12-03

Family

ID=14800694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12101586A Pending JPS62278436A (en) 1986-05-28 1986-05-28 Fluorescence light measuring method and apparatus

Country Status (1)

Country Link
JP (1) JPS62278436A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233351A (en) * 2003-01-27 2004-08-19 Carl Zeiss Jena Gmbh Method of detecting fluorescence
JP2008197088A (en) * 2007-01-19 2008-08-28 Shimadzu Corp Fluorescent detector
JP2009216532A (en) * 2008-03-11 2009-09-24 Fujifilm Corp Fluorescence detection method and fluorescence detection device
JP2010160047A (en) * 2009-01-08 2010-07-22 Marcom:Kk Fluorescence spectrophotometer
JP4980490B2 (en) * 2010-01-15 2012-07-18 三井造船株式会社 Fluorescence measuring apparatus and fluorescence measuring method
JP2014518390A (en) * 2011-06-28 2014-07-28 コーニンクレッカ フィリップス エヌ ヴェ Apparatus for optical analysis of relevant tissue samples

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233351A (en) * 2003-01-27 2004-08-19 Carl Zeiss Jena Gmbh Method of detecting fluorescence
JP2008197088A (en) * 2007-01-19 2008-08-28 Shimadzu Corp Fluorescent detector
JP2009216532A (en) * 2008-03-11 2009-09-24 Fujifilm Corp Fluorescence detection method and fluorescence detection device
JP2010160047A (en) * 2009-01-08 2010-07-22 Marcom:Kk Fluorescence spectrophotometer
JP4980490B2 (en) * 2010-01-15 2012-07-18 三井造船株式会社 Fluorescence measuring apparatus and fluorescence measuring method
US8817244B2 (en) 2010-01-15 2014-08-26 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence measurement device and fluorescence measurement method
JP2014518390A (en) * 2011-06-28 2014-07-28 コーニンクレッカ フィリップス エヌ ヴェ Apparatus for optical analysis of relevant tissue samples

Similar Documents

Publication Publication Date Title
US2847899A (en) Method of and apparatus for spectrochemical analysis
US3975098A (en) Spectrofluorimeter
EP0091126B1 (en) Fluorimeter
JPH0915156A (en) Spectroscopic measuring method and measuring device
JPH022097B2 (en)
JP2711225B2 (en) Improved data collection method for methods using chemical sensors
KR100367240B1 (en) Fluorescence spectrum differential measurement method of substrate coating
Zwinkels et al. Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPH0252980B2 (en)
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
JP3207882B2 (en) Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function
JPS6212842A (en) Fluorescent analysis instrument
JPH0599627A (en) Measuring apparatus for film thickness
EP0081947A1 (en) Method and apparatus for normalizing radiometric measurements
JPH0712798A (en) Fluorescence detection device for liquid chromatograph
JPS6280522A (en) Spectrofluorophotometer
Michel et al. Effect of stray light in monochromators on detection limits of flame atomic-fluorescence spectrometric measurements
JPH03221838A (en) Method and device for measuring body to be tested
Rajulu et al. Principles of Quantitative Estimation of Drugs, Endogenous Compounds, and Poisons—2
JPH08285772A (en) Optical analyzer
Bierzynski et al. High accuracy spectrofluorimeter for determination of relative quantum yields within a broad range of optical densities
JPH01253635A (en) Method and apparatus for fluorescence analysis
JP2002318190A (en) Medical photometer
JPS63208733A (en) Fluorescence measuring method