JPS6154264B2 - - Google Patents

Info

Publication number
JPS6154264B2
JPS6154264B2 JP54118260A JP11826079A JPS6154264B2 JP S6154264 B2 JPS6154264 B2 JP S6154264B2 JP 54118260 A JP54118260 A JP 54118260A JP 11826079 A JP11826079 A JP 11826079A JP S6154264 B2 JPS6154264 B2 JP S6154264B2
Authority
JP
Japan
Prior art keywords
layer
aluminum layer
aluminum
substrate
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54118260A
Other languages
Japanese (ja)
Other versions
JPS5642378A (en
Inventor
Koichiro Kotani
Hidetake Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11826079A priority Critical patent/JPS5642378A/en
Publication of JPS5642378A publication Critical patent/JPS5642378A/en
Publication of JPS6154264B2 publication Critical patent/JPS6154264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Description

【発明の詳細な説明】 本発明は半導体装置のうち、特にGaAsFETの
改良された電極形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for forming electrodes of semiconductor devices, particularly GaAsFETs.

GaAsFETはマイクロ波などの超高周波素子と
して将来性ある半導体装置で、その製法も種々検
討され改善されている。
GaAsFET is a semiconductor device that has a promising future as an ultra-high frequency device for microwave and other devices, and its manufacturing methods are being studied and improved in various ways.

本発明にかゝる電極形成方法も微細化する
GaAsFETの品質を向上するために考案されたも
ので、第1図にこの様なシヨツトキーバリア型
GaAsFETの構造断面図を示す。
The electrode formation method according to the present invention is also miniaturized.
It was devised to improve the quality of GaAsFETs, and a Schottky barrier type like this one is shown in Figure 1.
A cross-sectional view of the GaAsFET structure is shown.

図において、1は半絶縁性GaAs基板,2はn-
型GaAsエピタキシヤル層(厚さ2〜3μm),3
はn型GaAsエピタキシヤル層(厚さ2000〜3000
Å)で、その上にソース電極4,ドレイン電極
5,及びゲート電極6が形成され、表面には絶縁
膜7を被覆している。
In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n -
type GaAs epitaxial layer (thickness 2-3 μm), 3
is an n-type GaAs epitaxial layer (thickness 2000~3000
A source electrode 4, a drain electrode 5, and a gate electrode 6 are formed thereon, and the surface is covered with an insulating film 7.

ところで、かような構造のGaAsFETにおいて
は、ゲート電極6は通常アルミニウムを蒸着する
などして形成しているが該アルミニウムを例えば
巾を0.7μm程度の微細な形状とする場合に厚さ
に限界があり、精々5000〜6000Åの厚さにしか形
成できないアルミニウム電極となり、パツシベイ
シヨン工程などでアルミニウムと水分や酸素及び
GaAsが反応して全体が変質し、時には界面にマ
イグレイシヨンを起こすこともあり、又使用中に
電流が流れ易い電極表層から酸化が進行して、ゲ
ート電極自体の電気抵抗を増加させるなどの問題
が生じてきている。
By the way, in a GaAsFET having such a structure, the gate electrode 6 is usually formed by vapor-depositing aluminum, but when forming the aluminum into a fine shape with a width of about 0.7 μm, for example, there is a limit to the thickness. However, the aluminum electrode can only be formed to a thickness of 5,000 to 6,000 Å at most, and aluminum is mixed with moisture, oxygen, and
GaAs reacts and changes its quality, sometimes causing migration at the interface. Also, during use, oxidation progresses from the surface layer of the electrode where current easily flows, increasing the electrical resistance of the gate electrode itself. Problems are arising.

本発明はかような微細化するゲート電極を変質
させることがない構造で且つ極めて小さな金属ゲ
ート電極を形成せしめる方法を提案するもので、
本発明の特徴とするところはゲート電極の最下層
をアルミニウム層とする多層構造に金属層を積層
し、アルミニウム層を除く上層をイオンミーリン
グにより第1の幅にパターンニングしてアルミニ
ウム層を部分的に露出する工程、パターンニング
せるゲート電極の金属層上面に金を第1の幅より
広い第2の幅のパターンに鍍金する工程、露出せ
るアルミニウム層を選択的に陽極酸化せしめる工
程、次いで金鍍金属をマスクとしてソース電極形
成領域及びドレイン電極形成領域の陽極酸化層を
除去して基板表面を部分的に露出する工程、露出
せる基板表面に金鍍金層をマスクとしてソース電
極及びドレイン電極を被着形成する工程とを含む
ことにある。
The present invention proposes a method for forming an extremely small metal gate electrode with a structure that does not alter the quality of such miniaturized gate electrodes.
The feature of the present invention is that metal layers are stacked in a multilayer structure in which the lowest layer of the gate electrode is an aluminum layer, and the upper layer excluding the aluminum layer is patterned to a first width by ion milling to partially remove the aluminum layer. a step of plating the upper surface of the metal layer of the gate electrode to be patterned with gold in a pattern having a second width wider than the first width, a step of selectively anodizing the exposed aluminum layer, and then plating with gold. Step of partially exposing the substrate surface by removing the anodic oxide layer in the source electrode formation region and drain electrode formation region using metal as a mask, and applying the source electrode and drain electrode to the exposed substrate surface using the gold plating layer as a mask. and a step of forming.

以下、本発明を図面を参照して一実施例により
詳細に説明する。
Hereinafter, the present invention will be explained in detail by one embodiment with reference to the drawings.

第2図ないし第7図は本発明の製造工程順図
で、先づ第2図に示す様にGaAs層10上に蒸着
法又はスパツタリング法などによつてアルミニウ
ム層11,チタン層12,白金層13,金層14
をそれぞれ1000Åの厚さに順次被着させ、更にそ
の上面のゲート電極領域に巾1μmのフオトレジ
スト膜15を選択的にパターンニング形成する。
2 to 7 are sequential diagrams of the manufacturing process of the present invention. First, as shown in FIG. 2, aluminum layer 11, titanium layer 12, and platinum layer are formed on GaAs layer 10 by vapor deposition or sputtering. 13, gold layer 14
A photoresist film 15 having a width of 1 μm is selectively formed on the upper surface of the gate electrode region by selective patterning.

次いで第3図に示す様にフオトレジスト膜15
をマスクとして、金層14,白金層13,チタン
層12をイオンミーリングによつてエツチング除
去する。上記の如く異なる物質からなる被着層の
エツチングにはイオンミーリングが最適で、
GaAs基板はエツチングされず、エツチング面も
化学的エツチングより平滑な面が得られる。それ
に加えて、下層がアルミニウム層11であるため
にイオンミーリングによる表面の電荷蓄積をアル
ミニウム層が逃がす効果もあり、しかもアルミニ
ウム層はエツチング速度が遅いので、チタン層で
画然とエツチングを中止してアルミニウム層まで
オーバエツチングされることがない。
Next, as shown in FIG. 3, a photoresist film 15 is formed.
Using as a mask, the gold layer 14, platinum layer 13, and titanium layer 12 are etched away by ion milling. Ion milling is most suitable for etching adhered layers made of different materials as mentioned above.
The GaAs substrate is not etched, and the etched surface is smoother than chemical etching. In addition, since the lower layer is the aluminum layer 11, the aluminum layer has the effect of dissipating the charge accumulated on the surface due to ion milling, and since the etching rate of the aluminum layer is slow, the etching can be clearly stopped with the titanium layer. The aluminum layer is not overetched.

次いで第4図に示す様に、フオトレジスト膜1
5を除去した後、金属14上に厚さ約1μmの金
鍍金層16を積層する。この様に1μmの厚さの
鍍金層を被着させると横方向にも1μmの鍍金層
が被着し、横巾は左右1μmづゝ延びて合計3μ
mとなり、ゲート電極上にオーバハング状の金鍍
金層16が形成される。
Next, as shown in FIG. 4, a photoresist film 1 is formed.
After removing the metal 14, a gold plating layer 16 with a thickness of about 1 μm is laminated on the metal 14. When a 1 μm thick plating layer is deposited in this way, a 1 μm thick plating layer is also deposited in the lateral direction, and the width extends by 1 μm on the left and right for a total of 3 μm.
m, and an overhanging gold plating layer 16 is formed on the gate electrode.

次いで第5図に示す様に、露出しているアルミ
ニウム層の陽極酸化を行ない、すでにゲート電極
の一部として形成している白金層13、チタン層
12の下部側面のアルミニウム層をも陽極酸化し
てゲート電極のアルミニウム層の巾を0.6μm程
度のサブミクロンに形成する。この陽極酸化17
は硼酸アンモニウム飽和溶液を用い、電流密度は
数mA/cm3程度で、側面酸化の程度によつて電流
値は異なる。又、ち密な酸化層とするにはアルミ
ニウム層の厚さは1000Åが限界であり、この様に
形成した陽極酸化層はゲート電極とソース電極ド
レイン電極との電極間を絶縁し、GaAs基板の保
護の役目をなす。
Next, as shown in FIG. 5, the exposed aluminum layer is anodized, and the aluminum layer on the bottom side of the platinum layer 13 and titanium layer 12, which have already been formed as part of the gate electrode, is also anodized. The width of the aluminum layer of the gate electrode is formed to a submicron width of about 0.6 μm. This anodization 17
An ammonium borate saturated solution was used, and the current density was about several mA/cm 3 , and the current value varied depending on the degree of side oxidation. In addition, the limit for the thickness of the aluminum layer to form a dense oxide layer is 1000 Å, and the anodic oxide layer formed in this way insulates the gate electrode, source electrode, and drain electrode, and protects the GaAs substrate. fulfills the role of

次いで第6図に示す様に、金鍍金層16をマス
クとしてリアクテイブ・スパツタ・エツチングに
より陽極酸化層をエツチング除去する。リアクテ
イブ・スパツタ・エツチングは物理的化学的作用
の相乗によつてエツチングされるので、サイドエ
ツチングは最も少ない方法である。
Next, as shown in FIG. 6, the anodic oxide layer is removed by reactive sputter etching using the gold plating layer 16 as a mask. Side etching is the least likely method because reactive sputter etching is etched by a synergistic physical and chemical action.

次いで第7図に示す様に、上面より金・ゲルマ
ニウム合金層、次に金層を被着させ、ソース電極
18及びドレイン電極19を形成する。その際に
金鍍金層16上にそれらの層が被着しても問題は
ない。
Next, as shown in FIG. 7, a gold-germanium alloy layer and then a gold layer are deposited from the upper surface to form a source electrode 18 and a drain electrode 19. There is no problem even if those layers are deposited on the gold plating layer 16 at that time.

以下の工程は公知の製造方法によるものであ
り、上記が本発明による電極形成方法であるが、
この様に本発明によればゲート電極巾(ゲート
長)をサブミクロンの微細なパターンに形成し
て、アルミニウム層を非常に薄層とし、電極上層
に高電導性の金を鍍金して容積を大きくして電気
抵抗を小さくせしめている。そのためにゲート電
極が加熱されて変質することもなくなる。その上
にアルミニウムの陽極酸化層はCVD法で被着さ
せた酸化シリコン保護膜と比べて界面準位の少な
い保護膜であるからFET特性を悪くすることも
ない。
The following steps are based on a known manufacturing method, and the above is the electrode forming method according to the present invention,
In this way, according to the present invention, the gate electrode width (gate length) is formed into a fine submicron pattern, the aluminum layer is made very thin, and the upper layer of the electrode is plated with highly conductive gold to increase the volume. It is made larger to reduce electrical resistance. This prevents the gate electrode from being heated and deteriorating in quality. On top of that, the anodic oxide layer of aluminum is a protective film with fewer interface states than the silicon oxide protective film deposited by CVD, so it does not deteriorate the FET characteristics.

従つて本発明はGaAaFETのゲート電極を極め
て微細に形成できて、しかも信頼性を高くするこ
とができるすぐれたものと言える。
Therefore, the present invention can be said to be excellent in that it allows the gate electrode of a GaAaFET to be formed extremely finely and to increase reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGaAsFETの構造断面図、第2図ない
し第7図は本発明の工程順断面図である。 図中、10はGaAs層、11はアルミニウム
層、12はチタン層、13は白金層、14は金
層、15はフオトレジスト膜、16は金鍍金層、
17は陽極酸化層、18、19はそれぞれソース
電極、ドレイン電極を示している。
FIG. 1 is a structural cross-sectional view of a GaAsFET, and FIGS. 2 to 7 are cross-sectional views of the process of the present invention. In the figure, 10 is a GaAs layer, 11 is an aluminum layer, 12 is a titanium layer, 13 is a platinum layer, 14 is a gold layer, 15 is a photoresist film, 16 is a gold plating layer,
Reference numeral 17 indicates an anodized layer, and 18 and 19 indicate a source electrode and a drain electrode, respectively.

Claims (1)

【特許請求の範囲】 1 半導体基板上にアルミニウム層を被着し次い
で、他の金属層を順次積層被着した後、ゲート電
極形成部を除く前記積層された他の金属層をイオ
ンミーリングにより第1の幅にパターンニングし
て前記アルミニウム層を部分的に露出する工程、 パターンニングせる前記ゲート電極形成部の前
記他の金属層上面に金を該第1の幅より広い第2
の幅のパターンに鍍金する工程、 露出せる前記アルミニウム層を選択的に陽極酸
化せしめる工程、 次いで前記金鍍金層をマスクとしてソース電極
形成領域及びドレイン電極形成領域の陽極酸化層
を除去して前記基板表面を部分的に露出する工
程、 露出せる前記基板表面に前記金鍍金層をマスク
としてソース電極及びドレイン電極を被着形成す
る工程とを含むことを特徴とする電界効果半導体
装置の製造方法。
[Scope of Claims] 1. After depositing an aluminum layer on a semiconductor substrate and then depositing other metal layers in sequence, the other stacked metal layers except for the gate electrode forming portion are removed by ion milling. partially exposing the aluminum layer by patterning the aluminum layer to have a second width wider than the first width;
A step of selectively anodizing the exposed aluminum layer; Next, using the gold plating layer as a mask, the anodic oxide layer in the source electrode formation region and the drain electrode formation region is removed, and the substrate is removed. A method for manufacturing a field effect semiconductor device, comprising: partially exposing a surface of the substrate; and depositing a source electrode and a drain electrode on the exposed surface of the substrate using the gold plating layer as a mask.
JP11826079A 1979-09-14 1979-09-14 Manufacture of field effect semiconductor device Granted JPS5642378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11826079A JPS5642378A (en) 1979-09-14 1979-09-14 Manufacture of field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11826079A JPS5642378A (en) 1979-09-14 1979-09-14 Manufacture of field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS5642378A JPS5642378A (en) 1981-04-20
JPS6154264B2 true JPS6154264B2 (en) 1986-11-21

Family

ID=14732214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11826079A Granted JPS5642378A (en) 1979-09-14 1979-09-14 Manufacture of field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS5642378A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844058A (en) * 1971-10-08 1973-06-25
JPS5012984A (en) * 1973-06-01 1975-02-10
JPS5194775A (en) * 1975-02-19 1976-08-19
JPS51115780A (en) * 1974-10-31 1976-10-12 Matsushita Electric Ind Co Ltd Hetero junction gate form fieid effect transistor and manufacturing me thod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844058A (en) * 1971-10-08 1973-06-25
JPS5012984A (en) * 1973-06-01 1975-02-10
JPS51115780A (en) * 1974-10-31 1976-10-12 Matsushita Electric Ind Co Ltd Hetero junction gate form fieid effect transistor and manufacturing me thod
JPS5194775A (en) * 1975-02-19 1976-08-19

Also Published As

Publication number Publication date
JPS5642378A (en) 1981-04-20

Similar Documents

Publication Publication Date Title
JPS6125227B2 (en)
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
US5202274A (en) Method of fabricating thin film transistor
JPS6351550B2 (en)
JPS6154264B2 (en)
JPS6222536B2 (en)
JPS60153149A (en) Formation of multilayer interconnection
JP2853940B2 (en) Method for manufacturing semiconductor device
JP2950045B2 (en) Method for manufacturing semiconductor device
JPS60130862A (en) Manufacture of semiconductor device
JPS62204576A (en) Manufacture of vertical type transistor
JP2712394B2 (en) Method for manufacturing semiconductor device
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JP3123217B2 (en) Method of forming ohmic electrode
JPH01184958A (en) Manufacture of semiconductor device
JPS63287021A (en) Formation of fine pattern
JPS63318145A (en) Manufacture of semiconductor device
JP4072248B2 (en) Manufacturing method of semiconductor device
JPS61116877A (en) Manufacture of field effect transistor
JPS6070771A (en) Manufacture of field-effect transistor
JPH02220449A (en) Field-effect transistor and manufacture thereof
JPS6127898B2 (en)
JPS63116472A (en) Method for forming schottky gate of compound semiconductor device
JPS61290777A (en) Manufacture of schottky gate electrode
JPS5816560A (en) Method of forming integrated condenser