JPH01184958A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01184958A
JPH01184958A JP991988A JP991988A JPH01184958A JP H01184958 A JPH01184958 A JP H01184958A JP 991988 A JP991988 A JP 991988A JP 991988 A JP991988 A JP 991988A JP H01184958 A JPH01184958 A JP H01184958A
Authority
JP
Japan
Prior art keywords
layer
conductor layer
pattern
resist
lower conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP991988A
Other languages
Japanese (ja)
Inventor
Hirotsugu Kusakawa
草川 博次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP991988A priority Critical patent/JPH01184958A/en
Publication of JPH01184958A publication Critical patent/JPH01184958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make it possible to avoid such a trouble as an interelectrode short-circuit due to a falled-out thin-film protrusion by a method wherein the upper surface of a lower conductor layer pattern is exposed on the lower conductor layer pattern and at the same time, a bottle-shaped groove of a depth, which does not reach the surface of a substrate, is formed and an upper conductor layer along the lower conductor layer is adhered on the lower conductor layer using a resist layer as a mask. CONSTITUTION:A control developing is performed by a dipping method using a developing solution having a composition ratio of methyl isobutyl ketone(MIBK) : isopropyl alcohol(IPA)=1:3. Thereby, the upper surface of a WSi layer pattern 4 is exposed, and a groove 8 like a bottle which does not reach the surface of a substrate and has an aperture width Lg3 of about 1-0.8mum and a wider bottom. Then, after the upper surface of the pattern 4 is cleaned by ion milling or plasma etching treatment, a titanium(Ti) layer 9, which is used as a diffusion barrier against gold(Au), and an Au layer 10, which is used as the main conductor layer of the top layer, are continuously deposited on a resist layer 6 including the upper surface of the pattern 4 exposed in the above groove 8. Thereby, the edge parts of the upper surface of the layer 10 deposited on the upper part of the pattern 4 are formed into the form of a slant face and a protruding part is never formed.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法、特に半導体装置内に配設される
積層構造電極の形成方法に関し工程を簡略化し、且つ製
造歩留りや信顛性の低下を防止する積層電極の形成方法
の提供を目的とし、 基板上に電極形状を有する下層導電体層パターンを形成
し、該下層導電体層パターンを有する基板上に、下層が
高感度レジスト層で上層が低感度レジスト層よりなる2
層構造のレジスト層を形成し、該レジスト層に、該下層
導電体層パターンに重ねて、該下層導電体層パターン以
下の大きさを有するパターンを露光条件を制御して露光
し、且つ該レジスト層を現像時間を制御して現像して、
該上層導電体層パターンの上部及び近傍部のレジスト層
を該下層導電体層パターンの上面が表出し且つ該基板面
が表出しない深さに選択的に除去し、該表出する下層導
電体層パターンの上面及び該レジスト層上に上層導電体
層を被着し、該レジスト層を溶解除去すると同時に該レ
ジスト層上の上層導電体層を選択的にリフトオフして、
選択的に該下層導電体層パターン上に該上層導電体層を
残留被着せしめる工程を有して構成される。
[Detailed Description of the Invention] [Summary] A method for manufacturing a semiconductor device, particularly a method for forming a laminated structure electrode disposed in a semiconductor device, by simplifying the process and preventing a decrease in manufacturing yield and reliability. In order to provide a method for forming a laminated electrode, a lower conductor layer pattern having an electrode shape is formed on a substrate, and on the substrate having the lower conductor layer pattern, the lower layer is a high-sensitivity resist layer and the upper layer is a low-sensitivity resist layer. Consisting of resist layer 2
forming a resist layer having a layered structure, exposing the resist layer to a pattern having a size equal to or smaller than the lower conductor layer pattern overlapping the lower conductor layer pattern under controlled exposure conditions; Developing the layer by controlling the development time,
The resist layer above and in the vicinity of the upper conductor layer pattern is selectively removed to a depth where the upper surface of the lower conductor layer pattern is exposed and the substrate surface is not exposed, and the exposed lower conductor layer is removed. depositing an upper conductor layer on the upper surface of the layer pattern and the resist layer, dissolving and removing the resist layer, and selectively lifting off the upper conductor layer on the resist layer;
The method includes the step of selectively residually depositing the upper conductor layer on the lower conductor layer pattern.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法、特に半導体装置内に配
設される積層構造電極の形成方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming a laminated structure electrode disposed within a semiconductor device.

ガリウム砒素(GaAs) FETのショットキゲート
電極材料としては該FETの高周波特性の向上を図るた
めに低抵抗な金属材料特にアルミニウム(AI)が従来
から広く用いられていた。
As a Schottky gate electrode material for a gallium arsenide (GaAs) FET, a low-resistance metal material, particularly aluminum (AI), has been widely used in the past in order to improve the high frequency characteristics of the FET.

しかし上記AIゲートには、エレクトロマイグレーショ
ン、酸素との反応、基板材料即ちGaAsとの反応等に
よる経時的な劣化の問題がある。
However, the above AI gate has the problem of deterioration over time due to electromigration, reaction with oxygen, reaction with the substrate material, that is, GaAs, and the like.

そこで近時、GaAsFETの信顛度寿命を向上させる
ために、同温時に安定で酸素或いは基板材料等と反応せ
ず、且つエレクトロマイグレーションを発生し難い高融
点金属を含む電極材料例えばタングステンシリサイド(
W S i )が用いられはじめている。
Recently, in order to improve the reliability life of GaAsFETs, electrode materials containing high melting point metals that are stable at the same temperature, do not react with oxygen or substrate materials, and do not easily cause electromigration, such as tungsten silicide (
W Si ) is beginning to be used.

このW S iは従来用いられていたAIに比べて2桁
程度高い抵抗率を有するので、ゲート電極に用いる際に
は例えば第3図に模式的に示すように、高抵抗率を有す
るW S i電極53に抵抗率の低い導電体層例えば金
(Au)層54を積層した構造にして該ゲート電極22
の直列抵抗を減少させ、これによって高周波特性の改善
が図られる。なお図中51はGaAs基板を示す。
Since this W S i has a resistivity that is about two orders of magnitude higher than that of conventionally used AI, when used for a gate electrode, for example, as schematically shown in FIG. The gate electrode 22 has a structure in which the i-electrode 53 is laminated with a conductive layer 54 having a low resistivity, such as a gold (Au) layer 54.
This reduces the series resistance of the circuit, thereby improving high frequency characteristics. Note that 51 in the figure indicates a GaAs substrate.

〔従来の技術〕[Conventional technology]

従来上記WSi、!:Auとの積層構造を有するゲート
電極は、 第4図(al ニ示すように、GaAs基板51上にW
 S i電極53を形成した後、該基板上に減圧気相成
長(減圧CvD)法により上記下層電極53とほぼ等し
い5000人程度0厚さaを有するマスク用の二酸化シ
リコン(SiO□)膜54を形成し、 次いで第4図(blに示すように上記基板上に上面が平
坦になる厚さにレジスト層55を被着し、次いで第4図
(C)に示すように下層電極53上のマスク用SiO□
膜54の頂部が表出するまで、上記レジスト層55を異
方性ドライエツチング手段により全面エツチング(エッ
チバック)し、 次いで残留しているレジスト[55をマスクにしりアク
ティブイオンエツチング(RIE)処理により上記表出
領域のSiO□膜54全54的に除去した後、レジスト
層55を除去して、第4図(d)に示すように、W S
 i下層電極53上の5in2膜54に該電極に沿って
延在する開孔56を形成する。
Conventionally, the above WSi,! As shown in FIG.
After forming the Si electrode 53, a silicon dioxide (SiO□) film 54 for a mask having a thickness a of approximately 5000 mm, which is approximately equal to the lower layer electrode 53, is formed on the substrate by a low pressure vapor deposition (low pressure CvD) method. Then, as shown in FIG. 4 (bl), a resist layer 55 is deposited on the substrate to a thickness such that the upper surface is flat, and then, as shown in FIG. SiO□ for masks
The entire surface of the resist layer 55 is etched (etched back) using an anisotropic dry etching method until the top of the film 54 is exposed, and then the remaining resist layer 55 is etched back using an active ion etching (RIE) process as a mask. After removing the entire SiO□ film 54 in the exposed area, the resist layer 55 is removed, and as shown in FIG. 4(d), the W S
An opening 56 is formed in the 5in2 film 54 on the i-lower electrode 53 and extends along the electrode.

次いで第4図(elに示すように、上記開孔56の内面
を含む基板面全域上にバリア層となる厚さ1000人程
度0チタン(Ti)層57と、低抵抗層である厚さ50
00人程度0厚u層58とを連続蒸着し、次いで第4図
(f)に示すように、Au層58上にW S i電極5
3上に重ねて該W S i電極53とほぼ廓しい形状を
ず「するレジストパターン59を形成し、 次いで該レ
ジストパターン59をマスクにしイオンミーリングを行
い表出するAu層58及びTi体層7を除去した後、上
記レジストパターン59を除去して、第4図F+?)に
示すようにW S i電極53上に篩の拡散バリアとな
るTi体層7を介し低抵抗のAu層58が載設されてな
る積層構造のゲート電極52が形成されていた。
Next, as shown in FIG. 4 (el), a titanium (Ti) layer 57 with a thickness of approximately 1000 mm and a low resistance layer 57 and a low resistance layer are formed over the entire surface of the substrate including the inner surface of the opening 56.
A 0-thick U layer 58 is continuously deposited on the Au layer 58, and then a W Si electrode 5 is deposited on the Au layer 58 as shown in FIG. 4(f).
A resist pattern 59 is formed on top of the WSi electrode 53, and the resist pattern 59 has a shape that is almost not sharp with the WSi electrode 53. Then, using the resist pattern 59 as a mask, ion milling is performed to expose the Au layer 58 and the Ti body layer 7. After removing the resist pattern 59, a low-resistance Au layer 58 is formed on the W Si electrode 53 via the Ti body layer 7 which serves as a diffusion barrier for the sieve, as shown in FIG. A gate electrode 52 having a stacked layered structure was formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記従来方法によると、上記レジスト層55のエ
ッチバックに際してレジスト層55にピンホールが発生
し易く1.そのために、WSi電極53上のマスク用S
i0g膜54に開孔56を形成する際のRIE処理にお
いて該マスク用SiO□膜54に素子劣化の原因になる
孔が形成されることが多く、また前記10層58及びT
i体層7をパターニングする際のイオンミーリング処理
において、第4図(gl及び第5図の斜視模式図に示す
ように、ミーリングされたこれら金属がマスクに用いた
レジストパターン59の側面に被着し、Au層58のパ
ターンの縁部上にこれら金属の薄膜状の突起部60を生
じ、後の工程において該薄膜状の突起部60が脱落して
電極間の短絡等を発生して、素子の製造歩留りや信頼性
を低下させるという問題があった。
However, according to the above conventional method, pinholes are likely to occur in the resist layer 55 when the resist layer 55 is etched back.1. For this purpose, the mask S on the WSi electrode 53 is
In the RIE process when forming the openings 56 in the i0g film 54, holes that cause element deterioration are often formed in the mask SiO□ film 54.
In the ion milling process when patterning the i-body layer 7, these milled metals adhere to the side surfaces of the resist pattern 59 used as a mask, as shown in FIG. However, these metal thin film-like protrusions 60 are formed on the edges of the pattern of the Au layer 58, and in a later process, the thin film-like protrusions 60 fall off, causing short circuits between electrodes, etc., and damaging the device. There was a problem of lowering manufacturing yield and reliability.

更にまた従来方法には前記説明のように工程が複雑で製
造手番が長引くという問題もあった。
Furthermore, as explained above, the conventional method has the problem that the steps are complicated and the manufacturing steps are long.

そこで本発明は、工程を簡略化し、且つ製造歩留りや信
頼性の低下を防止する積層電極の形成方法の提供を目的
とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for forming a laminated electrode that simplifies the process and prevents a decrease in manufacturing yield and reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、下層導電体層上に上層導電体層が積層さ
れてなる積層構造の電極を形成するに際して、基板」二
に電極形状を有する上層導電体層パターンを形成し、該
下層導電体層パターンを有する基板上に、下層が高感度
レジスト層で上層が低感度レジスト層よりなる2層構造
のレジスト層を形成し、該レジスト層に、該下層導電体
層パターンに重ねて、該下層侃電体層パターン以下の大
きさを有するパターンを露光条件を制御して露光し、且
つ該レジスト層を現像時間を制御して現像して、該上層
導電体層パターンの上部及び近傍部のレジスト層を該下
層導電体層パターンの」二面が表出し且つ該基板面が表
出しない深さに選択的に除去し、該表出する下層導電体
層パターンの上面及び該レジスト層上に上層導電体層を
被着し、該レジスト層を溶解除去すると同時に該レジス
ト層上の上層導電体層を選択的にリフトオフして、選択
的に該上層導電体層パターン上に該上層導電体層を残留
被着せしめる工程を有する本発明による半導体装置の!
!!造方決方法って解決される。
The above problem is that when forming an electrode with a laminated structure in which an upper conductor layer is laminated on a lower conductor layer, an upper conductor layer pattern having an electrode shape is formed on the substrate, and the lower conductor layer is A resist layer having a two-layer structure consisting of a high-sensitivity resist layer as a lower layer and a low-sensitivity resist layer as an upper layer is formed on a substrate having a layer pattern, and the resist layer is overlaid on the lower conductor layer pattern, and the lower layer is overlaid on the lower conductor layer pattern. A pattern having a size equal to or smaller than the upper conductor layer pattern is exposed by controlling the exposure conditions, and the resist layer is developed by controlling the development time to remove the resist above and in the vicinity of the upper conductor layer pattern. The layer is selectively removed to a depth where two sides of the lower conductor layer pattern are exposed and the substrate surface is not exposed, and the upper layer is removed on the upper surface of the exposed lower conductor layer pattern and on the resist layer. Depositing a conductor layer, dissolving and removing the resist layer, and selectively lifting off the upper conductor layer on the resist layer to selectively deposit the upper conductor layer on the upper conductor layer pattern. A semiconductor device according to the present invention having a residual deposition step!
! ! How to make it will be decided.

〔作 用〕[For production]

即ら本発明は、下層が高感度レジスト層、上層が上記高
感度レジスト層と混じり合わない低感度レジストよりな
る2N構造のレジスト層の一部を露光して現像すると、
低感度レジストよりなる開口部から高感度レジストより
なる下部領域が蛸壺状に拡がった開孔が形成されてリフ
トオフが容易なレジストマスクが形成される技術、及び
該レジスト層の露光量及び現像時間をコントロールする
ことによって上記蛸壺状に拡がった開孔の底部に所要の
厚さのレジスト層を残留させることが可能なことを活用
して、積層構造の電極に用いられる下層導電体層パター
ン上に、該上層導電体層パターンの上面を表出し且つ基
板面に達しない深さの蛸壺状の溝を形成し、該レジスト
層をマスクにしてリフトオフ法により下層導電体層上に
該上層導電体層に沿う上層導電体層を被着させることに
よって積層構造の電極を形成する。
That is, in the present invention, when a part of a resist layer with a 2N structure consisting of a high-sensitivity resist layer as a lower layer and a low-sensitivity resist as an upper layer that does not mix with the high-sensitivity resist layer is exposed and developed,
A technique for forming a resist mask that is easy to lift off by forming an octopus-shaped opening in which a lower region made of a high-sensitivity resist expands from an opening made of a low-sensitivity resist, and the exposure amount and development time of the resist layer. Taking advantage of the fact that it is possible to leave a resist layer of the required thickness at the bottom of the octopus-shaped opening by controlling the Then, an octopus-shaped groove is formed that exposes the upper surface of the upper conductive layer pattern and has a depth that does not reach the substrate surface, and the upper conductive layer is formed on the lower conductive layer by a lift-off method using the resist layer as a mask. A layered electrode is formed by depositing an upper conductor layer along the body layer.

この方法によればマスク用絶縁膜が用いられないので該
マスク用絶縁膜へのコンタクト窓形成の際のピンホール
による素子性能の劣化は回避され、また上層電極層のパ
ターニングがリフトオフ法でなされるので上層電極層パ
ターンの縁部に該電極層の薄膜状突起物が形成されるこ
とがなく、脱落した該薄膜状突起物による電極間短絡等
の障害は回避される。
According to this method, a mask insulating film is not used, so deterioration of device performance due to pinholes when forming a contact window on the mask insulating film is avoided, and the upper electrode layer is patterned by a lift-off method. Therefore, the thin film-like protrusions of the electrode layer are not formed at the edges of the upper electrode layer pattern, and problems such as short circuit between electrodes due to the thin film-like protrusions that have fallen off are avoided.

更にまた工程数が大幅に減少するので、製造工程が簡略
化される。
Furthermore, since the number of steps is significantly reduced, the manufacturing process is simplified.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図(a)〜(g)は本発明の一実施例の工程断面図
、第2は本発明により形成されたGaAsF[!Tの模
式平面図である。
1(a) to 1(g) are process cross-sectional views of one embodiment of the present invention, and the second figure is a GaAsF[!] formed according to the present invention. It is a schematic plan view of T.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

第1図(al参照 本発明の方法を用いて、下層4電体層がWSi層よりな
り上層導電体層力<Au層よりなる積層構造のゲート電
極を有するGaAsFETを形成するに際しては、従来
通り半絶縁性GaAs基板l上にn型GaAs活性層2
が形成されてなる被加工基板3を用い、該基板3−にに
、通常のスパッタリング法による膜形成及びフォトリソ
グラフィによるバターニングエ程を経て、例えば幅(L
g+) = 1μm、厚さ(t)=0.5μm程度の、
ゲート電極形状を有するタングステンシリサイド(W 
S i )層パターン4を形成する。
When forming a GaAsFET having a gate electrode with a stacked structure in which the lower four conductor layers are WSi layers and the upper conductor layer strength is <Au layer using the method of the present invention, see FIG. 1 (al). n-type GaAs active layer 2 on semi-insulating GaAs substrate 1
Using a substrate 3 to be processed on which is formed, for example, a width (L
g+) = 1 μm, thickness (t) = approximately 0.5 μm,
Tungsten silicide (W) with gate electrode shape
S i ) forming layer pattern 4;

第1図(bl参照 次いで上記WSi層体層−ン4を有する被加工基板3の
全面上に、下層の高感度レジスト層5としてポリメチル
メタクリレート(PM、MK)系のEB用ポジレジスト
例えばCMR(自社製)を平坦部で1μm程度厚さにス
ピンコードし、次いで150〜200℃で30分程度ベ
ーキングを行う。
FIG. 1 (See BL) Next, a polymethyl methacrylate (PM, MK)-based positive resist for EB, such as CMR, is applied as a lower high-sensitivity resist layer 5 over the entire surface of the substrate 3 to be processed having the WSi layer 4. (manufactured in-house) is spin-coded to a thickness of about 1 μm on the flat part, and then baked at 150 to 200° C. for about 30 minutes.

第1図(C)参照 次いで上記基板上に上層の低感度レジスト層6として、
PMMK系のEB用ポジレジスト0EBR(東京応化製
)を約0.3μm程度の厚さにスピンコードし、次いで
150〜200℃で20分程度ベーキングを行う。
Refer to FIG. 1(C) Next, as an upper low-sensitivity resist layer 6 on the substrate,
A PMMK-based EB positive resist 0EBR (manufactured by Tokyo Ohka) is spin-coded to a thickness of about 0.3 μm, and then baked at 150 to 200° C. for about 20 minutes.

第1図!d)参照 次いでEB露光装置を用い、上記レジスト層にW S 
i層パターン4に重なるように該WSi層体層−ン4の
幅Lg1以下の例えば0.8μm程度の幅り、gzを有
するパターンを、露光ドーズ量を例えば7.5XIO−
’Ω/cm”程度に制御して露光する。これにより図中
に鎖線で示すように1.上層の低感度レジスト層6内で
狭く、下層の高感度レジスト層5内で拡がり、且つ底部
が基板面に達しない感光領域7が形成される。
Figure 1! d) Reference Then, using an EB exposure device, W S is applied to the resist layer.
A pattern having a width gz of, for example, about 0.8 μm, which is less than the width Lg1 of the WSi layer body layer 4, is formed so as to overlap the i-layer pattern 4 at an exposure dose of, for example, 7.5XIO-.
Exposure is carried out by controlling the exposure to approximately 'Ω/cm''.As shown by the chain line in the figure, 1. it is narrow in the upper low-sensitivity resist layer 6, widens in the lower high-sensitivity resist layer 5, and the bottom part is A photosensitive area 7 is formed that does not reach the substrate surface.

第1図(e)参照 次いで例えばメチルイソブチルケトン(MIBK) :
イソブ!]ビルアルコール 有する現像液を用い、浸漬法により約2分前後のコント
ロール現像を行う。これにより図示のよに、W S i
層パターン4の上面を表出し且つ底部が基板面に達せず
、1〜0.8μm程度の開口幅Lgzを有し下部が蛸壺
状に拡がった溝8が形成される。
See FIG. 1(e) then for example methyl isobutyl ketone (MIBK):
Isobu! ] Perform control development for about 2 minutes using a developer solution containing building alcohol by the immersion method. As a result, as shown in the figure, W Si
A groove 8 is formed in which the upper surface of the layer pattern 4 is exposed, the bottom part does not reach the substrate surface, the opening width Lgz is about 1 to 0.8 μm, and the lower part widens into an octopus pot shape.

第1図(「)参照 次いで上層の電極材料として蒸着する金属層とW S 
i層パターン4との密着性を高めるためイオンミーリン
グ或いはプラズマエツチング処理によりW S i 層
パターン4上面のクリーニングを行った後に、上記溝8
内に表出するWSi層体層ーン4の上面を含む該レジス
ト層6上に金(Au)の拡散バリアとなる厚さ1000
人程度0チタン(Ti)層9と上層の主たる導電体層と
なる厚さ5000人程度0Au層10を連続蒸着する。
Refer to FIG. 1 ( ). Next, a metal layer is deposited as an upper electrode material and a W S
After cleaning the upper surface of the WSi layer pattern 4 by ion milling or plasma etching to improve the adhesion with the i layer pattern 4, the groove 8 is
A thickness of 1000 mm is applied to the resist layer 6, including the upper surface of the WSi layer body layer 4 exposed inside, to serve as a diffusion barrier for gold (Au).
A titanium (Ti) layer 9 having a thickness of approximately 5000 nm and an Au layer 10 having a thickness of approximately 5000 nm, which will serve as the upper main conductive layer, are successively deposited.

この際、W S 4層パターン4上に形成されているレ
ジスト層の?14 8は前記のように蛸壷上を有してい
るので、レジスト層6上の蒸着金属層(9及び10)と
WSi層体層ーン4上の蒸着金属層(9及び10)が連
続することはなく、上記溝8の開口部より内部が幅広く
形成されていることによりWSIS1層パターン4部に
堆積するAu層10の上面縁部は図示のように斜面状に
形成され突起部が形成されることがない。更にまた該溝
8の底部は基板面即ちn型GaAs活性層2面に達して
いないので、W S 4層パターン4上に被着する金属
層(9若しくはIO)の下部はn型GaAs活性層2の
上面から離間した位置に形成される。
At this time, the resist layer formed on the W S 4-layer pattern 4? 14 Since 8 has the octopus pot top as described above, the vapor deposited metal layer (9 and 10) on the resist layer 6 and the vapor deposited metal layer (9 and 10) on the WSi layer body layer 4 are continuous. Since the inside of the groove 8 is wider than the opening, the upper edge of the Au layer 10 deposited on the WSIS 1-layer pattern 4 is sloped and has a protrusion as shown in the figure. Never. Furthermore, since the bottom of the groove 8 does not reach the substrate surface, that is, the surface of the n-type GaAs active layer 2, the lower part of the metal layer (9 or IO) deposited on the W S four-layer pattern 4 is the n-type GaAs active layer. It is formed at a position spaced apart from the top surface of 2.

第1図(g)参照 次いで上記基板を所定のレジスト剥離液に浸漬してレジ
スト層5及び6を溶解除去すると同時に該レジスト層上
のTi体層と40層1oをリフトオフして下層のショッ
トキ接合を形成する”vV S i層4上にバリア層で
あるTi体層を介して主たる導電層となる厚(補U層1
0が被着された積層構造のショットキゲート電極11が
形成される。
Referring to FIG. 1(g), the substrate is then immersed in a predetermined resist stripping solution to dissolve and remove the resist layers 5 and 6. At the same time, the Ti body layer and the 40 layer 1o on the resist layer are lifted off to form a Schottky bond in the lower layer. The thickness of the main conductive layer (auxiliary U layer 1
A Schottky gate electrode 11 having a stacked structure in which 0 is deposited is formed.

第1図(hl参照 以後通常の方法により例えばAuGe/Auの2層構造
を有するソース電極12及びドレイン電極13を形成し
本発明によるGaAsFETが完成する。
After referring to FIG. 1 (hl), a source electrode 12 and a drain electrode 13 having a two-layer structure of, for example, AuGe/Au are formed by a conventional method to complete a GaAsFET according to the present invention.

第2図は上記GaAsFIETの完成状態を示す模式平
面図である。同図に示されるように上層の導電体層即ぢ
Ti体層とAu層IOは通常W S i層パターン4の
ゲートとして機能しているストライプ状部分の上部に形
成されて該ゲーF T極11の直列抵抗が減少せしめら
れる。
FIG. 2 is a schematic plan view showing the completed state of the GaAs FIET. As shown in the figure, the upper conductor layer, i.e., the Ti body layer and the Au layer IO are usually formed on the striped part functioning as the gate of the W Si layer pattern 4, and the gate F T electrode is 11 series resistance is reduced.

以上実施例に示したように本発明の方法によれば積層構
造の電極は、1)下層導電体層パターンの形成、ii 
)フォトプロセス、iii )蒸着、iv)リフミーオ
フの4工程で形成され、従来方法におけるi)下層導電
体層パターンの形成、ii )マスク用CVD絶1層膜
の形成、iii )フォトプロセス、iv )エツチン
グ、v)蒸着、vi )フォトプロセス、vii )イ
オンミーリングの7エ程に比べ大幅に簡略化される。
As shown in the examples above, according to the method of the present invention, an electrode with a laminated structure can be produced by: 1) forming a lower conductor layer pattern; ii)
) photo process, iii) vapor deposition, iv) refresh-me-off, and is formed by the conventional method i) formation of lower conductor layer pattern, ii) formation of CVD insulation single layer film for mask, iii) photo process, iv) This process is greatly simplified compared to the seven steps of etching, v) vapor deposition, vi) photo process, and vii) ion milling.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、上層の導電体層パタ
ーンを形成する際に絶縁膜マスクを用いないので従来該
絶縁膜マスクのコンタクト窓明はエツチングに際して発
生し勝ちであったピンホールによる素子性能の劣化は回
避され、また積層電極の上面縁部は斜面状になだらかに
形成されて該縁部に上層導電体層の薄膜状突起が形成さ
れることがないので、該薄膜状突起の脱落による電極間
短絡等の短絡障害は回避されるので、GaAsFET等
の積層構造の電極を有する半導体装置の製造歩留りや信
頼性が向上する。また製造工程が簡略化されるので製造
手番が短縮される。
As explained above, according to the present invention, an insulating film mask is not used when forming the upper conductive layer pattern, so that the contact window of the insulating film mask is caused by pinholes, which conventionally tend to occur during etching. Deterioration of the device performance is avoided, and since the upper surface edge of the laminated electrode is formed in a gentle slope shape and the thin film-like protrusion of the upper conductor layer is not formed on the edge, the thin film-like protrusion is prevented from forming on the edge. Since short-circuit failures such as short-circuits between electrodes due to falling off are avoided, the manufacturing yield and reliability of semiconductor devices having stacked electrodes such as GaAsFETs are improved. Furthermore, since the manufacturing process is simplified, the manufacturing steps are shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(h)は本発明の一実施例の工程断面図
、第2図は本発明の方法によるGaAsFETの模式平
面図、 第3図は間層構造電極の斜視模式図、 第4図(al〜(+’clは従来方法の工程断面図、第
5図は従来の問題点を示す斜視模式図である。 図において、 ■は半絶縁性GaAs基板、2はn型GaAs活性層、
3は被加工基板、    4はWSi層体層−ン、5は
高感度レジスト!、6は低感度レジスト層、7は感光領
域、     8は溝、 9はTi層、       10はAU層、11は積層
ショットキゲート電極、 12はソース電極、    13はドレイン電極を示す
1 (al to h) are process sectional views of an embodiment of the present invention, FIG. 2 is a schematic plan view of a GaAsFET according to the method of the present invention, FIG. 3 is a schematic perspective view of an interlayer structure electrode, Figure 4 (al~(+'cl) is a cross-sectional view of the process of the conventional method, and Figure 5 is a schematic perspective view showing the problems of the conventional method. layer,
3 is the substrate to be processed, 4 is the WSi layer, and 5 is the high-sensitivity resist! , 6 is a low-sensitivity resist layer, 7 is a photosensitive region, 8 is a groove, 9 is a Ti layer, 10 is an AU layer, 11 is a laminated Schottky gate electrode, 12 is a source electrode, and 13 is a drain electrode.

Claims (1)

【特許請求の範囲】  下層導電体層上に上層導電体層が積層されてなる積層
構造の電極を形成するに際して、 基板上に電極形状を有する下層導電体層パターンを形成
し、 該下層導電体層パターンを有する基板上に、下層が高感
度レジスト層で上層が低感度レジスト層よりなる2層構
造のレジスト層を形成し、 該レジスト層に、該下層導電体層パターンに重ねて、該
下層導電体層パターン以下の大きさを有するパターンを
露光条件を制御して露光し、且つ該レジスト層を現像時
間を制御して現像して、該下層導電体層パターンの上部
及び近傍部のレジスト層を該下層導電体層パターンの上
面が表出し且つ該基板面が表出しない深さに選択的に除
去し、該表出する下層導電体層パターンの上面及び該レ
ジスト層上に上層導電体層を被着し、 該レジスト層を溶解除去すると同時に該レジスト層上の
上層導電体層を選択的にリフトオフして、選択的に該下
層導電体層パターン上に該上層導電体層を残留被着せし
める工程を有することを特徴とする半導体装置の製造方
法。
[Claims] When forming an electrode with a laminated structure in which an upper conductor layer is laminated on a lower conductor layer, a lower conductor layer pattern having an electrode shape is formed on a substrate, and the lower conductor layer is stacked on the lower conductor layer. A resist layer having a two-layer structure consisting of a high-sensitivity resist layer as a lower layer and a low-sensitivity resist layer as an upper layer is formed on a substrate having a layer pattern, and the resist layer is overlaid on the lower conductor layer pattern, and the lower layer is overlaid on the lower conductor layer pattern. A pattern having a size equal to or smaller than the conductor layer pattern is exposed by controlling exposure conditions, and the resist layer is developed by controlling the development time to form a resist layer above and in the vicinity of the lower conductor layer pattern. is selectively removed to a depth where the upper surface of the lower conductor layer pattern is exposed and the substrate surface is not exposed, and the upper conductor layer is removed on the exposed upper surface of the lower conductor layer pattern and on the resist layer. and selectively lift off the upper conductor layer on the resist layer at the same time as dissolving and removing the resist layer to selectively residually deposit the upper conductor layer on the lower conductor layer pattern. 1. A method of manufacturing a semiconductor device, the method comprising a step of making a semiconductor device.
JP991988A 1988-01-20 1988-01-20 Manufacture of semiconductor device Pending JPH01184958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP991988A JPH01184958A (en) 1988-01-20 1988-01-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP991988A JPH01184958A (en) 1988-01-20 1988-01-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01184958A true JPH01184958A (en) 1989-07-24

Family

ID=11733502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP991988A Pending JPH01184958A (en) 1988-01-20 1988-01-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01184958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693548A (en) * 1994-12-19 1997-12-02 Electronics And Telecommunications Research Institute Method for making T-gate of field effect transistor
JP2005317914A (en) * 2004-03-31 2005-11-10 Sharp Corp Semiconductor element and manufacturing method of semiconductor laser chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693548A (en) * 1994-12-19 1997-12-02 Electronics And Telecommunications Research Institute Method for making T-gate of field effect transistor
JP2005317914A (en) * 2004-03-31 2005-11-10 Sharp Corp Semiconductor element and manufacturing method of semiconductor laser chip

Similar Documents

Publication Publication Date Title
JPH0354464B2 (en)
JP3210657B2 (en) Heterojunction bipolar transistor
JPS6161280B2 (en)
US4654959A (en) Method for the manufacture of thin film transistors
JPS6351550B2 (en)
JPH01184958A (en) Manufacture of semiconductor device
JPS6222536B2 (en)
JPH03274735A (en) Manufacture of semiconductor device with schottky electrode
JPS6213832B2 (en)
JP2792421B2 (en) Method for manufacturing semiconductor device
JPH05326518A (en) Semiconductor device, peripheral wiring and their manufacture
JP2620632B2 (en) Method for manufacturing semiconductor device
JPH0254659B2 (en)
JPS6340323A (en) Formation of fine pattern
JPS6019661B2 (en) Electrode formation method
JPH05167063A (en) Ohmic electrode, its formation method and semiconductor device
JPH02116138A (en) Manufacture of semiconductor device
JP3353773B2 (en) Method for manufacturing semiconductor device
JPH03225823A (en) Compound semiconductor device
JPH0226385B2 (en)
JPS6154264B2 (en)
JPS6362104B2 (en)
JPS6025277A (en) Manufacture of semiconductor device
JPS61104675A (en) Manufacture of semiconductor device
JPS5987889A (en) Manufacture of semiconductor element