JPS6150373B2 - - Google Patents

Info

Publication number
JPS6150373B2
JPS6150373B2 JP12560980A JP12560980A JPS6150373B2 JP S6150373 B2 JPS6150373 B2 JP S6150373B2 JP 12560980 A JP12560980 A JP 12560980A JP 12560980 A JP12560980 A JP 12560980A JP S6150373 B2 JPS6150373 B2 JP S6150373B2
Authority
JP
Japan
Prior art keywords
melt
crystal
substrate
plane orientation
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12560980A
Other languages
Japanese (ja)
Other versions
JPS5749227A (en
Inventor
Ryoichi Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12560980A priority Critical patent/JPS5749227A/en
Publication of JPS5749227A publication Critical patent/JPS5749227A/en
Publication of JPS6150373B2 publication Critical patent/JPS6150373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 この発明は、半導体結晶の成長方法、詳しくは
半導体結晶の液相エピタキシヤル成長法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of growing semiconductor crystals, and more particularly to a method of liquid phase epitaxial growth of semiconductor crystals.

一般に、半導体装置に使用するエピタキシヤル
成長層を有する基板においては、エピタキシヤル
成長層と基板との界面が平担であることが要求さ
れる。
Generally, in a substrate having an epitaxially grown layer used in a semiconductor device, it is required that the interface between the epitaxially grown layer and the substrate be flat.

しかし、―族化合物半導体結晶の液相エピ
タキシヤル成長においては、結晶基板と成長用融
液を接触させるまでに結晶基板が高温度の雰囲気
にさらされるため、V族元素の成分が表面から気
化し、基板表面部に熱変成層が形成されて表面が
粗面状となることが知られている。この表面に直
接、エピタキシヤル成長を行なうと、基板とエピ
タキシヤル成長層との界面が凹凸状となり、さら
に粗面状の基板表面に対してエピタキシヤル成長
用の融液が均一に接触し難く、いわゆるメルトコ
ンタクト不良となつて、エピタキシヤル成長層の
表面にも凹凸を生じる。
However, in liquid-phase epitaxial growth of - group compound semiconductor crystals, the crystal substrate is exposed to a high-temperature atmosphere before the crystal substrate and the growth melt come into contact, so that group V element components are vaporized from the surface. It is known that a thermally altered layer is formed on the surface of the substrate, resulting in a rough surface. If epitaxial growth is performed directly on this surface, the interface between the substrate and the epitaxial growth layer will be uneven, and furthermore, it will be difficult for the epitaxial growth melt to uniformly contact the rough substrate surface. This results in so-called melt contact failure, and unevenness also occurs on the surface of the epitaxially grown layer.

このように、エピタキシヤル成長層の表面が平
坦でないと、この表面に写真製版などの微細加工
を行なう場合の重大な障害となる。また、基板表
面にV族元素の気化などに伴なう熱変成層が存在
すると、最終的に製造される半導体装置の電気的
特性や光学的特性に悪影響を及ぼすことになる。
As described above, if the surface of the epitaxial growth layer is not flat, it becomes a serious obstacle when performing microfabrication such as photolithography on this surface. Further, if a thermally altered layer due to vaporization of Group V elements exists on the substrate surface, it will have a negative effect on the electrical and optical characteristics of the semiconductor device that is finally manufactured.

このため、従来では、液相エピタキシヤル成長
を行なう前に上記熱変成層を取り除いて表面を平
坦化する工程を付加する方法が採用されている。
For this reason, conventionally, a method has been adopted in which a step of removing the thermally altered layer and flattening the surface is added before performing liquid phase epitaxial growth.

この方法を図面に基づいて説明する。 This method will be explained based on the drawings.

第1図aは上記の平坦化工程を示す模式図であ
る。図において、1は―族半導体結晶などか
らなる基板、2は基板1の表面部に形成された熱
変成層であり、この熱変成層2の表面3は凹凸状
となつている。4は平坦化のための未飽和融液で
あり、これを熱変成層2の表面に接触させること
によつて、熱変成層2が矢印のように融液4中に
溶け込んで除去される。第1図bは、液相エピタ
キシヤル成長を行なう工程を示す模式図である。
図において、1は上記第1図aの工程を経て表面
部が溶解除去された基板であり、5は所定の組成
を有するエピタキシヤル成長用の融液である。図
示するように、この融液5を基板1の表面6に接
触させることにより、融液5中の成分が矢印のよ
うに析出し、表面6上にエピタキシヤル成長層7
が形成される。
FIG. 1a is a schematic diagram showing the above planarization process. In the figure, 1 is a substrate made of - group semiconductor crystal, etc., 2 is a thermally altered layer formed on the surface of the substrate 1, and the surface 3 of this thermally altered layer 2 is uneven. Reference numeral 4 denotes an unsaturated melt for flattening, and by bringing this into contact with the surface of the thermally altered layer 2, the thermally altered layer 2 is dissolved into the melt 4 as shown by the arrow and removed. FIG. 1b is a schematic diagram showing a process of performing liquid phase epitaxial growth.
In the figure, 1 is a substrate whose surface portion has been dissolved and removed through the process shown in FIG. 1a, and 5 is a melt for epitaxial growth having a predetermined composition. As shown in the figure, by bringing this melt 5 into contact with the surface 6 of the substrate 1, components in the melt 5 are precipitated as shown by the arrows, and an epitaxial growth layer 7 is formed on the surface 6.
is formed.

上記方法によれば、エピタキシヤル成長を行な
う前に熱変成層2を容易に除去できるが、このと
き溶解が過剰に進んで不必要に厚い層が除去され
る傾向があり、しかも溶解が均一に進まず、第2
図bの表面6で示すようにうねり模様が生じ易
い。このような溶解の過剰な進行やうねり模様の
発生は、溶解量の制御、つまり融液4の飽和度の
制御が困難であることに起因する。この飽和度は
融液4中に溶存する溶質の量で決まるが、融液中
に溶質を均一に溶かし込むのに時間がかかり、か
つ溶質中にV族元素が含まれる場合、これが揮発
生であるために溶かし込む過程で気化して融液中
濃度が減少し、融液4を再現性よく一定の飽和度
に制御することが困難である。
According to the above method, the thermally altered layer 2 can be easily removed before epitaxial growth, but there is a tendency that the dissolution progresses excessively and an unnecessarily thick layer is removed, and that the dissolution is not uniform. Don't proceed, 2nd
An undulating pattern is likely to occur as shown by surface 6 in Figure b. The excessive progress of dissolution and the occurrence of wavy patterns are caused by the difficulty in controlling the amount of dissolution, that is, the degree of saturation of the melt 4. This degree of saturation is determined by the amount of solute dissolved in the melt 4, but if it takes time to uniformly dissolve the solute into the melt and the solute contains Group V elements, this may cause volatilization. Because of this, it vaporizes during the melting process and the concentration in the melt decreases, making it difficult to control the melt 4 to a constant degree of saturation with good reproducibility.

この発明は、上記の従来技術の欠点に鑑みてな
されたものであり、一定温度において、所定の溶
質を含む融液への結晶基板構成元素の溶解度が、
結晶基板の面方位によつて異なることに着目し、
この溶解度の差を利用することによつて所定の飽
和度の融液を形成し、この融液で穏やかに溶解を
行なうことによつて、溶かし込み厚さを制御し、
かつまた、エピタキシヤル成長層と基板との界面
を平担にすることを目的としたものである。
This invention was made in view of the above-mentioned drawbacks of the prior art, and the solubility of the constituent elements of a crystal substrate in a melt containing a predetermined solute at a constant temperature is
Focusing on the fact that it differs depending on the plane orientation of the crystal substrate,
By utilizing this difference in solubility, a melt with a predetermined degree of saturation is formed, and by performing gentle dissolution with this melt, the thickness of the melt can be controlled.
Furthermore, the purpose is to flatten the interface between the epitaxial growth layer and the substrate.

以下、説明の便宜のために、基板の結晶として
面方位(100)のInP結晶を使用した場合を説明
する。
Hereinafter, for convenience of explanation, a case will be described in which an InP crystal with a plane orientation of (100) is used as the crystal of the substrate.

一定温度において、In融液へのP原子の溶解度
がInP結晶の面方位によつて異なつていること
は、たとえば、電気通信研究所、研究実用化報
告、第26巻、(1979年)第6号第1029頁におい
て、尾江らが報告している。ここでは、第2図で
示すように、温度650℃、In融液中のAsモル分率
が一定(0.045)であるという条件において、融
液中のGaの各濃度に対応するIn融液中へのP原
子の溶解度が、InP結晶の面方位によつて異なる
ことが示されている。つまり、In融液中のGaと
Asのモル分率をそれぞれ0.006、0.045、融液温度
を650℃とすると、111B面のInPで飽和させ
た融液は、100面に対しては、温度に換算して
約3℃に相当するだけ未飽和になつていることが
第2図からわかる。
At a constant temperature, the solubility of P atoms in In melt varies depending on the plane orientation of the InP crystal, as reported in, for example, Telecommunications Research Institute, Research Application Report, Vol. 26, (1979) 6. On page 1029 of the issue, Oe et al. report. Here, as shown in Fig. 2, under the conditions that the temperature is 650°C and the As mole fraction in the In melt is constant (0.045), the temperature in the In melt corresponding to each concentration of Ga in the melt is It has been shown that the solubility of P atoms in InP varies depending on the plane orientation of the InP crystal. In other words, Ga in the In melt and
Assuming that the mole fraction of As is 0.006 and 0.045, and the melt temperature is 650℃, the temperature of the melt saturated with InP on the 111B plane is equivalent to about 3℃ for 100 planes. It can be seen from Fig. 2 that only 0.2% is unsaturated.

つぎに、この発明の一実施例について図面にし
たがつて説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

第3図は一般的に用いられるスライドボートに
よる方法を示す。図において、8はスライドボー
ト、9は融液溜めであり、このスライドボート8
の基板設定位置に面方位(100)のInP結晶基板
1が設定されている。10は面方位(111)Bを
有するInP結晶、11はIn融液に所定の量のInAs
とGaAsとを加えた平坦化用の融液、12はエピ
タキシヤル成長用融液である。このようなスライ
ドボート8を反応炉(図示せず)中に配置し、水
素雰囲気中で650℃に加熱し、所定時間(約1時
間)保持する。この保持する間に平坦化用の融液
11中へ面方位(111)Bを有するInP結晶9表
面からInPが面方位(111)B面のInPに対して飽
和に達するだけ溶け込む。このようにしてのち、
融液溜め9を左方に移動し、面方位(100)を有
するInP結晶基板1と融液11とを接触させる
と、融液11は前述したように面方位(100)を
有するInP結晶に対して約3℃に相当するだけ未
飽和であるので、基板1の表面部は穏やかに融液
11中へ溶解してゆく。このとき、融液11は面
方位(111)Bを有する結晶10に対しては過飽
和融液となるから、InPが結晶10上に折出する
ことはいうまでもない。所定時間の接触によつて
熱変成層がなくなつた段階で、融液溜め9をもう
一段左方に動かし、熱変成層がなくなつた平坦な
結晶基板1の表面に、エピタキシヤル成長用融液
12を接触させ、エピタキシヤル成長を開始す
る。所定温度の降温を行なつて所望の厚さのエピ
タキシヤル成長層が得られた段階で成長用融液1
1を除く。
FIG. 3 shows a commonly used slide boat method. In the figure, 8 is a slide boat, 9 is a melt reservoir, and this slide boat 8
An InP crystal substrate 1 with a plane orientation of (100) is set at the substrate setting position. 10 is an InP crystal with plane orientation (111) B, 11 is a predetermined amount of InAs in the In melt.
12 is a melt for epitaxial growth. Such a slide boat 8 is placed in a reaction furnace (not shown), heated to 650° C. in a hydrogen atmosphere, and held for a predetermined time (about 1 hour). During this holding, InP from the surface of the InP crystal 9 having the plane orientation (111)B dissolves into the flattening melt 11 to the extent that it reaches saturation with the InP having the plane orientation (111)B. After doing this,
When the melt reservoir 9 is moved to the left and the melt 11 is brought into contact with the InP crystal substrate 1 having the plane orientation (100), the melt 11 becomes the InP crystal having the plane orientation (100) as described above. On the other hand, since it is unsaturated by a temperature corresponding to about 3° C., the surface portion of the substrate 1 gently dissolves into the melt 11. At this time, since the melt 11 becomes a supersaturated melt with respect to the crystal 10 having the plane orientation (111)B, it goes without saying that InP is precipitated onto the crystal 10. When the thermally altered layer disappears after contact for a predetermined period of time, the melt reservoir 9 is moved to the left one more step, and the epitaxial growth melt is applied to the surface of the flat crystal substrate 1 where the thermally altered layer is no longer present. The liquid 12 is brought into contact to start epitaxial growth. At the stage where the epitaxial growth layer with the desired thickness is obtained by lowering the temperature to a predetermined temperature, the growth melt 1 is
Excluding 1.

以上のように、この発明によれば、面方位
(100)を有するInP結晶表面の熱変成層は、温度
に換算して数℃分だけ未飽和である融液で穏かに
溶解できるので、溶解量を再現性よく制御でき、
また、平坦性の良好な表面が得られるので、その
上に平滑なエピタキシヤル成長層を成長させるこ
とができる。
As described above, according to the present invention, the thermally altered layer on the surface of the InP crystal with the plane orientation (100) can be gently dissolved in the melt, which is unsaturated by several degrees Celsius in terms of temperature. The amount of dissolution can be controlled with good reproducibility,
Furthermore, since a surface with good flatness is obtained, a smooth epitaxial growth layer can be grown thereon.

なお、上記実施例では、結晶基板として面方位
(100)を有するInP結晶基板を用いる場合につい
て説明したが、この発明は、融液に対する溶解度
の面方位依存性を有する他の化合物半導体結晶の
液相エピタキシヤル成長にも利用することができ
る。
In the above embodiment, the case where an InP crystal substrate having a plane orientation (100) is used as the crystal substrate is explained, but the present invention is applicable to liquids of other compound semiconductor crystals in which the solubility in the melt is dependent on the plane orientation. It can also be used for phase epitaxial growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは従来の液相エピタキシヤル
成長法の工程を示す模式図、第2図は所定温度に
おいてIn融液中に溶解するP原子の溶解度とGa
のモル分率との関係を示す特性図、第3図はこの
発明の一実施例を説明する模式図である。 1……基板〔面方位(100)のInP〕、10……
基板の結晶より溶解度が小さい面方位の結晶〔面
方位(111)BのInP〕、11……平坦化用融液
(InAsとGaAsとを含むIn融液)、12……エピタ
キシヤル成長用融液。なお、図中の同一符号は同
一もしくは相当部部分を示す。
Figures 1a and b are schematic diagrams showing the steps of the conventional liquid phase epitaxial growth method, and Figure 2 shows the solubility of P atoms and Ga dissolved in the In melt at a given temperature.
FIG. 3 is a schematic diagram illustrating an embodiment of the present invention. 1...Substrate [InP with plane orientation (100)], 10...
Crystal with a plane orientation that has lower solubility than the crystal of the substrate [InP with plane orientation (111)B], 11... Melt for flattening (In melt containing InAs and GaAs), 12... Melt for epitaxial growth liquid. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 化合物半導体結晶からなる基板の表面を、所
定の溶質を含む融液で溶解して平坦化したのち、
この表面上に液相中でエピタキシヤル成長層を形
成する方法において、化合物半導体結晶と融液と
を結晶の構成元素の融液に対する溶解度が結晶の
面方位によつて異なる組み合わせとし、あらかじ
め上記溶解度が基板の結晶より小さい面方位の結
晶によつて融液を飽和させ、この飽和させた融液
を用いて基板の表面を溶解して平坦化することを
特徴とする液相エピタキシヤル成長法。 2 基板の結晶として面方位(100)にInpを、
融液として所定量のInAsとGaAsとを含むIn融液
を、基板の結晶より小さい面方位の結晶として面
方位(111)BのInpをそれぞれ使用する特許請
求の範囲第1項記載の液相エピタキシヤル成長
法。
[Claims] 1. After the surface of a substrate made of compound semiconductor crystal is planarized by melting it with a melt containing a predetermined solute,
In the method of forming an epitaxial growth layer on this surface in a liquid phase, a compound semiconductor crystal and a melt are combined in such a manner that the solubility of the constituent elements of the crystal in the melt differs depending on the plane orientation of the crystal. A liquid phase epitaxial growth method characterized in that a melt is saturated with a crystal whose plane orientation is smaller than that of a substrate, and the saturated melt is used to melt and flatten the surface of a substrate. 2 Inp in the plane orientation (100) as the substrate crystal,
The liquid phase according to claim 1, wherein an In melt containing a predetermined amount of InAs and GaAs is used as the melt, and Inp with a plane orientation of (111)B is used as a crystal with a plane orientation smaller than that of the crystal of the substrate. Epitaxial growth method.
JP12560980A 1980-09-09 1980-09-09 Liquid phase epitaxially growing method Granted JPS5749227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12560980A JPS5749227A (en) 1980-09-09 1980-09-09 Liquid phase epitaxially growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12560980A JPS5749227A (en) 1980-09-09 1980-09-09 Liquid phase epitaxially growing method

Publications (2)

Publication Number Publication Date
JPS5749227A JPS5749227A (en) 1982-03-23
JPS6150373B2 true JPS6150373B2 (en) 1986-11-04

Family

ID=14914335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12560980A Granted JPS5749227A (en) 1980-09-09 1980-09-09 Liquid phase epitaxially growing method

Country Status (1)

Country Link
JP (1) JPS5749227A (en)

Also Published As

Publication number Publication date
JPS5749227A (en) 1982-03-23

Similar Documents

Publication Publication Date Title
JPH04180219A (en) Formation of crystal
JPS6150373B2 (en)
US3810794A (en) Preparation of gap-si heterojunction by liquid phase epitaxy
US4547230A (en) LPE Semiconductor material transfer method
JPH0217519B2 (en)
JPS6154245B2 (en)
US3463680A (en) Solution growth of epitaxial layers of semiconductor material
JPS5827238B2 (en) Single crystal manufacturing method
JPS6020509A (en) Liquid phase epitaxial growth method
JPS5853826A (en) Liquid epitaxial growing method
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS5963720A (en) Growing method for semiconductor single crystal
JPH0566353B2 (en)
JPH0330288B2 (en)
JPS58185497A (en) Liquid phase epitaxial growth
JPH0355438B2 (en)
JPH0435440B2 (en)
JPH0582459A (en) Manufacture of epitaxial crystal
JPS63304619A (en) Liquid growth method
JPS5925291A (en) Manufacture of semiconductor laser element
JPS6398120A (en) Crystal growth method
JPS599912A (en) Liquid phase crystal growth method
JPS6063921A (en) Manufacture of semiconductor element
JPH0687459B2 (en) Vapor phase growth equipment
JPS6286884A (en) Manufacture of semiconductor device