JPS615036A - Production of alcohol - Google Patents

Production of alcohol

Info

Publication number
JPS615036A
JPS615036A JP59124675A JP12467584A JPS615036A JP S615036 A JPS615036 A JP S615036A JP 59124675 A JP59124675 A JP 59124675A JP 12467584 A JP12467584 A JP 12467584A JP S615036 A JPS615036 A JP S615036A
Authority
JP
Japan
Prior art keywords
cobalt
catalyst
cocatalyst component
method described
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59124675A
Other languages
Japanese (ja)
Other versions
JPH0436140B2 (en
Inventor
Kiyoshi Tsukada
清 塚田
Noriaki Fukuoka
福岡 紀明
Ikuya Kinoshita
木下 郁也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP59124675A priority Critical patent/JPS615036A/en
Publication of JPS615036A publication Critical patent/JPS615036A/en
Publication of JPH0436140B2 publication Critical patent/JPH0436140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound in a remarkably high catalytic activity, in the direct hydrogenation of a carboxylic acid to produe the corresponding alcohol, by using a cobalt catalyst doubly activated with two kinds of different cocatalyst components each consisting of a specific metal. CONSTITUTION:An alcohol is produced in high catalytic activity, by contacting an organic carboxylic acid with hydrogen in the presence of a cobalt catalyst containing (A) one or more metals (the first cocatalyst component) selected from aluminum, zirconium, molybdenum and 3b-group element of the periodic table and (B) one or more metals (the second cocatalyst component) selected from copper and 8-group noble metal element of the periodic table. The atomic ratio of the first cocatalyst component to cobalt is 0.001-0.2, preferably 0.05-0.1, and that of the second cocatalyst component to cobalt is 1X10<-5>-0.005, preferably 5X10<-5>-0.002. Preferably, the second cocatalyst component is supplied in a form supported on cobalt containing the first cocatalyst component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1個以上のカルボン酸基を有する有機カルボ
ン酸を、二種類の異った形態の助触媒で二重に活性化さ
れたコバルト触媒を用い、水素化することによってアル
コールを製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the use of organic carboxylic acids having one or more carboxylic acid groups which are doubly activated with two different types of cocatalysts. This invention relates to a method for producing alcohol by hydrogenation using a cobalt catalyst.

〔従来の技術及び問題点〕[Conventional technology and problems]

遊離のカルボン酸の直接水素化によりアルコールを製造
しようとする試みは古くから為されてきておp1数多く
の固体触媒が提案されている。その主なものは銅クロム
を含む銅系触媒、コバルト金属系触媒、鉄系触媒、ルテ
ニウム、ロジウム及び白金の貴金属触媒そしてレニウム
触媒である。これら°の触媒の中で工業的な観点から研
究されてきたのがコバルト金属系の触媒である。
Attempts to produce alcohols by direct hydrogenation of free carboxylic acids have been made for a long time, and numerous solid catalysts have been proposed. The main ones are copper-based catalysts including copper chromium, cobalt metal-based catalysts, iron-based catalysts, noble metal catalysts of ruthenium, rhodium and platinum, and rhenium catalysts. Among these catalysts, cobalt metal-based catalysts have been studied from an industrial perspective.

例えば特公昭55−4090号公報はコバルト金属にレ
ニウム及びモリブデンを添加した触媒をまた特公昭54
−2056号公報はコバルト金属に鉄、亜鉛、リン、モ
リブデン、タングステン及びカルシウムから選ばれた金
属化合物を添加した触媒を提案して:Fdり、これらの
公報に記載されている助触媒はいずれも触媒の耐久性を
向上させている点に特徴がみられる。しかしながらこれ
らの触媒を用いる方法は触媒活性の点でまだまだ十分な
ものとは言えない。
For example, Japanese Patent Publication No. 55-4090 discloses a catalyst in which rhenium and molybdenum are added to cobalt metal.
Publication No. 2056 proposes a catalyst in which a metal compound selected from iron, zinc, phosphorus, molybdenum, tungsten, and calcium is added to cobalt metal: The feature is that it improves the durability of the catalyst. However, methods using these catalysts are still not satisfactory in terms of catalytic activity.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者らは、カルボン酸を直接水素化し対応す
るアルコールを製造するに於て、高活性水素化触媒を見
出すべく鋭意研究した結果、不発明を完成した。
Therefore, the present inventors conducted extensive research to find a highly active hydrogenation catalyst for directly hydrogenating carboxylic acids to produce the corresponding alcohols, and as a result, they completed their invention.

即ち、本発明はアルミニウム、ジルコニウム。That is, the present invention uses aluminum and zirconium.

モリブデン及び周期律表第3b族元素からなる群から選
ばれる1種以上の金属(第1助触媒成分)と銅及び周期
律表第8族貴金属元素からなる群から選ばれる1種以上
の金属(第2助触媒成分)を含有するコバルト触媒の存
在下、有機カルボン酸を水素と接触せしめることを特徴
とするアルコールの製造法を提供するものである。
One or more metals selected from the group consisting of molybdenum and elements of group 3b of the periodic table (first promoter component), and one or more metals selected from the group consisting of copper and noble metal elements of group 8 of the periodic table ( The present invention provides a method for producing alcohol, which comprises bringing an organic carboxylic acid into contact with hydrogen in the presence of a cobalt catalyst containing a second promoter component.

本発明に係る触媒組成物の製法は特に限定されず、公知
の方法により調製される。例えば、コバルト、第1助触
媒成分となる金属及び第2助触媒成分となる金属のそれ
ぞれの金属塊の混合水溶液に沈澱剤を添加する共沈澱法
により得られた沈澱物を乾燥・焼成したもの、あるいは
それぞれの酸化物、水酸化物、炭酸塩、リン酸塩、硝酸
塩等の化合物を均一に混合し焼成した触媒前駆体を還元
性物質で還元する方法によシ調製される。
The method for producing the catalyst composition according to the present invention is not particularly limited, and it can be prepared by a known method. For example, a precipitate obtained by drying and calcining a precipitate obtained by a coprecipitation method in which a precipitant is added to a mixed aqueous solution of metal lumps of cobalt, a metal serving as the first promoter component, and a metal serving as the second promoter component. Alternatively, it can be prepared by a method of uniformly mixing compounds such as respective oxides, hydroxides, carbonates, phosphates, nitrates, etc., and reducing the fired catalyst precursor with a reducing substance.

ここで第2助触媒成分を添加する場合、上記の共沈澱法
あるいは均一混合法に代わる方法として、第1助触媒成
分を含むコバルト化合物上に第2助触媒成分の金属化合
物を沈澱あるいは含浸担持する方法も可能である。
When adding the second promoter component here, as an alternative to the coprecipitation method or homogeneous mixing method described above, the metal compound of the second promoter component is precipitated or impregnated and supported on the cobalt compound containing the first promoter component. It is also possible to do this.

共沈澱法により調製する場合あるいは、第2助触媒成分
を第1助触媒成分を含むコバルト化合物上に沈澱あるい
は含浸担持する方法により調製する場合、使用される金
属塊は水溶性のものであればなんでも良いが、一般的に
は硫Wi塩、硝酸塩、アンモニウム錯塩、酢酸塩あるい
は塩化物である。また沈澱剤としてアンモニア、尿素、
炭酸アンモニウム、炭酸ナトリウム、水酸化ナトリウム
、水酸化カリウムなどのアルカリ水溶液が用いられる。
When preparing by coprecipitation method or by precipitating or impregnating and supporting the second cocatalyst component on a cobalt compound containing the first cocatalyst component, as long as the metal lump used is water-soluble. Any substance may be used, but generally it is a sulfur Wi salt, a nitrate, an ammonium complex salt, an acetate, or a chloride. In addition, ammonia, urea,
Alkaline aqueous solutions such as ammonium carbonate, sodium carbonate, sodium hydroxide, and potassium hydroxide are used.

また、かかる触媒組成物は単位体積当りの活性あるいは
選択性がそれほど損なわれない程度に於て、珪藻土、ア
ルミナ、シリカゲル、シリカ−アルミナ、マグネシア、
ジルコニア、チタニアなどの公知の担体上に担持した状
態で還元し、使用しても何ら差し支えない。
In addition, such a catalyst composition may contain diatomaceous earth, alumina, silica gel, silica-alumina, magnesia, etc. to the extent that the activity or selectivity per unit volume is not significantly impaired.
There is no problem in using it after reducing it while supported on a known carrier such as zirconia or titania.

本発明に於てコバルト触媒に添加され得る第1助触媒成
分はアルミニウム、ジルコニウム、モリブデン及び周期
律表第5b族元索からなる群の中から選ばれた、少なく
とも1種の金属化合物であり、特に好ましくはスカンジ
ウム、イツトリウム、ランタノイド、アクチノイドの3
b族元索に属する金属化合物である。これらの金属化合
物は酸素酸化物、リン酸塩あるいはホウ酸塩のような含
酸素化合物であり、コバルトに対し原子比で0.001
〜0.2、好ましくは0.05〜0.1の割合で含まれ
る。
In the present invention, the first promoter component that can be added to the cobalt catalyst is at least one metal compound selected from the group consisting of aluminum, zirconium, molybdenum, and elements of group 5b of the periodic table, Particularly preferred are scandium, yttrium, lanthanide, and actinide.
It is a metal compound belonging to Group B. These metal compounds are oxygen-containing compounds such as oxygen oxides, phosphates or borates, and have an atomic ratio of 0.001 to cobalt.
-0.2, preferably 0.05-0.1.

次ニコバルト触媒に添加され得る第2助触媒成分は銅、
ルテニウム、ロジウム、パラジウム、オスミウム、イリ
ジウム及び白金からなる群の中から選ばれた少なくとも
1種の金属である。
The second promoter component that can be added to the nicobalt catalyst is copper,
At least one metal selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, and platinum.

これらの金属はコバルト及び第1助触媒成分とともに均
一に混合された状態で添加することも可能であるが、特
に好ましくは第1助触媒成分を含むコバルト上に担持し
た状態で添加するのが望ましく、コバルトに対し原子比
で1×10−5〜0.005好ましくは5x10〜0.
002の割合で含まれる。
Although it is possible to add these metals in a uniformly mixed state with cobalt and the first promoter component, it is particularly preferable to add them in a state in which they are supported on cobalt containing the first promoter component. , preferably 5x10 to 0.005 in atomic ratio to cobalt.
It is included at a rate of 0.002.

第1及び第2助触媒成分で二重に活性化されたコバルト
触媒は既に説明した方法により調製されたところの触媒
前駆体を還元性物質で還元することにより得られる。こ
こで用いられる還元性物質とは水素、−酸化炭素、アン
モニア、ヒドラジン、ホルムアルデヒドあるいはメタノ
ールなどであるが、単独あるいは混合した状態で使用し
ても良(、また窒素等の不活性気体あるいは少量の水蒸
気の存在下で使用しても差し支えない。
The cobalt catalyst doubly activated with the first and second cocatalyst components is obtained by reducing the catalyst precursor prepared by the method described above with a reducing substance. The reducing substances used here include hydrogen, carbon oxide, ammonia, hydrazine, formaldehyde, and methanol, but they may also be used alone or in a mixed state (and inert gases such as nitrogen or a small amount of May be used in the presence of water vapor.

触媒前駆体を還元する場合、気相還元法あるいは流動パ
ラフィン等の炭化水素、ジオキサン、脂肪族アルコール
あるいは脂肪族エステルなどの溶媒中で行う液相還元法
のいずれの方法を用いても良い。例えば、水素ガスを用
いて還元する場合150℃乃至800℃、好ましくは2
00℃乃至500℃の温度で水の生成が認められなくな
る迄もしくは水素吸収が認められなくなる迄行うのが望
ましい。特に溶媒中で還元を行う場合、200℃乃至3
50℃の温度で水素吸収が認められなくなる迄行うのが
望ましい。
When reducing the catalyst precursor, either a gas phase reduction method or a liquid phase reduction method performed in a solvent such as a hydrocarbon such as liquid paraffin, dioxane, an aliphatic alcohol, or an aliphatic ester may be used. For example, when reducing using hydrogen gas, the temperature is 150°C to 800°C, preferably 2°C.
It is preferable to carry out the treatment at a temperature of 00°C to 500°C until water generation is no longer observed or hydrogen absorption is no longer observed. In particular, when reducing in a solvent, the temperature is between 200°C and 3°C.
It is desirable to carry out the treatment at a temperature of 50° C. until no hydrogen absorption is observed.

本発明に於て使用される有機カルボン酸はモノカルボン
酸及びポリカルボン酸の〜・ずれでも良い。モノカルボ
ン酸として脂肪族カルボン酸、芳香族カルボン酸、芳香
脂肪族カルボン酸及び脂環族カルボン酸が使用され、ま
たポリカルボン酸として脂肪族ジカルボン酸及び芳香族
ジカルボン酸が使用される。これらのカルボン酸は遊離
のカルボン酸であっても酸無水物の形であってもいずれ
でも良い。
The organic carboxylic acid used in the present invention may be a monocarboxylic acid or a polycarboxylic acid. Aliphatic carboxylic acids, aromatic carboxylic acids, araliphatic carboxylic acids, and alicyclic carboxylic acids are used as monocarboxylic acids, and aliphatic dicarboxylic acids and aromatic dicarboxylic acids are used as polycarboxylic acids. These carboxylic acids may be either free carboxylic acids or in the form of acid anhydrides.

上記カルボン酸を水素化する場合溶媒を使用することも
可能である。溶媒として水、ジオキサンあるいはアルコ
ール類などが用いられるが、水溶媒が特に好ましい。ま
た無溶媒で水素化する場合にも少量の水を添加すること
により触媒活性の著しい増加が認められる。ここで少量
の水とは原料カルボン酸に対し1乃至3重量パーセント
の水であり、この程度の水の量で効果は十分に現われる
It is also possible to use a solvent when hydrogenating the above carboxylic acids. Water, dioxane, alcohols, etc. can be used as a solvent, and a water solvent is particularly preferred. Furthermore, even in the case of hydrogenation without a solvent, a significant increase in catalytic activity is observed by adding a small amount of water. Here, the small amount of water is water in an amount of 1 to 3% by weight based on the raw material carboxylic acid, and this amount of water is sufficient to produce the effect.

本発明の製造法は懸濁床反応方式、流動床反応方式ある
いは固定床反応方式のいずれの方式に於ても実施し得る
が、その場合の触媒形状は各反応方式に適した形に成型
される。
The production method of the present invention can be carried out in any of the suspended bed reaction method, fluidized bed reaction method, or fixed bed reaction method, but in that case the catalyst shape is molded into a shape suitable for each reaction method. Ru.

例えば、本発明を懸濁床反応方式で実施しようとする場
合、次のような反応や件が選ばれる。
For example, when the present invention is to be carried out using a suspended bed reaction method, the following reactions and conditions are selected.

反応温度は150℃乃至300℃が好ましいが、特に好
ましくは180℃乃至250℃である。150℃未満で
は触媒活性の低下が著しく、また300℃を越えると副
生物の顕著な増加が認められるが、いずれにしても実施
不可能な温度ではない。実際的に実施し得る水素圧力と
しては150 ky/譚2乃至300 kg10n2が
好ましい。
The reaction temperature is preferably 150°C to 300°C, particularly preferably 180°C to 250°C. If the temperature is lower than 150°C, the catalytic activity decreases significantly, and if the temperature exceeds 300°C, a significant increase in by-products is observed, but in any case, the temperature is not impractical. Practical hydrogen pressure is preferably 150 ky/tan2 to 300 kg10n2.

触媒の使用量は原料カルボン酸に対し0.5重量パーセ
ント乃至50重量パーセントであるが、好ましくは2重
量パーセント乃至15重量パーセントである。
The amount of the catalyst used is 0.5 to 50 weight percent, preferably 2 to 15 weight percent, based on the starting carboxylic acid.

〔発明の効果〕〔Effect of the invention〕

本発明に於て提示された触媒はカルボン酸を直接水素化
し対応するアルコールを製造する際に非常に高活性を示
し、コバルト第1助触媒成分及び第2助触媒成分のいず
れかの成分が欠けても触媒性能が著しく低下する。また
、第2助触媒成分をコバルトに対し数十ppm添加した
だけで当初予想だにしなかった顕著な効果が見い出され
たのは驚くべき事である。
The catalyst presented in the present invention exhibits very high activity in the direct hydrogenation of carboxylic acids to produce the corresponding alcohols, and lacks either the cobalt first cocatalyst component or the second cocatalyst component. However, the catalyst performance deteriorates significantly. Furthermore, it is surprising that a remarkable effect that was not initially expected was found by adding only a few tens of ppm of the second cocatalyst component relative to cobalt.

〔実施例〕 以下実施例によフ本発明を説明するが1本発明はこれら
実施例に限定されるものではない。
[Examples] The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

尚、本発明の実施例における反応では酸価(AV)が1
0位に低下する迄水素吸収は時間に対しほぼ直線的に起
きることから水素吸収速度をもって活性の尺度とするが
、この際触媒の使用量が多いと水素吸収速度が太きすぎ
て正確な活性が求められないことから、触媒使用量を4
%以下に押えて活性測定を行っている。反応を短時間で
速やかに完結させるには反応温度を高めるか触媒使用量
を増すことによシ達成可能となるが、反応温度を高めた
場合副反応が起こりやすくなることから触媒使用量を増
すことで対処する方が望ましい。この場合、触媒使用量
を5乃至7%程度に増すことにニジ短時間で反応を完結
することができる。
In addition, in the reaction in the examples of the present invention, the acid value (AV) was 1.
Since hydrogen absorption occurs almost linearly with time until it drops to 0, the hydrogen absorption rate is used as a measure of activity. However, if a large amount of catalyst is used, the hydrogen absorption rate is too high, making it difficult to accurately determine the activity. Since this is not required, the amount of catalyst used is reduced to 4.
% or less and conduct activity measurements. In order to quickly complete the reaction in a short period of time, this can be achieved by raising the reaction temperature or increasing the amount of catalyst used. However, if the reaction temperature is raised, side reactions are more likely to occur, so the amount of catalyst used is increased. It is better to deal with it by In this case, the reaction can be completed in a short time by increasing the amount of catalyst used to about 5 to 7%.

実施例1 触媒調製 コバルト対イツトリウムの原子比が1 : 0.01で
ある硝酸コバルト、硝酸イツトリウムの混合水溶液と炭
酸アンモニウム水溶液を室温で攪拌混合した際に生ずる
沈澱物を十分水洗した後110℃で乾燥する。乾燥後6
00℃で4時間焼成を行いコバルト−イツトリウム酸化
物全得る。
Example 1 Catalyst Preparation A precipitate formed when a mixed aqueous solution of cobalt nitrate and yttrium nitrate with an atomic ratio of cobalt to yttrium of 1:0.01 and an aqueous ammonium carbonate solution were stirred and mixed at room temperature was sufficiently washed with water and then heated at 110°C. dry. After drying 6
Calcination is carried out at 00° C. for 4 hours to obtain the entire cobalt-yttrium oxide.

次に、コバルト対パラジウムの原子比が1:o、o o
 o aとなるようにvI4!Iシた硝酸パラジウム水
溶液とコバルト−イツトリウム酸化物を十分混合した後
110℃で乾燥し、パラジウム担持コバルト−イツトリ
ウム酸化物を得る。
Next, the atomic ratio of cobalt to palladium is 1:o, o o
vI4 so that o a! The aqueous palladium nitrate solution and cobalt-yttrium oxide are thoroughly mixed and then dried at 110°C to obtain a palladium-supported cobalt-yttrium oxide.

上記、酸化物奢ラウリルアルコール、!:、!:4にオ
ートクレーブ中に仕込み空気を水素で置換した後50 
k110R2に昇圧し、攪拌しっ一’)250tに昇温
する。250℃で水素吸収が認められな(なる迄還元し
た後r遇し得られたケークを触媒とする。
Above, the oxide, lauryl alcohol,! :,! : After replacing the air charged in the autoclave with hydrogen at 4:50
The pressure was increased to 110R2, and the temperature was raised to 250t while stirring. After reduction until no hydrogen absorption was observed at 250°C, the resulting cake was used as a catalyst.

触媒活性評価 たコバルト−イツトリウム−パラジウム触媒5.4.9
 (金属コバルトとして)及び水5gを回転攪拌式0.
5リツトルオートクレーブに仕込み、水素圧25 Q 
kl/m2、温度225℃、攪拌速度80Orpmで反
応を行った。
Cobalt-yttrium-palladium catalyst evaluated for catalytic activity 5.4.9
(as metallic cobalt) and 5 g of water using a rotating stirring method.
Pour into a 5 liter autoclave, hydrogen pressure 25 Q
The reaction was carried out at kl/m2, temperature of 225° C., and stirring speed of 80 rpm.

反応結果を次に示す。The reaction results are shown below.

反応時間  29分 水素吸収速度  7 k110u12Win以上(於2
25℃)分析値  水酸基価(OHV) = 184.
3 。
Reaction time 29 minutes Hydrogen absorption rate 7 k110u12Win or more (at 2
25°C) Analysis value Hydroxyl value (OHV) = 184.
3.

8v= 60.2  、  AV = 5.0比較例1 触媒調製 硝酸コバルト水溶液と炭酸アンモニウム水溶液を用い実
施例1に記載の方法に従いコバルト酸化物を得る。得ら
れたコバルト酸化物全実施例1に記載の方法に従い水素
還元し触媒t−調製した。
8v=60.2, AV=5.0 Comparative Example 1 Catalyst Preparation A cobalt oxide is obtained according to the method described in Example 1 using an aqueous cobalt nitrate solution and an aqueous ammonium carbonate solution. The obtained cobalt oxide was reduced with hydrogen according to the method described in Example 1 to prepare a catalyst.

触媒活性評価 実施例1に記載の方法に従い上記の如(調製した触媒の
活性評価を行った。
Catalyst Activity Evaluation According to the method described in Example 1, the activity of the catalyst prepared as described above was evaluated.

反応結果を次に示す。The reaction results are shown below.

反応時間  260分 水素吸収速度  0 、71 kg/rat’ 6 w
in (於225℃)分析値 0)tV=141.4 
1=79.9AV = 0.07 比較例2 触媒調製 比較例1に記載のコバルト酸化物にコバルト対パラジウ
ムの原子比がi : o、o o o aとなるように
実施例1に記載の方法に従い硝酸パラジウムを含浸担持
し、実施例1に記載の方法によシ水素還元し触媒を調製
した。
Reaction time: 260 minutes Hydrogen absorption rate: 0, 71 kg/rat' 6 w
in (at 225℃) Analysis value 0) tV=141.4
1 = 79.9 AV = 0.07 Comparative Example 2 Catalyst Preparation The method described in Example 1 was applied to the cobalt oxide described in Comparative Example 1 so that the atomic ratio of cobalt to palladium was i: o, o o o a. A catalyst was prepared by impregnating and supporting palladium nitrate in accordance with the method described in Example 1, and reducing it with hydrogen by the method described in Example 1.

触媒活性評価 実施例1に記載の方法に従い、上記の如く調製した触媒
の活性評価を行った。
Catalyst Activity Evaluation According to the method described in Example 1, the activity of the catalyst prepared as described above was evaluated.

反応結果を次に示す。The reaction results are shown below.

反応時間  130分 水素吸収速度  1 、35 kl/7a2・min 
(於り25℃〕分析値 0HV=142.4 8V=7
8.5AV  =  1.3 比較例3 触媒調製 実施例1に記載のコバルト−イツトリウム酸化物を用い
、実施例1に記載の方法に従い水素還元し薗媒を調製し
た。
Reaction time: 130 minutes Hydrogen absorption rate: 1,35 kl/7a2・min
(at 25℃) Analysis value 0HV=142.4 8V=7
8.5AV = 1.3 Comparative Example 3 Using the cobalt-yttrium oxide described in Catalyst Preparation Example 1, hydrogen reduction was performed according to the method described in Example 1 to prepare a solute medium.

触媒活性評価 実施例1に記載の方法に従い、上記の如く調製した触媒
の活性評価を行った。
Catalyst Activity Evaluation According to the method described in Example 1, the activity of the catalyst prepared as described above was evaluated.

反応結果を次に示す。The reaction results are shown below.

反応時間  300分 水素吸収速度  0.99峙/i・win (於225
℃ン分析値 0HV=208.9  S V=51.6
 。
Reaction time: 300 minutes Hydrogen absorption rate: 0.99 units/i・win (at 225
℃ analysis value 0HV=208.9 SV=51.6
.

A V=8.8 以上のように、本発明に於て使用されるコバルト触媒は
助触媒成分のどの1成分が欠けてもその性能を有しない
ことがわかる。
AV=8.8 As described above, it can be seen that the cobalt catalyst used in the present invention does not have the same performance even if any one of the co-catalyst components is missing.

実施例2〜4 触媒調製 コバルト対ジルコニウムの原子比が1 : 0.05と
なるよう硝酸コバルト、硝酸ジルコニルを用い実施例1
に記載の方法に従ってコバルト−ジルコニウム酸化物を
得た。
Examples 2 to 4 Catalyst preparation Example 1 using cobalt nitrate and zirconyl nitrate so that the atomic ratio of cobalt to zirconium was 1:0.05.
A cobalt-zirconium oxide was obtained according to the method described in .

上記の酸化物を用い実施例1に記載の方法に従い、硝酸
パラジウム、硝酸白金、硝酸銅を含浸担持した後、実施
例1に記載の方法に従い水素還元し触媒を調製した。
Using the above oxide, palladium nitrate, platinum nitrate, and copper nitrate were impregnated and supported according to the method described in Example 1, and then reduced with hydrogen according to the method described in Example 1 to prepare a catalyst.

触媒活性評価 金鵬コバルトとして5.19の触媒を用いる以外は実施
例1に記載の方法に従い、上記の如く調製した触媒の活
性評価を行った。
Evaluation of Catalytic Activity The activity of the catalyst prepared as described above was evaluated in accordance with the method described in Example 1, except that a catalyst with a cobalt concentration of 5.19 was used.

反応結果を表1に示す。The reaction results are shown in Table 1.

比較例4 融媒調製 実施例2〜4に記載のコバルト−ジルコニウム酸化物を
用い、実施例1に記載の方法に従い水素還元し触媒を調
製した。
Comparative Example 4 Using the cobalt-zirconium oxides described in Melting Medium Preparation Examples 2 to 4, hydrogen reduction was performed according to the method described in Example 1 to prepare a catalyst.

触媒活性評価 実施例2〜4に記載の方法に従い、上記の如く調製した
触媒の活性評価を行った。
Catalyst Activity Evaluation The activity of the catalysts prepared as described above was evaluated according to the method described in Examples 2 to 4.

反応結果を表1に示す。The reaction results are shown in Table 1.

実施例5〜10 触媒調製 コバルト対第1助触媒成分の原子比が1:0.01とな
るように硝酸セリウム、硝酸ランタン、硝酸ネオジウム
、硝酸スカンジウム、モリブデン酸アンモニウム、硝酸
アルミニウムを用い実施例1に記載の方法に従って各々
の酸化物を得た。
Examples 5 to 10 Catalyst Preparation Example 1 Using cerium nitrate, lanthanum nitrate, neodymium nitrate, scandium nitrate, ammonium molybdate, and aluminum nitrate so that the atomic ratio of cobalt to the first promoter component was 1:0.01. Each oxide was obtained according to the method described in .

上記の酸化物を用いコバルト対パラジウムの原子比が1
 : 0.000 Bとなるように実施例1に記載の方
法に従い硝酸パラジウムを含浸担持し、実施例1に記載
の方法により水素還元し触媒を調製した。
Using the above oxide, the atomic ratio of cobalt to palladium is 1.
: Palladium nitrate was impregnated and supported according to the method described in Example 1 so as to have a concentration of 0.000 B, and hydrogen reduction was performed according to the method described in Example 1 to prepare a catalyst.

触媒活性評価 実施例1に記載の方法に従い、上記の如(調製した触媒
の活性評価を行った。
Catalyst Activity Evaluation According to the method described in Example 1, the activity of the catalyst prepared as described above was evaluated.

反応結果を表2に示す。The reaction results are shown in Table 2.

実施例11 実施例6に記載の触媒を用いて、反応温度を200℃と
する他は実施例1に記載の方法に従い触媒の活性評価を
行った。
Example 11 Using the catalyst described in Example 6, the activity of the catalyst was evaluated in accordance with the method described in Example 1, except that the reaction temperature was 200°C.

反応結果を次に示す。The reaction results are shown below.

反応時間  65分 水素吸収速度  2.6 kfl/Cm2@ min 
(於り00℃〕分析値 0)IV = 167.4 8
 V=67.5A V=3.1 実施例12〜15 触媒調製 コバルト対ジルコニウムの原子比が1 : o、olと
なるよう硝酸コバルト、硝酸ジルコニルを用い実施例1
に記載の方法に従ってコバルト−ジルコニウム酸化物を
得た。
Reaction time 65 minutes Hydrogen absorption rate 2.6 kfl/Cm2@min
(at 00℃) Analysis value 0) IV = 167.4 8
V=67.5A V=3.1 Examples 12 to 15 Catalyst Preparation Example 1 Using cobalt nitrate and zirconyl nitrate so that the atomic ratio of cobalt to zirconium was 1: o, ol.
A cobalt-zirconium oxide was obtained according to the method described in .

上記の酸化物を用い、コバルト対パラジウムの原子比が
1 : 0.00008,1 : 0,0004,1:
 0.000B 、1 : 0,0015となるように
実施例1に記載の方法に従い硝酸パラジウムを含浸担持
し、実施例1に記載の方法により水素還元し各々の触媒
を調製した。
Using the above oxide, the atomic ratio of cobalt to palladium is 1: 0.00008, 1: 0,0004, 1:
Palladium nitrate was impregnated and supported according to the method described in Example 1 so that the ratio was 0.000B, 1:0,0015, and hydrogen reduction was performed according to the method described in Example 1 to prepare each catalyst.

触媒活性評価 実施例1に記載の方法に従い、上記の如く調製した触媒
の活性評価を行った。
Catalyst Activity Evaluation According to the method described in Example 1, the activity of the catalyst prepared as described above was evaluated.

反応結果を表3に示す。The reaction results are shown in Table 3.

比較例5 触媒調製 実施例12〜15に記載のコバルト−ジルコニウム酸化
物を実施例1に記載の方法に従い水素還元し触媒を調製
した。
Comparative Example 5 Catalyst Preparation The cobalt-zirconium oxides described in Examples 12 to 15 were reduced with hydrogen according to the method described in Example 1 to prepare a catalyst.

触媒活性評価 実施例1に記載の方法に従い上記の如く調製した触媒の
活性評価を行った。
Catalyst Activity Evaluation The activity of the catalyst prepared as described above was evaluated according to the method described in Example 1.

反応結果を表3に示す。The reaction results are shown in Table 3.

実施例16 アジピン酸150.9(純度98.15%)と実施例6
に記載の触媒5.4.9 (金属コバルトとして)及び
水3gを回転攪拌式0.5リツトルオートクレーブに仕
込み、水素圧250 kg/ape2%温度250℃、
攪拌速度800 rpmで反応を行った。
Example 16 Adipic acid 150.9 (purity 98.15%) and Example 6
Catalyst 5.4.9 (as metal cobalt) and 3 g of water were placed in a rotary stirring 0.5 liter autoclave, hydrogen pressure 250 kg/ape2% temperature 250°C,
The reaction was carried out at a stirring speed of 800 rpm.

反応結果上次に示す。The reaction results are shown below.

反応時間  180分 水素吸収速度  4 、4 kg/s’・win (於
250℃)エステルニ量化縮合物   1’−’%アジ
ピン酸         6.8%実施例17 オレインwi!1501 (AV=202J 、 8V
−2rJ5.6IV=89.5  )と実施例1に記載
の触媒5,4 Jil(金属コバルトとして)及び水1
5J’i回転攪拌式0.5リットルオートクレーブに仕
込み、水素圧250 kp/礪2、温度200℃、攪拌
速度800 rpmで反応を行った。
Reaction time 180 minutes Hydrogen absorption rate 4.4 kg/s'・win (at 250°C) Ester dimerization condensate 1'-'% Adipic acid 6.8% Example 17 Olein wi! 1501 (AV=202J, 8V
-2rJ5.6IV=89.5) and the catalyst described in Example 1 5,4 Jil (as metallic cobalt) and water 1
The mixture was charged into a 5J'i rotary stirring type 0.5 liter autoclave, and the reaction was carried out at a hydrogen pressure of 250 kp/cm2, a temperature of 200° C., and a stirring speed of 800 rpm.

反応結果を次に示す。The reaction results are shown below.

反応時間  180分Reaction time: 180 minutes

Claims (1)

【特許請求の範囲】 1、アルミニウム、ジルコニウム、モリブデン及び周期
律表第3b族元素からなる群から選ばれる1種以上の金
属(第1助触媒成分)と銅及び周期律表第8族貴金属元
素からなる群から選ばれる1種以上の金属(第2助触媒
成分)を含有するコバルト触媒の存在下、有機カルボン
酸を水素と接触せしめることを特徴とするアルコールの
製造法。 2、第1助触媒成分がコバルトに対し原子比で0.00
1〜0.2の割合で、且つ、第2助触媒成分がコバルト
に対し原子比で1×10^−^5〜0.005の割合で
含まれる特許請求の範囲第1項記載の製造法。
[Scope of Claims] 1. One or more metals (first promoter component) selected from the group consisting of aluminum, zirconium, molybdenum, and elements of group 3b of the periodic table, and copper and noble metal elements of group 8 of the periodic table. A method for producing alcohol, which comprises bringing an organic carboxylic acid into contact with hydrogen in the presence of a cobalt catalyst containing one or more metals (second promoter component) selected from the group consisting of: 2. The first cocatalyst component has an atomic ratio of 0.00 to cobalt.
1 to 0.2, and the second promoter component is contained in an atomic ratio of 1 x 10^-^5 to 0.005 to cobalt. .
JP59124675A 1984-06-18 1984-06-18 Production of alcohol Granted JPS615036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124675A JPS615036A (en) 1984-06-18 1984-06-18 Production of alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124675A JPS615036A (en) 1984-06-18 1984-06-18 Production of alcohol

Publications (2)

Publication Number Publication Date
JPS615036A true JPS615036A (en) 1986-01-10
JPH0436140B2 JPH0436140B2 (en) 1992-06-15

Family

ID=14891278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124675A Granted JPS615036A (en) 1984-06-18 1984-06-18 Production of alcohol

Country Status (1)

Country Link
JP (1) JPS615036A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270882A (en) * 1986-05-19 1987-11-25 株式会社荏原製作所 Noise control method of pump piping
JPH01503459A (en) * 1987-03-31 1989-11-22 ザ ブリテイッシュ ピトローリアム コンパニー ピー.エル.シー. Catalytic hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
WO1995024371A1 (en) * 1994-03-09 1995-09-14 Sagami Chemical Research Center Process for producing alcohol
WO2008099961A1 (en) * 2007-02-16 2008-08-21 Kao Corporation Catalyst for alcohol production
JP2008221199A (en) * 2007-02-16 2008-09-25 Kao Corp Catalyst for producing alcohol
JP2009082889A (en) * 2007-10-03 2009-04-23 Kao Corp Catalyst for producing alcohol
JP2009142781A (en) * 2007-12-17 2009-07-02 Kao Corp Catalyst for producing alcohol
US9975826B2 (en) 2014-11-20 2018-05-22 Kao Corporation Production method of aliphatic alcohol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270882A (en) * 1986-05-19 1987-11-25 株式会社荏原製作所 Noise control method of pump piping
JPH01503459A (en) * 1987-03-31 1989-11-22 ザ ブリテイッシュ ピトローリアム コンパニー ピー.エル.シー. Catalytic hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
WO1995024371A1 (en) * 1994-03-09 1995-09-14 Sagami Chemical Research Center Process for producing alcohol
WO2008099961A1 (en) * 2007-02-16 2008-08-21 Kao Corporation Catalyst for alcohol production
JP2008221199A (en) * 2007-02-16 2008-09-25 Kao Corp Catalyst for producing alcohol
US8329961B2 (en) 2007-02-16 2012-12-11 Kao Corporation Catalyst for producing alcohol
JP2009082889A (en) * 2007-10-03 2009-04-23 Kao Corp Catalyst for producing alcohol
JP2009142781A (en) * 2007-12-17 2009-07-02 Kao Corp Catalyst for producing alcohol
US9975826B2 (en) 2014-11-20 2018-05-22 Kao Corporation Production method of aliphatic alcohol

Also Published As

Publication number Publication date
JPH0436140B2 (en) 1992-06-15

Similar Documents

Publication Publication Date Title
EP2116300B1 (en) A method for alcohol production
US4105674A (en) Production of gamma-butyrolactone from maleic anhydride with a hydrogenation catalyst
US6559093B2 (en) Process for catalytic ammonia production-preparation and recovery of ammonia synthesis catalyst
US3928238A (en) Exhaust gas purifying catalyst and process of making and using same
JP2001046874A (en) Hydrogenating catalyst and production of alcohols from carboxylic acids using the same
EP1174386B1 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
JPS615036A (en) Production of alcohol
JPH08196907A (en) Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JPH09508918A (en) Method for producing gamma-butyrolactone
JP3365657B2 (en) Catalyst for steam reforming of hydrocarbons
JP2685130B2 (en) Ethanol production method
JP2813770B2 (en) Ethanol production method
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
US3919294A (en) Process for preparing diacetoxy butane
JP2000080053A (en) Production of cyloalkyldimethanol
JPH03220143A (en) Production of alcohol
JPH0822378B2 (en) Hydrocarbon steam reforming catalyst
JP3517696B2 (en) Solid acid catalyst and method for producing the same
CN114471626B (en) Preparation method and application of oxyfluoride supported noble metal catalyst
JP3748588B2 (en) Method for producing glycolic acid
JPS61109785A (en) Production of lactone
JP3021700B2 (en) Method for producing lactone
US4022840A (en) Process and catalyst for the preparation of linear mono-olefines by catalytic dehydrogenation of linear paraffins
JPH08225543A (en) Production of pyrazines
JPH0236135A (en) Production of alcohol