JP3748588B2 - Method for producing glycolic acid - Google Patents

Method for producing glycolic acid Download PDF

Info

Publication number
JP3748588B2
JP3748588B2 JP10407295A JP10407295A JP3748588B2 JP 3748588 B2 JP3748588 B2 JP 3748588B2 JP 10407295 A JP10407295 A JP 10407295A JP 10407295 A JP10407295 A JP 10407295A JP 3748588 B2 JP3748588 B2 JP 3748588B2
Authority
JP
Japan
Prior art keywords
catalyst
glycolic acid
ethylene glycol
reaction
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10407295A
Other languages
Japanese (ja)
Other versions
JPH08295650A (en
Inventor
和生 脇村
忠晴 羽勢
義広 瀬崎
耕士 藤田
俊夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP10407295A priority Critical patent/JP3748588B2/en
Publication of JPH08295650A publication Critical patent/JPH08295650A/en
Application granted granted Critical
Publication of JP3748588B2 publication Critical patent/JP3748588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【産業上の利用分野】
本発明はグリコール酸の製造方法に関する。さらに詳しくはエチレングリコールと酸素含有ガスとを接触酸化反応させて、グリコール酸を製造する方法に関する。
【0002】
【従来の技術】
グリコール酸は清缶剤、洗浄剤、皮革なめし剤、化粧品等の原料として有用である。従来グリコール酸の製造方法としては、強酸性触媒の存在下でホルムアルデヒド、一酸化炭素及び水から製造する方法が知られている。たとえば、特開昭59-139341 号では含水有機溶媒中フッ化水素触媒存在下でホルムアルデヒドと一酸化炭素とを反応させて製造する方法や、米国特許2,153,064 号では水媒体中硫酸触媒存在下でホルムアルデヒドと一酸化炭素とを反応させて製造する方法が示されているが、いずれも温度100 〜200 ℃、圧力数百気圧という過酷な反応条件であり、さらには酸性触媒による設備の腐食という工業プロセスとして取り扱うにおいて重大な欠点を有している。
【0003】
また、金属担持触媒の存在下でエチレングリコール等のグリコール類を酸化させて製造する方法も提案されている。たとえば、特公昭60-10016号および特公昭60-39063号では水媒体中で白金族金属触媒存在下エチレングリコールを酸素含有ガスで酸化する方法が示されているが、反応速度が遅く反応時間を長く設定する必要があるという欠点を有する。
【0004】
さらに特開昭51-86415号および特開昭62-269749 号ではアルカリ性水溶液中で白金族金属元素を主成分とする触媒の存在下、グリコール類を酸化させる方法が示されているが、生成物がグリコール酸のアルカリ塩であるため、遊離グリコール酸を得るには煩雑な操作が必要であり、やはり製造コストが増加する欠点を有している。
【0005】
【発明が解決しようとする課題】
以上述べたように、従来の方法では高い反応温度と高い反応圧力、特殊な材質の設備を必要とするか、または長い反応時間と煩雑な製造工程が必要であり、工業的には極めて不利な方法であった。したがって、経済的で実施容易な製造方法の開発が望まれていた。
【0006】
【課題を解決するための手段】
本発明者らは上記問題点を解決するため鋭意研究を行なった結果、本発明を完成した。即ち本発明のグリコール酸の製造方法は、エチレングリコールを酸素含有ガスで接触酸化させて、グリコール酸を製造するに際し、触媒成分としてルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金から選ばれる少なくとも1種の白金族元素に、助触媒成分としてバナジウム、クロム、モリブデン、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、からなる群から選ばれる少なくとも1種の元素の共存下に反応させることを特徴とするものである。
【0007】
本発明においては貴金属触媒成分に対する助触媒金属成分量の範囲に特に制限はない。本発明においては白金属触媒の原料にルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金のそれぞれの塩化物、ヨウ化物、硝酸塩、硫酸塩、酢酸塩、酸化物、分子内錯体、金属粉、およびそれぞれが担持された市販の触媒が挙げられる。
【0008】
助触媒成分の原料としては、バナジウム、クロム、モリブデン、マンガン、鉄、コバルト、ニッケル、銅、亜鉛のそれぞれの塩化物、ヨウ化、硝酸塩、硫酸塩、酢酸塩、リン化合物、酸化物、水酸化物、およびそれぞれの純金属や合金が挙げられる。助触媒の共存方法としては、貴金属触媒が添加された反応原料液に助触媒成分の原料粉末を直接添加する方法を採るが、その他の方法には水または反応に悪影響を及ぼさない有機化合物、例えばエチレングリコール、グリコール酸、ギ酸、酢酸、シュウ酸等に助触媒原料を混合溶解させた液を反応原料液に添加する方法も使用できる。
【0009】
本発明に用いられるエチレングリコールは工業的に製造されているもので一般に入手可能なものを水に溶解混合した状態で用いられる。この一般に入手可能なエチレングリコールに微量含まれる有機酸類やアルコール類と言った不純物は本発明の効果を損なうことはない。本発明の方法においては前述の触媒を添加したエチレングリコール水溶液に酸素含有ガスを通気して反応させるが、エチレングリコールの濃度が上記の範囲より低くても触媒性能に差し支えないが、生成物の濃縮に多大な熱量を要するので好ましくない。一方エチレングリコール濃度を過大にすると分解等の副反応の増大と反応液の粘度増加による攪拌効果の減衰により、グリコール酸の収率が低下する。
【0010】
反応に用いる触媒の添加量は、反応原料液であるエチレングリコール水溶液に対して0.1〜10重量%および助触媒は0.001〜1.0重量%の範囲が適している。反応に用いる酸化剤は、酸素含有ガスであって通常酸素または空気が用いられるが、窒素やアルゴン等の不活性ガスに酸素を15容量%以上混合して使用することも出来る。反応温度は0〜100℃の範囲、特に30〜70℃の範囲が好ましい。反応圧力はゲージ圧で0〜5kg/cm2 の範囲が用いられる。反応に要する時間は原料エチレングリコール濃度、使用する触媒等の反応条件によって一定ではないが、約1〜24時間程度である。反応方式は懸濁床または固定床であり、バッチ式または流通式のいずれでも良い。
【0011】
【実施例】
以下、実施例によりさらに本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0012】
実施例1
(Feの助触媒効果)
貴金属触媒の調整において、以下のような公知の方法を使用した。すなわち、塩化第二白金8.63gと塩化パラジウム0.83gを1リットルの脱イオン水に溶解した。この水溶液に活生炭(粒径100メッシュ未満、表面積1500m2/g)95gを室温で2時間、80℃で1時間浸漬した後、45%苛性ソーダの21ミリリットル、38%ホルマリン水溶液15ミリリットルを添加し、80℃で1時間触媒の還元を行った。還元後の触媒は濾過、脱イオン水での洗浄を行い、4.5%Pt−0.5%Pd/C触媒を得た。
【0013】
得られた貴金属触媒3.0gと15重量%エチレングリコール水溶液200gと共に酸化鉄(3価)50mgをパイレックスガラス製500ミリリットル容器に入れた。この水溶液を常圧、50℃で、攪拌機の回転数を500rpm一定として、酸素ガスを毎分0.1リットル通気して6時間反応させた。
【0014】
生成物には二酸化炭素、および生成液としての有機酸水溶液が得られた。この生成液を液クロマトグラフィーで分析した結果、エチレングリコールの添加率は72.9モル%生成液中のグリコール酸とグリコリルグリコール酸(以後これらをグリコール酸類と総称する)の選択率の合計は93.6モル%であった。不純物としてギ酸や酢酸等の有機酸が含まれていたが、ホルムアルデヒド等のアルデヒド類は検出されなかった。
【0015】
実施例2
(Crの助触媒効果)
実施例1と同様の方法で得られた貴金属触媒3.0gと15重量%エチレングリコール水溶液200gと共に酢酸クロム(3価)160mgをパイレックスガラス製500ミリリットル容器に入れた。この水溶液を常圧下50℃で攪拌機の回転数500rpm一定とし、酸素ガスを毎分0.1リットル通気しながら6時間反応させた。
【0016】
生成物には二酸化炭素、および生成液としての有機酸水溶液が得られた。この生成液を液クロマトグラフィーで分析した結果、エチレングリコールの転化率は73.1モル%、生成液中のグリコール酸類の選択率の合計は92.9モル%であった。不純物としてギ酸や酢酸等の有機酸が含まれていたが、ホルムアルデヒド等のアルデヒド類は検出されなかった。
【0017】
比較例1
(4.5%Pt−0.5Pd%/C触媒)
貴金属触媒の調整にあたり、以下のような公知の方法を使用した。すなわち、塩化第二白金8.63gと塩化パラジウム0.83gを1リットルの脱イオン水に溶解した水溶液に実施例1と同じ活性炭を室温で2時間、80℃で1時間浸漬した後、45%苛性ソーダ21ミリリットル、38%ホルマリン水溶液15ミリリットルを添加し、80℃で1時間、触媒の還元を行った。還元後の触媒は濾過、脱イオン水での洗浄を行い、目的の組成の貴金属触媒を得た。
【0018】
この触媒3.0gと15重量%エチレングリコール水溶液200gをパイレックスガラス製500ミリリットル容器に入れた。この水溶液を常圧下50℃で攪拌機の回転数を500rpm一定として、酸素ガスを毎分0.1リットルで通気して6時間反応させた。生成物には二酸化炭素および生成液としての有機酸水溶液が得られた。この生成液を液クロマトグラフィーで分析した結果、エチレングリコールの転化率は55.0モル%、生成液中のグリコール酸類の選択率の合計は92.6モル%であった。
【0019】
実施例3、4
実施例1と同様の方法で添加する助触媒金属の種類を、種々に変えて反応させた結果を表1に示す。
【0020】
【表1】

Figure 0003748588
【0021】
【発明の効果】
本発明の方法によれば安価なエチレングリコールを原料に用いて、反応において特に高温高圧を必要とせず、反応時間も比較的短くて高収率、高選択率でグリコール酸を工業的に有利に合成することが出来る。[0001]
[Industrial application fields]
The present invention relates to a method for producing glycolic acid. More specifically, the present invention relates to a method for producing glycolic acid by catalytically oxidizing ethylene glycol and an oxygen-containing gas.
[0002]
[Prior art]
Glycolic acid is useful as a raw material for cans, detergents, leather tanning agents, cosmetics and the like. Conventionally, as a method for producing glycolic acid, a method of producing from formaldehyde, carbon monoxide and water in the presence of a strongly acidic catalyst is known. For example, JP-A-59-139341 discloses a method of producing formaldehyde by reacting with carbon monoxide in a hydrous organic solvent in the presence of a hydrogen fluoride catalyst, and US Pat. No. 2,153,064 discloses formaldehyde in the presence of a sulfuric acid catalyst in an aqueous medium. Are shown, but all of them are harsh reaction conditions such as temperature of 100-200 ° C and pressure of several hundred atmospheres, and furthermore, industrial process of corrosion of equipment by acidic catalyst Have serious drawbacks.
[0003]
There has also been proposed a method of producing a product by oxidizing glycols such as ethylene glycol in the presence of a metal-supported catalyst. For example, Japanese Patent Publication No. 60-10016 and Japanese Patent Publication No. 60-39063 show a method of oxidizing ethylene glycol with an oxygen-containing gas in the presence of a platinum group metal catalyst in an aqueous medium, but the reaction rate is slow and the reaction time is reduced. It has the disadvantage that it must be set longer.
[0004]
Further, JP-A-51-86415 and JP-A-62-269749 show a method for oxidizing glycols in an alkaline aqueous solution in the presence of a catalyst mainly composed of a platinum group metal element. Is an alkali salt of glycolic acid, it requires a complicated operation to obtain free glycolic acid, which also has the disadvantage of increasing the production cost.
[0005]
[Problems to be solved by the invention]
As described above, the conventional method requires a high reaction temperature and a high reaction pressure, equipment of special materials, or requires a long reaction time and a complicated manufacturing process, which is extremely disadvantageous industrially. Was the way. Therefore, development of an economical and easy-to-implement manufacturing method has been desired.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the method for producing glycolic acid of the present invention comprises at least one selected from ruthenium, rhodium, palladium, osmium, iridium, and platinum as a catalyst component when producing glycolic acid by catalytically oxidizing ethylene glycol with an oxygen-containing gas. The platinum group element is reacted in the presence of at least one element selected from the group consisting of vanadium, chromium, molybdenum, manganese, iron, cobalt, nickel, copper, and zinc as a promoter component. Is.
[0007]
In the present invention, the range of the amount of the promoter metal component relative to the noble metal catalyst component is not particularly limited. In the present invention, the raw material of the white metal catalyst is ruthenium, rhodium, palladium, osmium, iridium, platinum chloride, iodide, nitrate, sulfate, acetate, oxide, intramolecular complex, metal powder, and each A commercially available catalyst in which is supported.
[0008]
The raw materials for the promoter component are vanadium, chromium, molybdenum, manganese, iron, cobalt, nickel, copper, zinc chloride, iodide, nitrate, sulfate, acetate, phosphorus compound, oxide, hydroxide Products, and the respective pure metals and alloys. As a coexistence method of the cocatalyst, a method of directly adding the raw material powder of the cocatalyst component to the reaction raw material liquid to which the noble metal catalyst is added is adopted, but other methods include water or an organic compound that does not adversely influence the reaction, A method in which a solution obtained by mixing and dissolving a cocatalyst raw material in ethylene glycol, glycolic acid, formic acid, acetic acid, oxalic acid or the like is added to the reaction raw material liquid can also be used.
[0009]
The ethylene glycol used in the present invention is an industrially produced one that is generally available and dissolved and mixed in water. Impurities such as organic acids and alcohols contained in trace amounts in the generally available ethylene glycol do not impair the effects of the present invention. In the method of the present invention, an oxygen-containing gas is allowed to react with the ethylene glycol aqueous solution to which the above catalyst is added. However , even if the ethylene glycol concentration is lower than the above range, the catalyst performance may be affected, but the product concentration This is not preferable because a large amount of heat is required. On the other hand, if the ethylene glycol concentration is excessive, the yield of glycolic acid decreases due to an increase in side reactions such as decomposition and a decrease in stirring effect due to an increase in the viscosity of the reaction solution.
[0010]
The addition amount of the catalyst used for the reaction is suitably in the range of 0.1 to 10% by weight and 0.001 to 1.0% by weight of the cocatalyst with respect to the aqueous ethylene glycol solution as the reaction raw material liquid. The oxidant used for the reaction is an oxygen-containing gas, and usually oxygen or air is used. However, it is also possible to use oxygen in an inert gas such as nitrogen or argon by mixing 15% by volume or more. The reaction temperature is preferably in the range of 0 to 100 ° C, particularly preferably in the range of 30 to 70 ° C. The reaction pressure is a gauge pressure in the range of 0 to 5 kg / cm 2 . The time required for the reaction is not constant depending on the raw ethylene glycol concentration and the reaction conditions such as the catalyst used, but is about 1 to 24 hours. The reaction system is a suspension bed or a fixed bed, and may be either a batch system or a flow system.
[0011]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0012]
Example 1
(Promoter effect of Fe)
In preparing the noble metal catalyst, the following known methods were used. That is, 8.63 g of platinum chloride and 0.83 g of palladium chloride were dissolved in 1 liter of deionized water. After immersing 95 g of activated charcoal (particle size less than 100 mesh, surface area 1500 m 2 / g) in this aqueous solution for 2 hours at room temperature and 1 hour at 80 ° C., 21 ml of 45% caustic soda and 15 ml of 38% formalin aqueous solution were added. The catalyst was reduced at 80 ° C. for 1 hour. The reduced catalyst was filtered and washed with deionized water to obtain a 4.5% Pt-0.5% Pd / C catalyst.
[0013]
Along with 3.0 g of the obtained noble metal catalyst and 200 g of a 15 wt% ethylene glycol aqueous solution, 50 mg of iron oxide (trivalent) was placed in a Pyrex glass 500 ml container. This aqueous solution was reacted at normal pressure, 50 ° C., with the rotation speed of the stirrer kept constant at 500 rpm, and oxygen gas was passed through 0.1 liter per minute for 6 hours.
[0014]
As a product, carbon dioxide and an organic acid aqueous solution as a product liquid were obtained. As a result of analyzing this product solution by liquid chromatography, the addition rate of ethylene glycol was 72.9 mol%. The total selectivity of glycolic acid and glycolyl glycolic acid (hereinafter collectively referred to as glycolic acids) in the product solution was: It was 93.6 mol%. Although organic acids such as formic acid and acetic acid were contained as impurities, aldehydes such as formaldehyde were not detected.
[0015]
Example 2
(Co-catalyst effect of Cr)
Along with 3.0 g of the noble metal catalyst obtained in the same manner as in Example 1 and 200 g of a 15 wt% ethylene glycol aqueous solution, 160 mg of chromium acetate (trivalent) was placed in a 500 ml container made of Pyrex glass. This aqueous solution was allowed to react for 6 hours at 50 ° C. under normal pressure, with a rotating speed of the stirrer being kept constant at 500 rpm, and aeration of 0.1 liter of oxygen gas per minute.
[0016]
As a product, carbon dioxide and an organic acid aqueous solution as a product liquid were obtained. As a result of analyzing the product liquid by liquid chromatography, the conversion of ethylene glycol was 73.1 mol%, and the total selectivity of glycolic acids in the product liquid was 92.9 mol%. Although organic acids such as formic acid and acetic acid were contained as impurities, aldehydes such as formaldehyde were not detected.
[0017]
Comparative Example 1
(4.5% Pt-0.5 Pd% / C catalyst)
In preparing the precious metal catalyst, the following known methods were used. That is, after immersing the same activated carbon as in Example 1 for 2 hours at room temperature and 1 hour at 80 ° C. in an aqueous solution in which 8.63 g of platinum chloride and 0.83 g of palladium chloride were dissolved in 1 liter of deionized water, 45% 21 ml of caustic soda and 15 ml of 38% formalin aqueous solution were added, and the catalyst was reduced at 80 ° C. for 1 hour. The reduced catalyst was filtered and washed with deionized water to obtain a noble metal catalyst having the desired composition.
[0018]
3.0 g of this catalyst and 200 g of a 15 wt% ethylene glycol aqueous solution were placed in a Pyrex glass 500 ml container. This aqueous solution was reacted at 50 ° C. under normal pressure with the rotation speed of the stirrer kept constant at 500 rpm and aeration of oxygen gas at 0.1 liter per minute for 6 hours. As a product, carbon dioxide and an organic acid aqueous solution as a product liquid were obtained. As a result of analyzing this product liquid by liquid chromatography, the conversion of ethylene glycol was 55.0 mol%, and the total selectivity of glycolic acids in the product liquid was 92.6 mol%.
[0019]
Examples 3 and 4
Table 1 shows the results obtained by reacting various types of promoter metal added in the same manner as in Example 1.
[0020]
[Table 1]
Figure 0003748588
[0021]
【The invention's effect】
According to the method of the present invention, inexpensive ethylene glycol is used as a raw material, the reaction does not require particularly high temperature and high pressure, the reaction time is relatively short, and glycolic acid is industrially advantageous with high yield and high selectivity. Can be synthesized.

Claims (1)

エチレングリコールを酸素含有ガスで接触酸化させて、グリコール酸を製造するに際し、触媒成分として白金に、助触媒成分としてクロム、モリブデン、鉄、ニッケルからなる群から選ばれる少なくとも1種の元素の共存下に反応させることを特徴とするグリコール酸の製造方法。In the production of glycolic acid by catalytically oxidizing ethylene glycol with an oxygen-containing gas, in the presence of at least one element selected from the group consisting of platinum as a catalyst component and chromium, molybdenum, iron, and nickel as a promoter component. A process for producing glycolic acid, characterized in that
JP10407295A 1995-04-27 1995-04-27 Method for producing glycolic acid Expired - Lifetime JP3748588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10407295A JP3748588B2 (en) 1995-04-27 1995-04-27 Method for producing glycolic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10407295A JP3748588B2 (en) 1995-04-27 1995-04-27 Method for producing glycolic acid

Publications (2)

Publication Number Publication Date
JPH08295650A JPH08295650A (en) 1996-11-12
JP3748588B2 true JP3748588B2 (en) 2006-02-22

Family

ID=14370959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10407295A Expired - Lifetime JP3748588B2 (en) 1995-04-27 1995-04-27 Method for producing glycolic acid

Country Status (1)

Country Link
JP (1) JP3748588B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484383B (en) * 2018-02-07 2020-09-04 中国科学院兰州化学物理研究所 Method for preparing glycolic acid compound
CN112961046B (en) * 2021-02-06 2022-10-14 中国石油大学(华东) Method for alkali-free synthesis of glycolic acid by using waste biomass
CN114031495B (en) * 2021-11-03 2024-02-23 中国石油大学(华东) Product separation method for preparing glycollic acid by glycol oxidation

Also Published As

Publication number Publication date
JPH08295650A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
JP2000202291A (en) Novel catalyst, production of hydrogen peroxide and use of hydrogen peroxide in oxidation process
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
JP7069134B2 (en) Methods and catalysts for producing 1,4-butanediol
JPH0272137A (en) Production of gluconic acid and alkali metal salt thereof
CN1259060A (en) Vinyl acetate catalyst comprising palladium and gold deposited on a copper containing carrier
JP3748588B2 (en) Method for producing glycolic acid
JPH05124803A (en) Production of hydrogen peroxide
CN111545239B (en) Solid catalyst for glycerol oxidation and preparation method thereof
JPH0436140B2 (en)
JPH04221339A (en) Production of (poly)oxyethylene alkyl ether acetic acid
JP3297342B2 (en) Method for producing carboxylic acid ester
JP2006117576A (en) Process of glycolic acid
JPH07179383A (en) Production of phenols
CN100368085C (en) Preparation method of fluidized bed catalyst for aniline production by gas phase hydrogenation of nitrobenzene
EP3181543B1 (en) Process of preparing 4-methyl-3-decen-5-one
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
JPH092997A (en) Production of glycolic acid
JPS6040453B2 (en) Method for producing polyethylene glycolic acid
CN1047768C (en) Method for synthesizing cobalt carbonyl by catalyzing at normal temp. and pressure
JPH07173099A (en) Production of glyoxylic acid
JPH11222447A (en) Production of cycloolefins by partial hydrogenation of aromatic compound
JPH08151346A (en) Production of ketomalonic acid
JPS63174950A (en) Production of aromatic ester
JPH07112953A (en) Production of hydroxyacetic acid and catalyst for its production
JPH09221452A (en) Production of carboxylate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term