JPH08295650A - Production of glycolic acid - Google Patents

Production of glycolic acid

Info

Publication number
JPH08295650A
JPH08295650A JP7104072A JP10407295A JPH08295650A JP H08295650 A JPH08295650 A JP H08295650A JP 7104072 A JP7104072 A JP 7104072A JP 10407295 A JP10407295 A JP 10407295A JP H08295650 A JPH08295650 A JP H08295650A
Authority
JP
Japan
Prior art keywords
ethylene glycol
glycolic acid
reaction
catalyst
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7104072A
Other languages
Japanese (ja)
Other versions
JP3748588B2 (en
Inventor
Kazuo Wakimura
和生 脇村
Tadaharu Hase
忠晴 羽勢
Yoshihiro Sezaki
義広 瀬崎
Koji Fujita
耕士 藤田
Toshio Miura
俊夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10407295A priority Critical patent/JP3748588B2/en
Publication of JPH08295650A publication Critical patent/JPH08295650A/en
Application granted granted Critical
Publication of JP3748588B2 publication Critical patent/JP3748588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE: To produce glycolic acid industrially advantageously without requiring high temperature or high pressure in a relatively short reaction time at a high yield and a high selectivity by using inexpensive ethylene glycol as a raw material. CONSTITUTION: In producing glycolic acid by subjecting ethylene glycol to contact oxidation in an oxygen-containing gas, the reaction is performed in the co-existence of a platinum element of at least one kind selected from ruthenium, rhodium, palladium, osmium, iridium and platinum as a catalyst component and an element of at least one kind selected from a group composed of vanadium, chromium, molybdenum, manganese, iron, cobalt, nickel, copper and zinc as a promoter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はグリコール酸の製造方法
に関する。さらに詳しくはエチレングリコールと酸素含
有ガスとを接触酸化反応させて、グリコール酸を製造す
る方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing glycolic acid. More specifically, it relates to a method for producing glycolic acid by catalytically oxidizing ethylene glycol and an oxygen-containing gas.

【0002】[0002]

【従来の技術】グリコール酸は清缶剤、洗浄剤、皮革な
めし剤、化粧品等の原料として有用である。従来グリコ
ール酸の製造方法としては、強酸性触媒の存在下でホル
ムアルデヒド、一酸化炭素及び水から製造する方法が知
られている。たとえば、特開昭59-139341 号では含水有
機溶媒中フッ化水素触媒存在下でホルムアルデヒドと一
酸化炭素とを反応させて製造する方法や、米国特許2,15
3,064 号では水媒体中硫酸触媒存在下でホルムアルデヒ
ドと一酸化炭素とを反応させて製造する方法が示されて
いるが、いずれも温度100 〜200 ℃、圧力数百気圧とい
う過酷な反応条件であり、さらには酸性触媒による設備
の腐食という工業プロセスとして取り扱うにおいて重大
な欠点を有している。
BACKGROUND OF THE INVENTION Glycolic acid is useful as a raw material for clear cans, detergents, leather tanning agents, cosmetics and the like. Conventionally, as a method for producing glycolic acid, a method of producing formaldehyde, carbon monoxide and water in the presence of a strongly acidic catalyst is known. For example, in JP-A-59-139341, there is disclosed a method of producing formaldehyde and carbon monoxide in a water-containing organic solvent in the presence of a hydrogen fluoride catalyst, and US Pat.
No. 3,064 shows a method of producing formaldehyde by reacting carbon monoxide in the presence of a sulfuric acid catalyst in an aqueous medium, but all of them are under severe reaction conditions of a temperature of 100 to 200 ° C and a pressure of several hundred atmospheres. Moreover, it has a serious drawback in treating it as an industrial process of corroding equipment with an acid catalyst.

【0003】また、金属担持触媒の存在下でエチレング
リコール等のグリコール類を酸化させて製造する方法も
提案されている。たとえば、特公昭60-10016号および特
公昭60-39063号では水媒体中で白金族金属触媒存在下エ
チレングリコールを酸素含有ガスで酸化する方法が示さ
れているが、反応速度が遅く反応時間を長く設定する必
要があるという欠点を有する。
Further, there has been proposed a method of oxidizing glycols such as ethylene glycol in the presence of a metal-supported catalyst to produce them. For example, JP-B-60-10016 and JP-B-60-39063 show a method of oxidizing ethylene glycol with an oxygen-containing gas in the presence of a platinum group metal catalyst in an aqueous medium, but the reaction rate is slow and the reaction time is long. It has the drawback of having to be set long.

【0004】さらに特開昭51-86415号および特開昭62-2
69749 号ではアルカリ性水溶液中で白金族金属元素を主
成分とする触媒の存在下、グリコール類を酸化させる方
法が示されているが、生成物がグリコール酸のアルカリ
塩であるため、遊離グリコール酸を得るには煩雑な操作
が必要であり、やはり製造コストが増加する欠点を有し
ている。
Further, JP-A-51-86415 and JP-A-62-2
No. 69749 discloses a method of oxidizing glycols in the presence of a catalyst containing a platinum group metal element as a main component in an alkaline aqueous solution.However, since the product is an alkaline salt of glycolic acid, free glycolic acid is A complicated operation is required to obtain the product, and the manufacturing cost is also increased.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来の方法では高い反応温度と高い反応圧力、特殊な材質
の設備を必要とするか、または長い反応時間と煩雑な製
造工程が必要であり、工業的には極めて不利な方法であ
った。したがって、経済的で実施容易な製造方法の開発
が望まれていた。
As described above, the conventional method requires a high reaction temperature and a high reaction pressure, equipment of a special material, or a long reaction time and a complicated manufacturing process. However, it was an industrially extremely disadvantageous method. Therefore, it has been desired to develop an economical and easy-to-implement manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記問題点
を解決するため鋭意研究を行なった結果、本発明を完成
した。即ち本発明のグリコール酸の製造方法は、エチレ
ングリコールを酸素含有ガスで接触酸化させて、グリコ
ール酸を製造するに際し、触媒成分としてルテニウム、
ロジウム、パラジウム、オスミウム、イリジウム、白金
から選ばれる少なくとも1種の白金族元素に、助触媒成
分としてバナジウム、クロム、モリブデン、マンガン、
鉄、コバルト、ニッケル、銅、亜鉛、からなる群から選
ばれる少なくとも1種の元素の共存下に反応させること
を特徴とするものである。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, the method for producing glycolic acid according to the present invention comprises catalytically oxidizing ethylene glycol with an oxygen-containing gas to produce ruthenium as a catalyst component when producing glycolic acid.
At least one platinum group element selected from rhodium, palladium, osmium, iridium, and platinum, and vanadium, chromium, molybdenum, manganese as a promoter component,
The reaction is carried out in the presence of at least one element selected from the group consisting of iron, cobalt, nickel, copper and zinc.

【0007】本発明においては貴金属触媒成分に対する
助触媒金属成分量の範囲に特に制限はない。本発明にお
いては白金属触媒の原料にルテニウム、ロジウム、パラ
ジウム、オスミウム、イリジウム、白金のそれぞれの塩
化物、ヨウ化物、硝酸塩、硫酸塩、酢酸塩、酸化物、分
子内錯体、金属粉、およびそれぞれが担持された市販の
触媒が挙げられる。
In the present invention, the range of the amount of the promoter metal component with respect to the precious metal catalyst component is not particularly limited. In the present invention, ruthenium, rhodium, palladium, osmium, iridium, platinum chlorides, iodides, nitrates, sulphates, acetates, oxides, intramolecular complexes, metal powders, and metal powders of the white metal catalyst are used. Examples of commercially available catalysts are:

【0008】助触媒成分の原料としては、バナジウム、
クロム、モリブデン、マンガン、鉄、コバルト、ニッケ
ル、銅、亜鉛のそれぞれの塩化物、ヨウ化、硝酸塩、硫
酸塩、酢酸塩、リン化合物、酸化物、水酸化物、および
それぞれの純金属や合金が挙げられる。助触媒の共存方
法としては、貴金属触媒が添加された反応原料液に助触
媒成分の原料粉末を直接添加する方法を採るが、その他
の方法には水または反応に悪影響を及ぼさない有機化合
物、例えばエチレングリコール、グリコール酸、ギ酸、
酢酸、シュウ酸等に助触媒原料を混合溶解させた液を反
応原料液に添加する方法も使用できる。
As a raw material for the promoter component, vanadium,
Chromium, molybdenum, manganese, iron, cobalt, nickel, copper, zinc chlorides, iodides, nitrates, sulfates, acetates, phosphorus compounds, oxides, hydroxides, and their pure metals and alloys. Can be mentioned. As the cocatalyst coexistence method, a method of directly adding the raw material powder of the cocatalyst component to the reaction raw material liquid to which the noble metal catalyst is added, but other methods include water or an organic compound that does not adversely affect the reaction, for example, Ethylene glycol, glycolic acid, formic acid,
A method in which a solution obtained by mixing and dissolving a cocatalyst raw material in acetic acid, oxalic acid or the like is added to the reaction raw material liquid can also be used.

【0009】本発明に用いられるエチレングリコールは
工業的に製造されているもので一般に入手可能なものを
水に溶解混合した状態で用いられる。この一般に入手可
能なエチレングリコールに微量含まれる有機酸類やアル
コール類と言った不純物は本発明の効果を損なうことは
ない。本発明の方法においては前述の触媒を添加したエ
チレングリコール水溶液に酸素含有ガスを通気して反応
させるが、エチレングリコールの濃度が上記の範囲より
低くても触媒性能に差し支えないが、生成物の濃縮に多
大な熱量を要するので好ましくない。一方エチレングリ
コール濃度を過大にすると分解等の副反応の増大と反応
液の粘度増加による攪拌効果の減衰により、グリコール
酸の収率が低下する。
The ethylene glycol used in the present invention is industrially produced and generally available one is dissolved and mixed in water. Impurities such as organic acids and alcohols, which are contained in trace amounts in this generally available ethylene glycol, do not impair the effects of the present invention. In the method of the present invention, an oxygen-containing gas is bubbled through an ethylene glycol aqueous solution to which the above-mentioned catalyst is added to react, but even if the concentration of ethylene glycol is lower than the above range, there is no problem with catalytic performance, but the product is concentrated. It is not preferable because it requires a large amount of heat. On the other hand, if the ethylene glycol concentration is too high, the yield of glycolic acid is lowered due to an increase in side reactions such as decomposition and a decrease in the stirring effect due to an increase in the viscosity of the reaction solution.

【0010】反応に用いる触媒の添加量は、反応原料液
であるエチレングリコール水溶液に対して0.1〜10
重量%および助触媒は0.001〜1.0重量%の範囲
が適している。反応に用いる酸化剤は、酸素含有ガスで
あって通常酸素または空気が用いられるが、窒素やアル
ゴン等の不活性ガスに酸素を15容量%以上混合して使
用することも出来る。反応温度は0〜100℃の範囲、
特に30〜70℃の範囲が好ましい。反応圧力はゲージ
圧で0〜5kg/cm2 の範囲が用いられる。反応に要する
時間は原料エチレングリコール濃度、使用する触媒等の
反応条件によって一定ではないが、約1〜24時間程度
である。反応方式は懸濁床または固定床であり、バッチ
式または流通式のいずれでも良い。
The amount of the catalyst used in the reaction is 0.1 to 10 with respect to the aqueous solution of ethylene glycol which is the reaction raw material liquid.
A suitable range for the weight percent and cocatalyst is 0.001 to 1.0 weight percent. The oxidant used in the reaction is an oxygen-containing gas, and usually oxygen or air is used, but it is also possible to mix an inert gas such as nitrogen or argon with 15% by volume or more of oxygen. The reaction temperature is in the range of 0 to 100 ° C,
Particularly, the range of 30 to 70 ° C. is preferable. The reaction pressure is a gauge pressure in the range of 0 to 5 kg / cm 2 . The time required for the reaction is not constant depending on the reaction conditions such as the concentration of the raw material ethylene glycol and the catalyst used, but it is about 1 to 24 hours. The reaction system is a suspension bed or a fixed bed, and may be a batch system or a flow system.

【0011】[0011]

【実施例】以下、実施例によりさらに本発明を具体的に
説明するが、本発明はこれらに限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0012】実施例1 (Feの助触媒効果)貴金属触媒の調整において、以下
のような公知の方法を使用した。すなわち、塩化第二白
金8.63gと塩化パラジウム0.83gを1リットル
の脱イオン水に溶解した。この水溶液に活生炭(粒径1
00メッシュ未満、表面積1500m2/g)95gを室
温で2時間、80℃で1時間浸漬した後、45%苛性ソ
ーダの21ミリリットル、38%ホルマリン水溶液15
ミリリットルを添加し、80℃で1時間触媒の還元を行
った。還元後の触媒は濾過、脱イオン水での洗浄を行
い、4.5%Pt−0.5%Pd/C触媒を得た。
Example 1 (Promoting Effect of Fe) In preparing a noble metal catalyst, the following known method was used. That is, 8.63 g of platinic chloride and 0.83 g of palladium chloride were dissolved in 1 liter of deionized water. Activated charcoal (particle size 1
After dipping 95 g of less than 00 mesh, surface area 1500 m 2 / g) at room temperature for 2 hours and at 80 ° C. for 1 hour, 21 ml of 45% caustic soda, 38% formalin aqueous solution 15
Milliliter was added, and the catalyst was reduced at 80 ° C. for 1 hour. The catalyst after the reduction was filtered and washed with deionized water to obtain a 4.5% Pt-0.5% Pd / C catalyst.

【0013】得られた貴金属触媒3.0gと15重量%
エチレングリコール水溶液200gと共に酸化鉄(3
価)50mgをパイレックスガラス製500ミリリット
ル容器に入れた。この水溶液を常圧、50℃で、攪拌機
の回転数を500rpm一定として、酸素ガスを毎分
0.1リットル通気して6時間反応させた。
3.0 g of the obtained noble metal catalyst and 15% by weight
Iron oxide (3
50 mg) was placed in a Pyrex glass 500 ml container. This aqueous solution was allowed to react for 6 hours at 50 ° C. under normal pressure, while keeping the number of revolutions of the stirrer constant at 500 rpm and passing 0.1 liter of oxygen gas per minute.

【0014】生成物には二酸化炭素、および生成液とし
ての有機酸水溶液が得られた。この生成液を液クロマト
グラフィーで分析した結果、エチレングリコールの添加
率は72.9モル%生成液中のグリコール酸とグリコリ
ルグリコール酸(以後これらをグリコール酸類と総称す
る)の選択率の合計は93.6モル%であった。不純物
としてギ酸や酢酸等の有機酸が含まれていたが、ホルム
アルデヒド等のアルデヒド類は検出されなかった。
Carbon dioxide was obtained as a product, and an organic acid aqueous solution as a product liquid was obtained. As a result of analyzing this product solution by liquid chromatography, the addition ratio of ethylene glycol was found to be 72.9 mol%. It was 93.6 mol%. Organic acids such as formic acid and acetic acid were included as impurities, but aldehydes such as formaldehyde were not detected.

【0015】実施例2 (Crの助触媒効果)実施例1と同様の方法で得られた
貴金属触媒3.0gと15重量%エチレングリコール水
溶液200gと共に酢酸クロム(3価)160mgをパ
イレックスガラス製500ミリリットル容器に入れた。
この水溶液を常圧下50℃で攪拌機の回転数500rp
m一定とし、酸素ガスを毎分0.1リットル通気しなが
ら6時間反応させた。
Example 2 (Cocatalyst effect of Cr) 3.0 g of a noble metal catalyst obtained by the same method as in Example 1 and 200 g of a 15 wt% ethylene glycol aqueous solution together with 160 mg of chromium acetate (trivalent) made of Pyrex glass 500 Place in a milliliter container.
The rotation speed of the stirrer is 500 rp at 50 ° C. under normal pressure.
The reaction was carried out for 6 hours while keeping m constant and aerating 0.1 liter of oxygen gas per minute.

【0016】生成物には二酸化炭素、および生成液とし
ての有機酸水溶液が得られた。この生成液を液クロマト
グラフィーで分析した結果、エチレングリコールの転化
率は73.1モル%、生成液中のグリコール酸類の選択
率の合計は92.9モル%であった。不純物としてギ酸
や酢酸等の有機酸が含まれていたが、ホルムアルデヒド
等のアルデヒド類は検出されなかった。
As the product, carbon dioxide and an organic acid aqueous solution as a product liquid were obtained. As a result of analyzing this product solution by liquid chromatography, the conversion rate of ethylene glycol was 73.1 mol% and the total selectivity of glycolic acids in the product solution was 92.9 mol%. Organic acids such as formic acid and acetic acid were included as impurities, but aldehydes such as formaldehyde were not detected.

【0017】比較例1 (4.5%Pt−0.5Pd%/C触媒)貴金属触媒の
調整にあたり、以下のような公知の方法を使用した。す
なわち、塩化第二白金8.63gと塩化パラジウム0.
83gを1リットルの脱イオン水に溶解した水溶液に実
施例1と同じ活性炭を室温で2時間、80℃で1時間浸
漬した後、45%苛性ソーダ21ミリリットル、38%
ホルマリン水溶液15ミリリットルを添加し、80℃で
1時間、触媒の還元を行った。還元後の触媒は濾過、脱
イオン水での洗浄を行い、目的の組成の貴金属触媒を得
た。
Comparative Example 1 (4.5% Pt-0.5 Pd% / C catalyst) In preparing the noble metal catalyst, the following known method was used. That is, 8.63 g of chloroplatinum and 0.8 of palladium chloride.
After immersing 83 g of an aqueous solution prepared by dissolving 1 g of deionized water in the same manner as in Example 1 for 2 hours at room temperature and 1 hour at 80 ° C., 21 ml of 45% caustic soda and 38% were added.
15 ml of a formalin aqueous solution was added, and the catalyst was reduced at 80 ° C. for 1 hour. After the reduction, the catalyst was filtered and washed with deionized water to obtain a noble metal catalyst having a desired composition.

【0018】この触媒3.0gと15重量%エチレング
リコール水溶液200gをパイレックスガラス製500
ミリリットル容器に入れた。この水溶液を常圧下50℃
で攪拌機の回転数を500rpm一定として、酸素ガス
を毎分0.1リットルで通気して6時間反応させた。生
成物には二酸化炭素および生成液としての有機酸水溶液
が得られた。この生成液を液クロマトグラフィーで分析
した結果、エチレングリコールの転化率は55.0モル
%、生成液中のグリコール酸類の選択率の合計は92.
6モル%であった。
3.0 g of this catalyst and 200 g of a 15 wt% ethylene glycol aqueous solution were added to 500 Pyrex glass.
Place in a milliliter container. This aqueous solution is heated to 50 ° C under normal pressure.
Then, the rotation speed of the stirrer was kept constant at 500 rpm, and oxygen gas was aerated at a rate of 0.1 liter / min to carry out a reaction for 6 hours. Carbon dioxide and an organic acid aqueous solution as a product solution were obtained as the product. As a result of analyzing this product solution by liquid chromatography, the conversion of ethylene glycol was 55.0 mol%, and the total selectivity of glycolic acids in the product solution was 92.
It was 6 mol%.

【0019】実施例3、4 実施例1と同様の方法で添加する助触媒金属の種類を、
種々に変えて反応させた結果を表1に示す。
Examples 3 and 4 The kind of promoter metal added in the same manner as in Example 1 was changed to
The results of various reactions are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明の方法によれば安価なエチレング
リコールを原料に用いて、反応において特に高温高圧を
必要とせず、反応時間も比較的短くて高収率、高選択率
でグリコール酸を工業的に有利に合成することが出来
る。
INDUSTRIAL APPLICABILITY According to the method of the present invention, inexpensive ethylene glycol is used as a raw material, glycolic acid can be obtained in a high yield and a high selectivity without requiring particularly high temperature and high pressure in the reaction, and the reaction time is relatively short. It can be synthesized industrially advantageously.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年4月19日[Submission date] April 19, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】本発明に用いられるエチレングリコール
は、工業的に製造されているもので一般に入手可能なも
のを水に溶解混合した状態で用いる。この一般に入手可
能なエチレングリコールに微量含まれる有機酸類やアル
コール類といった不純物は本発明の効果を損なうことは
ない。本発明の方法においては前述の触媒を添加したエ
チレングリコール水溶液に酸素含有ガスを通気して反応
させるが、エチレングリコールの濃度は1〜50重量
%、特に5〜35重量%の範囲が好ましい。エチレング
リコールの濃度がこの範囲より低くても触媒性能に差支
えはないが、生成物の濃縮に多大の熱量を要するので好
ましくない。また、エチレングリコールの濃度が過大に
なると分解等の副反応の増大と反応液の粘度増加による
撹拌効果の減少により、グリコール酸の収率が低下す
る。
The ethylene glycol used in the present invention is an industrially produced one, which is generally available and is used by dissolving and mixing in water. Impurities such as organic acids and alcohols contained in trace amounts in this commonly available ethylene glycol do not impair the effects of the present invention. In the method of the present invention, an oxygen-containing gas is passed through the ethylene glycol aqueous solution to which the above-mentioned catalyst has been added to cause the reaction, and the concentration of ethylene glycol is preferably 1 to 50% by weight, particularly preferably 5 to 35% by weight. If the concentration of ethylene glycol is lower than this range, there is no problem in the catalyst performance, but it is not preferable because a large amount of heat is required to concentrate the product. Further, when the concentration of ethylene glycol becomes excessively large, side reactions such as decomposition increase and the stirring effect decreases due to an increase in viscosity of the reaction solution, so that the yield of glycolic acid decreases.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 51/235 B01J 23/64 103X // C07B 61/00 300 104X (72)発明者 藤田 耕士 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 三浦 俊夫 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C07C 51/235 B01J 23/64 103X // C07B 61/00 300 104X (72) Inventor Koji Fujita Osaka 1-6 Takasago, Takaishi-shi, Furukawa Mitsui Toatsu Chemical Co., Ltd. (72) Inventor Toshio Miura 1-6, Takasago, Takaishi-shi, Osaka Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エチレングリコールを酸素含有ガスで接触
酸化させて、グリコール酸を製造するに際し、触媒成分
としてルテニウム、ロジウム、パラジウム、オスミウ
ム、イリジウム、白金から選ばれる少なくとも1種の白
金族元素に、助触媒成分としてバナジウム、クロム、モ
リブデン、マンガン、鉄、コバルト、ニッケル、銅、亜
鉛、からなる群から選ばれる少なくとも1種の元素の共
存下に反応させることを特徴とするグリコール酸の製造
方法。
1. A method for producing glycolic acid by catalytically oxidizing ethylene glycol with an oxygen-containing gas, wherein at least one platinum group element selected from ruthenium, rhodium, palladium, osmium, iridium and platinum is used as a catalyst component. A method for producing glycolic acid, which comprises reacting in the presence of at least one element selected from the group consisting of vanadium, chromium, molybdenum, manganese, iron, cobalt, nickel, copper, and zinc as a promoter component.
JP10407295A 1995-04-27 1995-04-27 Method for producing glycolic acid Expired - Lifetime JP3748588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10407295A JP3748588B2 (en) 1995-04-27 1995-04-27 Method for producing glycolic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10407295A JP3748588B2 (en) 1995-04-27 1995-04-27 Method for producing glycolic acid

Publications (2)

Publication Number Publication Date
JPH08295650A true JPH08295650A (en) 1996-11-12
JP3748588B2 JP3748588B2 (en) 2006-02-22

Family

ID=14370959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10407295A Expired - Lifetime JP3748588B2 (en) 1995-04-27 1995-04-27 Method for producing glycolic acid

Country Status (1)

Country Link
JP (1) JP3748588B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484383A (en) * 2018-02-07 2018-09-04 中国科学院兰州化学物理研究所 A method of preparing hydroxyacetic acid compound
CN112961046A (en) * 2021-02-06 2021-06-15 中国石油大学(华东) Method for alkali-free synthesis of glycolic acid by using waste biomass
CN114031495A (en) * 2021-11-03 2022-02-11 中国石油大学(华东) Product separation method for preparing glycollic acid by oxidizing ethylene glycol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484383A (en) * 2018-02-07 2018-09-04 中国科学院兰州化学物理研究所 A method of preparing hydroxyacetic acid compound
CN108484383B (en) * 2018-02-07 2020-09-04 中国科学院兰州化学物理研究所 Method for preparing glycolic acid compound
CN112961046A (en) * 2021-02-06 2021-06-15 中国石油大学(华东) Method for alkali-free synthesis of glycolic acid by using waste biomass
CN112961046B (en) * 2021-02-06 2022-10-14 中国石油大学(华东) Method for alkali-free synthesis of glycolic acid by using waste biomass
CN114031495A (en) * 2021-11-03 2022-02-11 中国石油大学(华东) Product separation method for preparing glycollic acid by oxidizing ethylene glycol
CN114031495B (en) * 2021-11-03 2024-02-23 中国石油大学(华东) Product separation method for preparing glycollic acid by glycol oxidation

Also Published As

Publication number Publication date
JP3748588B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
JP5745393B2 (en) Use of noble metal-containing supported catalysts for oxidative dehydrogenation.
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
KR20010109490A (en) Catalyst and process for the direct synthesis of hydrogen peroxide
JPS58193735A (en) Production of catalyst for hydrogenation of lower hydroxycarboxylic ester
JPH05124803A (en) Production of hydrogen peroxide
JPH08295650A (en) Production of glycolic acid
US4250111A (en) Mixed catalyst for the hydrolysis of nitriles to amides
JPH04221339A (en) Production of (poly)oxyethylene alkyl ether acetic acid
JPH0436140B2 (en)
JPH092997A (en) Production of glycolic acid
JP2006117576A (en) Process of glycolic acid
JP4026350B2 (en) Method for producing alkyl nitrite
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
JPS6040453B2 (en) Method for producing polyethylene glycolic acid
CN1047768C (en) Method for synthesizing cobalt carbonyl by catalyzing at normal temp. and pressure
JPH07173099A (en) Production of glyoxylic acid
EP0013797A1 (en) Oxidation of alcohols and aldehydes using a ruthenate catalyst
JPH11222447A (en) Production of cycloolefins by partial hydrogenation of aromatic compound
JP3876682B2 (en) Nitric oxide production method
JPH09221452A (en) Production of carboxylate
KR0169189B1 (en) Method of preparing cyclohexanol and cyclo-hexanone
JPH07112953A (en) Production of hydroxyacetic acid and catalyst for its production
JPH10158227A (en) Production of n,n-dimethylformamide
JP3021700B2 (en) Method for producing lactone
JPH0570107A (en) Production of hydrogen peroxide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term