JPS61109785A - Production of lactone - Google Patents

Production of lactone

Info

Publication number
JPS61109785A
JPS61109785A JP59231893A JP23189384A JPS61109785A JP S61109785 A JPS61109785 A JP S61109785A JP 59231893 A JP59231893 A JP 59231893A JP 23189384 A JP23189384 A JP 23189384A JP S61109785 A JPS61109785 A JP S61109785A
Authority
JP
Japan
Prior art keywords
catalyst
copper
anhydride
reaction
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59231893A
Other languages
Japanese (ja)
Inventor
Masayuki Otake
大竹 正之
Atsushi Kayou
篤志 加養
Takashi Ushikubo
牛窪 孝
Takao Kaneko
兼子 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP59231893A priority Critical patent/JPS61109785A/en
Publication of JPS61109785A publication Critical patent/JPS61109785A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:The hydrogenation of a dicarboxylic acid and/or its anhydride is conducted in the presence of a catalyst containing palladium, copper and chromium as essential components to enable industrially advantageous and high-yield production of the titled compound for hours with increased and stabilized catalyst activity. CONSTITUTION:When a dicarboxylic acid and/or its anhydride such as maleic acid or its anhydride is hydrogenated into a lactone, preferably gamma-butyarolactone, a catalyst containing, as essential components, Pd, Cu and Cr, is used. The amount of hydrogen used is 10-1,000 times the molar amount of the dicarboxylic acid and/or its anhydride. The composition of the catalyst has 1/10-10, preferably 1/2-2 Cu/Cr atomic ratio, 1/2,000-1/20, preferably 1/1,500-1/50 Pd/Cr atomic ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジカルボン酸及び/又はその無水物の水素化
により、ラクトン類を合成する方法に関゛する。災に詳
しくは、ジカルボン酸及び/又はその無水物を特定の触
媒の存在下水素化することにより、工業的有利にラクト
ン類を合成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for synthesizing lactones by hydrogenation of dicarboxylic acids and/or their anhydrides. More specifically, the present invention relates to a method for industrially advantageous synthesis of lactones by hydrogenating dicarboxylic acids and/or their anhydrides in the presence of a specific catalyst.

〔従来の技術〕[Conventional technology]

ジカルボン酸及び/又はその無水物を水素化して2クト
ン類を製造する方法は古くから検討されておシ、これま
でに種々の触媒が提案されている。例えば、08 P 
206む■JKは、無水マレイン酸、無水コノ1り酸及
びマレイン酸、コハク酸、フマル酸のエステルから選ば
れた化合イと。
Methods for producing dichtones by hydrogenating dicarboxylic acids and/or their anhydrides have been studied for a long time, and various catalysts have been proposed so far. For example, 08 P
206 JK is a compound selected from maleic anhydride, conolilic anhydride, and esters of maleic acid, succinic acid, and fumaric acid.

物を銅クロマイト触媒の存在下気相水素zしてr−ブチ
ロ2クトンを製造する方法が記されている。しかしなが
らこの方法では、目的物の選択率に問題がちシ、又、触
媒寿命が短いという欠点があった。かかる銅クロマイト
触媒の改良として1例えば、特公昭ダコー/71/ざに
は、無水コハク酸又は無水マレイン酸を銅・クロム・マ
ンガン酸化物成型触媒の存在下気相水素化することKよ
シ、γ−ブチロラクトンを製造することが記されている
。該特許は銅クロマイト触媒の改良としてマンガンを存
在させることにより水素添加能の選択性が高められ、且
つ、平行して起る水素添加分解反応が抑制されるため、
収率が上昇するものであるが、本方法に於ても目的物の
選択率及び収率は十分なものとは言い難い。
A method for producing r-butyro2chtone by subjecting it to gas phase hydrogenation in the presence of a copper chromite catalyst is described. However, this method has disadvantages in that the selectivity of the target product tends to be problematic and the catalyst life is short. As an improvement of such a copper chromite catalyst, for example, in Tokko Sho Dako/71/Za, succinic anhydride or maleic anhydride is hydrogenated in the gas phase in the presence of a copper-chromium-manganese oxide shaped catalyst. The production of γ-butyrolactone is described. The patent states that the presence of manganese as an improvement to the copper chromite catalyst increases the selectivity of hydrogenation ability and suppresses the hydrogenolysis reaction that occurs in parallel.
Although the yield is increased, even in this method, the selectivity and yield of the target product cannot be said to be sufficient.

一方、特公昭、S”!−!1102/号には、無水マレ
イン酸、無水コハク酸またはそれらの混合物からr−ブ
チロラクトンを製造するための水素添加触媒としてキャ
リヤーに元素鋼と元素パラジウムの混合物を特定割合含
有させた触媒が記されている。該触媒は、銅単独あるい
は銅の活性を促進するため従来用いられた材料のクロム
及び/又は亜鉛との各種混合物よシもはるかに活性が高
いものであるが、触媒寿命に問題があり、長時間の使用
では特に原料の転換率が著しく低下し、目的物の収率の
低下が認められる。
On the other hand, Tokkosho, S"!-! No. 1102/, describes the use of a mixture of elemental steel and elemental palladium as a carrier as a hydrogenation catalyst for producing r-butyrolactone from maleic anhydride, succinic anhydride or a mixture thereof. Catalysts containing specified proportions of copper are described, which are much more active than copper alone or various mixtures with chromium and/or zinc, materials conventionally used to promote the activity of copper. However, there is a problem with the catalyst life, and when used for a long time, the conversion rate of the raw material in particular decreases significantly, and the yield of the target product decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

即ち、これら従来公知の触媒を使用して、ジカルボン酸
及び/又はその無水物を水素化してラクトン類を製造し
た場合1反応熱の制御等により副反応の抑制を行うもの
の反応成績が不良であったり、長時間の反応では、触媒
の活性劣化により、目的物の収率が低下する等、工業的
に充分満足のいくものとはいい難い。
That is, when these conventionally known catalysts are used to hydrogenate dicarboxylic acids and/or their anhydrides to produce lactones, the reaction results are poor although side reactions are suppressed by controlling the heat of reaction, etc. In addition, if the reaction is carried out over a long period of time, the yield of the target product decreases due to deterioration of the activity of the catalyst.

本発明は、かかる問題を解決し、ジカルボン酸及び/又
はその無水物の水素化を活性安定性に優れた特定の触媒
の存在下で行うことにより、工業的有利に長時間にわた
って高収率で目的とするラクトン類を製造する方法を提
供するものである。
The present invention solves this problem and hydrogenates dicarboxylic acids and/or their anhydrides in the presence of a specific catalyst with excellent activity stability, thereby achieving industrial advantage over a long period of time in high yields. The present invention provides a method for producing target lactones.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は、ジカルボン酸及び/又はその無水物を
水素化してラクトン類を製造する方法において必須成分
としてパラジウム、銅及びクロムを含有する触媒の存在
下水素化することを特徴とするラクトン類の製造方法に
存する。
The gist of the present invention is a method for producing lactones by hydrogenating dicarboxylic acids and/or their anhydrides, which comprises hydrogenating lactones in the presence of a catalyst containing palladium, copper and chromium as essential components. It consists in the manufacturing method.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で使用される触媒は、必須成分としてパラジウム
、銅及びクロムを含有するものであれば特に限定される
ものではないが、通常、銅−クロム系複合酸化物とパラ
ジウムの混合物を還元して得られたものである。特にA
dk1nm触媒(J、 Am Ch@w、 Soc、 
!rll、//3K (/ qjユ))として知られて
いる銅クロマイト触媒またはその前駆化合物と、パラジ
ウムの組み合わせが好ましい。
The catalyst used in the present invention is not particularly limited as long as it contains palladium, copper, and chromium as essential components, but it is usually prepared by reducing a mixture of a copper-chromium complex oxide and palladium. This is what was obtained. Especially A
dk1nm catalyst (J, Am Ch@w, Soc,
! A combination of copper chromite catalyst known as rll, //3K (/qjyu) or its precursor compound and palladium is preferred.

銅−クロム系触媒は、通常Nattaの方法(Cata
lymls、 Vol、 l、P、JGq、 / 9 
!! ! ) ’Jたは、ムdkinsの方法で製造さ
れているが、本発明の銅−クロム系複合酸化物は、組成
式として、CuO・CuCr104またはCuCr40
4と表わされる複合酸化物が好ましい。銅−クロム系触
媒を製造する際好適にはMnO@を存在させることも可
能である。
Copper-chromium catalysts are usually prepared using the Natta method (Cata
lymls, Vol, l, P, JGq, /9
! ! ! ) The copper-chromium complex oxide of the present invention has a compositional formula of CuO.CuCr104 or CuCr40.
A composite oxide represented by 4 is preferred. When producing a copper-chromium catalyst, it is also possible to preferably include MnO@.

一方銅−クロム系複合酸化物として水酸化鋼または酸化
鋼とクロム酸の反応(触媒学会編、触媒工学講座第6巻
p、gq〜p、toq)等により得られる種々の組成の
銅−クロム系複合酸化物も使用可能である。また、場合
によっては、銅−クロム系複合酸化物に、更に酸化クロ
ム又は金属クロムを添加し、3oo〜goo℃程度で焼
成することにより、少なくともその一部が銅クロマイト
結晶に変換された好適な組成のものを得ることもできる
On the other hand, copper-chromium of various compositions can be obtained as copper-chromium composite oxides by the reaction of hydroxide steel or oxidized steel with chromic acid (edited by the Catalyst Society of Japan, Catalyst Engineering Course Vol. 6 p, gq-p, toq). Composite oxides can also be used. In some cases, chromium oxide or metal chromium may be further added to the copper-chromium composite oxide and fired at a temperature of about 30°C to 30°C to obtain a suitable copper chromite crystal, at least a part of which is converted into copper chromite crystals. The composition can also be obtained.

パラジウムを銅−クロム系複合酸化物に担持させる方法
としては、種々の方法があげられ、特に限定されるもの
ではないが、通常、銅−クロム系複合酸化物を硝酸パラ
ジウム、塩化パラジウム、ギ酸パラジウム等の可溶性塩
の溶液に含浸させることにより行なわれる。場合によっ
ては銅−クロム系複合酸化物を製造する場合にパラジウ
ムの可溶性塩として添加しておいてもよい。
There are various methods for supporting palladium on a copper-chromium complex oxide, and although there are no particular limitations, the copper-chromium complex oxide is usually supported on a copper-chromium complex oxide by palladium nitrate, palladium chloride, or palladium formate. This is done by impregnating it in a solution of soluble salts such as. In some cases, palladium may be added as a soluble salt when producing a copper-chromium complex oxide.

本発明のパラジウム、銅及びクロムを含有する触媒は、
更に助触媒として、銅系の水素化触媒に通常添加される
促進成分、例えば亜鉛、カドミウム、ベリリウム、ニッ
ケル、コバルト、セ、リウム、ジルコニウム、ストロン
チウム、バリウム、ナトリウム、カリウム等を含有して
いてもよく、これらは、銅−クロム系複合酸化物を製造
する際に添加するか、パラジウムを担持させる際に同時
に担持させてもよい。助触媒としては、ニッケル、コバ
ルトが触媒活性安定性の向上を考慮した場合特に好まし
い。
The catalyst containing palladium, copper and chromium of the present invention is
Furthermore, as a co-catalyst, it may contain promoter components normally added to copper-based hydrogenation catalysts, such as zinc, cadmium, beryllium, nickel, cobalt, cerium, zirconium, strontium, barium, sodium, potassium, etc. These may be added when producing the copper-chromium complex oxide, or may be supported simultaneously when supporting palladium. As the co-catalyst, nickel and cobalt are particularly preferred in consideration of improving the stability of catalyst activity.

助触媒としてニッケル又はコバルトを使用する場合には
、Ni又はCoとして全触媒に対しθ〜0.rwt%N
 i/Cr又はCo/CrがQ〜l/6θ の範囲で使
用する。
When using nickel or cobalt as a co-catalyst, the Ni or Co content is θ~0. rwt%N
It is used in the range of i/Cr or Co/Cr from Q to l/6θ.

本発明の触媒は、担体の使用を特に必要としないが、反
応熱分散によるホットスポットの制御、触媒成型性、機
械的強度の改良の目的で添加してもよい。担体としては
、シリカ、ケイ酸カルシウム、ケイソウ土等のシリカ系
担体、ガラス、アルミナ、酸化チタン、酸化ジルコニア
、軽石等が挙げられ、その使用量は全触媒に対し0− 
!; Owt%程度である。担体は任意の段階で添加で
きるが、通常、銅−クロム系複合酸化物製造時、又は、
銅−クロム系複合酸化物にパラジウムを担持させる際に
行なわれる。
Although the catalyst of the present invention does not particularly require the use of a carrier, it may be added for the purpose of controlling hot spots by dispersing reaction heat, improving catalyst moldability, and mechanical strength. Examples of the carrier include silica-based carriers such as silica, calcium silicate, and diatomaceous earth, glass, alumina, titanium oxide, zirconia oxide, and pumice.
! ; It is about Owt%. Although the carrier can be added at any stage, it is usually added during the production of the copper-chromium composite oxide, or
This is carried out when palladium is supported on a copper-chromium complex oxide.

上記の態様に従って製造されたパラジウム、銅及びクロ
ムを含有する触媒は空気中/ !rOC程度で/時間前
後光分に乾燥させたのち空気流通下、3jO〜ttoo
℃でコルφ時間焼成を行う。更にio%程度の少量の水
素を含有する窒素ガスにて1socで約3時間予備還元
し、発熱終了後2IOCにて2時間程度還元し、更に1
00%水累ガスでコ時間程度還元することにより、本発
明で使用する触媒が得られる。かくして得られた本発明
触媒は合金状態の金属パラジウム及び金属鋼が酸化クロ
ム中に分散されたものであると推定される。
A catalyst containing palladium, copper and chromium prepared according to the above embodiments was prepared in air/! After drying at about rOC for around 1 hour, dry under air circulation for 3jO~ttoo.
Calcination is carried out at ℃ for φ hours. Further, preliminary reduction was carried out at 1 soc for about 3 hours using nitrogen gas containing a small amount of hydrogen, about io%, and after the end of the heat generation, reduction was carried out at 2 IOC for about 2 hours, and further 1 soc.
The catalyst used in the present invention can be obtained by reducing the catalyst with a 00% water-accumulated gas for about 1 hour. It is presumed that the catalyst of the present invention thus obtained is one in which metallic palladium and metallic steel in an alloy state are dispersed in chromium oxide.

本発明触媒の最終的な組成は原子比でCo/Cr−//
10〜10 、 Pd/Cr −//2000〜//2
0の範囲で好ましくはCu/Cr −//コ〜コ Pd
/Cr 1111///!00〜//!0の範囲である
The final composition of the catalyst of the present invention is Co/Cr-// in atomic ratio
10~10, Pd/Cr −//2000~//2
Preferably in the range of 0 Cu/Cr −//Co ~ Co Pd
/Cr 1111///! 00~//! It is in the range of 0.

本発明では、かかる触媒を使用してジカルボン酸及び/
又はその無水物を水素化してラクトン類を製造する。ラ
クトン類としては好ましくはγ−ブチロラクトンである
In the present invention, using such a catalyst, dicarboxylic acid and/or
Alternatively, lactones are produced by hydrogenating the anhydride. The lactone is preferably γ-butyrolactone.

本反応の原料であるジカルボン酸及びその無水物は、飽
和ないし不飽和の脂肪族二塩基酸及びその無水物であり
、ジカルボン酸としては、マレイン酸、シトラコン酸、
コノ−り酸などが、又、ジカルボン酸無水物としては、
無水マレイン酸、無水シトラコン酸、無水コノ・り酸等
が挙げられるカミ得られるラクトン類の構造安定性から
いって、カルボニル炭素を含む直鎖が炭素数ケ〜Sであ
ることが好ましい。又、原料化合物は不飽和ジカルボン
酸、その水素化物である飽和ジカルボン酸、不飽和ジカ
ルボン酸無水物及びその水素化物である飽和ジカルボン
酸無水物、をそれぞれ単独に又は混合して用いてもよい
The dicarboxylic acids and their anhydrides, which are the raw materials for this reaction, are saturated or unsaturated aliphatic dibasic acids and their anhydrides, and the dicarboxylic acids include maleic acid, citraconic acid,
Conolic acid etc. and dicarboxylic acid anhydride include
Maleic anhydride, citraconic anhydride, phosphoric anhydride, etc. may be mentioned.From the viewpoint of the structural stability of the obtained lactone, it is preferable that the straight chain containing carbonyl carbon has from K to S carbon atoms. Further, as the raw material compounds, unsaturated dicarboxylic acids, saturated dicarboxylic acids as their hydrides, unsaturated dicarboxylic anhydrides, and saturated dicarboxylic anhydrides as their hydrides may be used individually or in combination.

好ましくは五員環のジカルボン酸無水物であり特に無水
マレイン酸及び無水コノ1り酸が好ましい。
Preferred are five-membered dicarboxylic acid anhydrides, with maleic anhydride and conolilic anhydride being particularly preferred.

水素化反応に、使用する水素の割合はジカルボン酸及び
/又はその無水物に対してio’ytoo。
In the hydrogenation reaction, the proportion of hydrogen used is io'ytoo relative to the dicarboxylic acid and/or its anhydride.

モル倍である。反応ガスは、水素の他にメタン、エタン
、窒素、アルゴン、二酸化炭素等の反応に不活性な成分
を含有してもよく、又、循環使用することも可能である
。但し、水素中の不純物の量は50wt%以下、好まし
くは/j vt暢以下とするのが良い。
It is twice the mole. In addition to hydrogen, the reaction gas may contain components inert to the reaction, such as methane, ethane, nitrogen, argon, carbon dioxide, etc., and can also be recycled. However, the amount of impurities in hydrogen is preferably 50 wt % or less, preferably /j vt % or less.

不発間゛水素化反応の原料として不飽和ジカルボン酸又
はその無水物゛を使用する場合、該化合物にはカルボニ
ル基とエチレン性不飽和結合部位が含まれるが、本発明
の触媒は高活性及び高選択性を有するので、カルボニル
基とエチレン性不飽和結合部位の水素添加を実質的に単
一工程で行なうことが可能である。
When an unsaturated dicarboxylic acid or its anhydride is used as a raw material for an unexploded hydrogenation reaction, the compound contains a carbonyl group and an ethylenically unsaturated bond site, and the catalyst of the present invention has high activity and high Due to its selectivity, hydrogenation of carbonyl groups and ethylenically unsaturated bond sites can be carried out in substantially a single step.

本発明の水素化反応は、低圧気相又は高圧液相で行なわ
れるが、低圧気相反応が特に好ましい。反応に際し、原
料化合物は必要に応じて目的とするラクトン類に溶解し
て反応に供する。
The hydrogenation reaction of the present invention is carried out in a low pressure gas phase or a high pressure liquid phase, and a low pressure gas phase reaction is particularly preferred. During the reaction, the raw material compound is dissolved in the target lactone as necessary and subjected to the reaction.

低圧気相反応を行う場合には、反応温度は、l!θ〜3
30℃程度、好ましくはigo〜コtOCである。反応
圧力はl気圧〜ユQ気圧程度である。
When performing a low pressure gas phase reaction, the reaction temperature is l! θ〜3
The temperature is about 30°C, preferably from IGO to COTC. The reaction pressure is about 1 atm to 1Q atm.

尚、反応ガスとして循環ガスを使用する場合には、少量
の一酸化炭素が含まれる可能性があるので、循環ガスの
全量または少くとも一部を公知の方法でメタン化して触
媒の劣化を抑制するのが良い。
In addition, when using circulating gas as the reaction gas, since it may contain a small amount of carbon monoxide, all or at least a portion of the circulating gas should be methanized by a known method to suppress deterioration of the catalyst. It's good to do that.

又、高圧液相反応を行う′場合には反応温度は200〜
ユSO℃程度、反応圧力は100〜tSO気圧で行なわ
れる。
In addition, when performing a high-pressure liquid phase reaction, the reaction temperature is 200~200℃.
The reaction pressure is about 100-tSO atm.

以下、実施例によシ、本発明を更に詳細に説明するが、
本発明はその要旨を越えない限り、市販銅クロマイト触
媒(日揮化学N−2038D、CuO1l j vt%
、Cr20g、4! l vt%含有、更にMno!、
BaOt−少量含有、200メツシユパス粉末)りO?
を、Pd濃度/ 00 fitの硝酸パラジウム水溶液
コ、l―を水/JO−に混合溶解した水溶液に含浸し、
このスラリーを約1時間攪拌した後、t !QCで蒸発
乾固した。得られた粉末を打錠成型器で71111φX
 3111L Lにペレット化し、空気流通下、yso
℃で3時間焼成した。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
Unless it exceeds the gist of the present invention, commercially available copper chromite catalyst (JGC N-2038D, CuO1ljvt%
, Cr20g, 4! l vt% content, and Mno! ,
BaOt - Contains a small amount, 200 mesh powder) RiO?
is impregnated with an aqueous solution of palladium nitrate with a Pd concentration / 00 fit, and an aqueous solution in which l- is mixed and dissolved in water / JO-,
After stirring this slurry for about an hour, t! Evaporated to dryness on QC. The obtained powder was made into 71111φX with a tablet molding machine.
Pelletize into 3111L L, under air circulation, yso
It was baked at ℃ for 3 hours.

金属成分として0.3 wt%のパラジウムを含む銅ク
ロマイト触媒を得た(触媒l)。触媒lの組成を表1に
示した。
A copper chromite catalyst containing 0.3 wt% palladium as a metal component was obtained (catalyst 1). The composition of catalyst 1 is shown in Table 1.

触媒製造例コ 市販鋼クロマイト触媒(8揮化学N−20コD、CuO
Jり、j vt%、Cr103 j 6.!r wt%
、更にBaO1Mn01.5103、Nanoを少量含
有)5gmφX、taLペレットをt7tr分割した粒
子309−を、Pd  濃度t009−/L硝酸パラジ
ウム水浴液0.09 dれた粒子を空気流通下J!tO
cで3時間焼成した。金属成分として0.0 ! wt
%のパラジウムを含む銅クロマイト触媒を得た(触媒コ
)。同様の調製方法で、パラジウムを0./ wt%及
び0.3vt%を含む銅クロマイト触媒を得た(触媒J
、ダ)。触媒2〜亭の組成を表1に示した。
Catalyst production example Commercially available steel chromite catalyst (8 volatile chemical N-20 CoD, CuO
Jri, j vt%, Cr103 j 6. ! rwt%
, further containing a small amount of BaO1Mn01.5103 and Nano) 5 g mφ tO
It was baked for 3 hours at c. 0.0 as a metal component! wt
A copper chromite catalyst containing % palladium was obtained (catalyst co). Using a similar preparation method, palladium was added to 0. /wt% and 0.3vt% copper chromite catalyst was obtained (Catalyst J
, da). The compositions of Catalysts 2 to 1 are shown in Table 1.

触媒製造例J 触媒製造例コで使用したN−コOコD を粉砕し、篩別
した粉末(100メツシユパス粉末)100?を、Pd
濃度/ 00 fitの硝酸パラジウム水溶液、:1.
Otutを水/El、−に混合溶解した水溶液に含浸、
このスラリーを約1時間攪拌した後で3時間焼成した。
Catalyst Production Example J The N-CoO used in Catalyst Production Example J was pulverized and sieved into a powder (100 mesh pass powder) 100? , Pd
Palladium nitrate aqueous solution with concentration/00 fit: 1.
Impregnation in an aqueous solution of Otut mixed and dissolved in water/El, -,
This slurry was stirred for about 1 hour and then baked for 3 hours.

金属成分として0.1 vt%のパラジウムを含む銅ク
ロマイト触媒を得た(触媒S)。
A copper chromite catalyst containing 0.1 vt% palladium as a metal component was obtained (catalyst S).

また、上記蒸発乾固後得られた粉末3ハコ?に対し、ガ
ラス粉末7.gff添加し、良く混合した後触媒製造例
1と同様に打錠成型し、得られた粒子を空気流通下JS
O℃で3時間焼成した(触媒6)。
Also, three boxes of powder obtained after the above evaporation to dryness? In contrast, glass powder 7. After adding gff and mixing well, the particles were compressed into tablets in the same manner as in Catalyst Production Example 1.
Calcined at 0° C. for 3 hours (catalyst 6).

触媒! −4の組成を表1に示した。catalyst! The composition of -4 is shown in Table 1.

触媒製造例亭 市販銅クロマイト触媒(日揮化学N−コ0JBD )り
O?を、pa@度t o o fitの硝酸パラジウム
水溶液コ、/ldと硝酸ニッケルNi (NOs)t・
6H,Oo、iり3ダ1(o、ooot、モル)を同時
に水tSOdに混合溶解した水溶液に含浸し、このスラ
リ成型し空気流通下3!OCで3時間焼成した(触媒7
)。触媒りの組成を表1に示した。
Catalyst Production Example Tei Commercial Copper Chromite Catalyst (JGC Chemical N-CO0JBD) RiO? , a palladium nitrate aqueous solution of pa @ degree to o fit, /ld and nickel nitrate Ni (NOs)t.
6H, Oo, iRida 1 (o, ooot, mole) was simultaneously mixed and dissolved in water tSOd and impregnated in an aqueous solution, and this slurry was molded and air circulated. Calcined in OC for 3 hours (catalyst 7
). The composition of the catalyst is shown in Table 1.

触媒製造例S 触媒製造例コで使用したN−コ02D  を粉砕し、篩
別した粉末(100メツシユパス粉末)SO?をPdl
l11度/ 00 f−/lの硝酸パラジウム水溶液ハ
Sdと硝酸コバルトCo (NOI )t ・A Hl
 O0−74c1jf(0,00Jそル)を水9lmK
混合溶解した水溶液に含浸し、このスラリーを約1時間
攪拌しJsocで3時間焼成した(触媒j)。触媒gの
組成を表1に示した。
Catalyst Production Example S The N-CO02D used in Catalyst Production Example S was crushed and sieved to form a powder (100 mesh pass powder) SO? Pdl
Palladium nitrate aqueous solution at l11 degrees/00 f-/l Sd and cobalt nitrate Co (NOI)t ・A Hl
O0-74c1jf (0,00J solu) water 9lmK
The slurry was impregnated with a mixed and dissolved aqueous solution, stirred for about 1 hour, and calcined in Jsoc for 3 hours (catalyst j). The composition of catalyst g is shown in Table 1.

実施例1 ステンレス製内径コj鵡φの反応器に表1記載の触媒ユ
バ9?を充填し、その上にガラスピーズ(Jmφ)を充
填し蒸発層とした。このよほとんどなくなるまで3時間
予備還元し、ついで温度をxrocに上昇せしめ2時間
保ち、さらに水素濃度100%にし、温度をJOOCに
上昇せしめてλ時間還元を行なった。
Example 1 The catalyst listed in Table 1 was placed in a stainless steel reactor with an inner diameter of 1. was filled, and glass beads (Jmφ) were filled thereon to form an evaporation layer. Preliminary reduction was carried out for 3 hours until almost all the hydrogen was present, then the temperature was raised to xroc and maintained for 2 hours, and the hydrogen concentration was further increased to 100%, the temperature was raised to JOOC and reduction was carried out for λ time.

無水コハク#t(以下、SAMと略記する。)をカンマ
ブチロラクトンに溶解しコb / 74! vt/vt
  の溶液を調製し、これを液送ポンプで反応器上部の
蒸発層に送り水素気流に同伴して触媒層へ導き水素化反
応を行なった。反応条件は、原料の供給速度はに、9 
J f/Hr、即ち無水コハク酸を0.10;1− S
AM/ f −Cm Lm /Hrとし、HtZSAH
′(モル比)−50、全圧コ、θkt/cIItGとし
た。
Dissolve anhydrous amber #t (hereinafter abbreviated as SAM) in cambutyrolactone and make amber/74! vt/vt
A solution was prepared, and this solution was sent to the evaporation layer at the top of the reactor using a liquid feed pump, followed by a hydrogen gas flow, and led to the catalyst layer to perform a hydrogenation reaction. The reaction conditions are as follows: raw material supply rate is 9.
J f/Hr, i.e. succinic anhydride 0.10; 1-S
AM/ f −Cm Lm /Hr, HtZSAH
'(molar ratio) -50, total pressure θkt/cIItG.

尚、触媒はり■φXJ■Lペレットを//G分割して反
応に使用した。生成物を水冷凝縮捕集し、更に廃ガスを
ドライアイス温度のトラップへ導き完全に捕集した。両
捕集液をカールフィッシャー法(水分)及びガスクロマ
トグラフ法によシ分析した。気相はメタネータ付きのガ
スクロマトグラフにより分析した。一方高沸物は一定量
の捕集液を減圧下に蒸留し、低沸分を留去した後、残液
について水−クロロホルムを加えて抽出し、有機物層を
クロロホルム蒸発除去後にガスクロマトグラフ及びカー
ルフィッシャー法で定量可能物質の量を求め、バランス
不一致分を高沸物として定量した。表1記載の各触媒を
使用した場合の反応結果を表コに示す。
Incidentally, the catalyst beam ■φXJ■L pellets were divided into //G and used for the reaction. The product was collected by water-cooled condensation, and the waste gas was led to a trap at dry ice temperature for complete collection. Both collected liquids were analyzed by Karl Fischer method (moisture) and gas chromatography method. The gas phase was analyzed using a gas chromatograph equipped with a methanator. On the other hand, high-boiling substances are extracted by distilling a certain amount of the collected liquid under reduced pressure, distilling off low-boiling substances, and then extracting the remaining liquid by adding water-chloroform. The amount of quantifiable substances was determined by the Fisher method, and the unbalanced components were determined as high-boiling substances. Table 1 shows the reaction results when each catalyst listed in Table 1 was used.

実施例ユ 実施例1の反応条件において触媒lの無水コハク酸の気
相水素化反応を行い反応成績の経時変化を調べた。結果
を表3に示す。
Example 1 A gas phase hydrogenation reaction of succinic anhydride (catalyst 1) was carried out under the reaction conditions of Example 1, and changes over time in the reaction results were investigated. The results are shown in Table 3.

表  3 初期に対し経時9弘〜9g時間後も安定な成績を示した
Table 3 Compared to the initial stage, stable results were shown even after 9 hours to 9 g hours.

比較例! 本発明方法と既知方法の差異を明らかにするため、市販
鋼−クロマイト触媒(8揮化学、N−二02D)を用い
、実施例1と同一の反応条件で無水コハク酸の気相水素
化反応を行ないその経時変化を調べた。結果を表ダに示
す。
Comparative example! In order to clarify the difference between the method of the present invention and the known method, a gas phase hydrogenation reaction of succinic anhydride was carried out under the same reaction conditions as in Example 1 using a commercially available steel-chromite catalyst (8 Volatile Chemical Co., Ltd., N-202D). We investigated its changes over time. The results are shown in Table DA.

表  ダ 本発明触媒に比較し明らかに触媒活性が劣った。table The catalytic activity was clearly inferior to that of the catalyst of the present invention.

比較例コ 本発明方法と既知方法との差異を明らかにするため銅−
パラジウム−マグネシウムシリケート触媒(特公昭st
、−rt、oat )を用いて実施例1と同一の反応条
件で無水コハク酸の気相水素化反応を行ない、その経時
変化を調べた。結果を表5に示す。尚、この触媒は金属
成分としてCuコ/wt%、Pd O,3vt%を含有
する。
Comparative Example: In order to clarify the difference between the method of the present invention and the known method, copper
Palladium-magnesium silicate catalyst (Tokuko Sho st
, -rt, oat) was used to perform a gas phase hydrogenation reaction of succinic anhydride under the same reaction conditions as in Example 1, and the change over time was investigated. The results are shown in Table 5. Incidentally, this catalyst contains Cu/wt% and Pd2O, 3vt% as metal components.

表  5 本触媒は、反応初期に比較的高活性を示すが、触媒の経
時劣化が認められ長時間の使用により原料の転化率及び
γ−ブチロラクトンの選択率の低下が認められた。
Table 5 Although this catalyst exhibited relatively high activity at the initial stage of the reaction, deterioration of the catalyst over time was observed, and a decrease in the conversion rate of the raw material and the selectivity of γ-butyrolactone was observed with long-term use.

比較例3 (マリンクロット社製、K−10JTu)を用い、反応
原料として無水コハク酸をガンマブチロラクトンに溶解
したユ0 / t Owt/vtの溶液を用い反応条件
として、原料供給速度がO,OS ? −8AVy−−
CatV′Hr 、 By’SAM  (モル比)−g
o。
Comparative Example 3 (manufactured by Mallinckrodt, K-10JTu) was used, a solution of succinic anhydride dissolved in gamma-butyrolactone of 0/t Owt/vt was used as the reaction raw material, and the reaction conditions were such that the raw material supply rate was O, OS ? -8AVy--
CatV'Hr, By'SAM (molar ratio) -g
o.

全圧Okg / crd a、反応温度265℃とした
以外は実施例1と同様に気相水素化反応を行なった結果
、無水コハク酸の転化率は91%、ガンマブチロラクト
ンの選択率は61%となり、本発明方法に比べ著しく劣
った。
A gas phase hydrogenation reaction was carried out in the same manner as in Example 1 except that the total pressure was Okg/crda and the reaction temperature was 265°C. As a result, the conversion rate of succinic anhydride was 91% and the selectivity of gamma-butyrolactone was 61%. , which was significantly inferior to the method of the present invention.

実施例3 触媒製造例1と同様の調製方法で金属成分としてJ、(
7vt%のパラジウムを含む銅クロマイト触媒(N−λ
(7,7SD )を調製した。この触媒ダ、9?を実施
例1の水素還元方法によシ還元した後、内容積100−
のステンレス製上下攪拌式オートクレーブにコA vt
%の無水コハク酸−ガンマブチロラクトン溶液301と
ともに仕込み、水素分圧100kg/cda、反応温度
200Cで、液相でコ時間反応させた。結果を表6に示
す。
Example 3 J, (
Copper chromite catalyst containing 7vt% palladium (N-λ
(7,7SD) was prepared. This catalyst is 9? After being reduced by the hydrogen reduction method of Example 1, the internal volume was 100-
Coated in a stainless steel vertical stirring autoclave.
% of succinic anhydride-gammabutyrolactone solution 301% and reacted in the liquid phase for several hours at a hydrogen partial pressure of 100 kg/cda and a reaction temperature of 200 C. The results are shown in Table 6.

表  4 〔発明の効果〕 本発明によれば、ジカルボン酸及び/又はその無水物を
水素化してラクトン類を製造するに際し、必須成分とし
てパラジウム、銅及びクロムを含有する触媒を存在させ
ることにょシ特に低圧気相水素化に於て従来法に比して
高選択率で目的物を得ることができる。
Table 4 [Effects of the Invention] According to the present invention, when hydrogenating dicarboxylic acids and/or their anhydrides to produce lactones, it is possible to make the presence of a catalyst containing palladium, copper, and chromium as essential components. Particularly in low pressure gas phase hydrogenation, the desired product can be obtained with higher selectivity than conventional methods.

爽に、該触媒は、活性安定性に優れているため、長時間
使用しても、転換率の低下が認められず、長時間にわた
って目的物を高選択率で得ることができる。
Refreshingly, since the catalyst has excellent activity stability, no reduction in conversion rate is observed even when used for a long period of time, and the target product can be obtained with high selectivity over a long period of time.

出願人  三菱化成工業株式会社 代理人  弁理士 長谷用  − ほか1名Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Patent Attorney Hase - 1 other person

Claims (3)

【特許請求の範囲】[Claims] (1)ジカルボン酸及び/又はその無水物を水素化して
ラクトン類を製造する方法において必須成分としてパラ
ジウム、銅及びクロムを含有する触媒の存在下水素化す
ることを特徴とするラクトン類の製造方法。
(1) A method for producing lactones by hydrogenating a dicarboxylic acid and/or its anhydride, which is characterized by hydrogenating in the presence of a catalyst containing palladium, copper, and chromium as essential components. .
(2)触媒成分のパラジウム、銅及びクロムの原子比が
Pd/Cr=1/2000〜1/20、Cu/Cr=1
/10〜10の範囲であることを特徴とする特許請求の
範囲第1項記載の製造方法。
(2) The atomic ratio of palladium, copper and chromium as catalyst components is Pd/Cr=1/2000 to 1/20, Cu/Cr=1
10. The manufacturing method according to claim 1, wherein the range is from /10 to 10.
(3)ジカルボン酸及び/又はその無水物が無水マレイ
ン酸及び/又は無水コハク酸であり、ラクトン類がγ−
ブチロラクトンであることを特徴とする特許請求の範囲
第1項記載の製造方法。
(3) The dicarboxylic acid and/or its anhydride is maleic anhydride and/or succinic anhydride, and the lactone is γ-
The manufacturing method according to claim 1, characterized in that it is butyrolactone.
JP59231893A 1984-11-02 1984-11-02 Production of lactone Pending JPS61109785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231893A JPS61109785A (en) 1984-11-02 1984-11-02 Production of lactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231893A JPS61109785A (en) 1984-11-02 1984-11-02 Production of lactone

Publications (1)

Publication Number Publication Date
JPS61109785A true JPS61109785A (en) 1986-05-28

Family

ID=16930684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231893A Pending JPS61109785A (en) 1984-11-02 1984-11-02 Production of lactone

Country Status (1)

Country Link
JP (1) JPS61109785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503459A (en) * 1987-03-31 1989-11-22 ザ ブリテイッシュ ピトローリアム コンパニー ピー.エル.シー. Catalytic hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
CN1309470C (en) * 2002-04-22 2007-04-11 爱敬油化株式会社 Hydrogenation catalyst, preparation thereof, and method for the preparation of gamma-butyrolactone from maleic anhydride using the catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503459A (en) * 1987-03-31 1989-11-22 ザ ブリテイッシュ ピトローリアム コンパニー ピー.エル.シー. Catalytic hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
CN1309470C (en) * 2002-04-22 2007-04-11 爱敬油化株式会社 Hydrogenation catalyst, preparation thereof, and method for the preparation of gamma-butyrolactone from maleic anhydride using the catalyst

Similar Documents

Publication Publication Date Title
US4764498A (en) Silica-containing shaped articles and a process for their preparation
US4105674A (en) Production of gamma-butyrolactone from maleic anhydride with a hydrogenation catalyst
US5124491A (en) Process for the hydrogenation of fatty acid methyl esters
JP5432434B2 (en) Method for producing catalyst for synthesis of dimethyl ether from synthesis gas containing carbon dioxide
KR100417353B1 (en) Method of Producing 1,4-Butanediol and Tetrahydrofuran from Furan
US4751248A (en) Preparation of alcohols from synthesis gas
US20080097112A1 (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride
CA2729477A1 (en) Bimetallic mo/co catalyst for producing of alcohols from hydrogen and carbon monoxide containing gas
JP4130361B2 (en) Coated catalysts for hydrogenating maleic anhydride and related compounds to .GAMMA.-butyrolactone and tetrahydrofuran and their derivatives
EP0404408A1 (en) Use of coated catalysts for the hydrogenation of maleic anhydride to tetrahydrofuran and gammabutyrolactone
EP0746553B1 (en) Process for the production of gamma-butyrolactone
KR100809133B1 (en) Porous catalyst for the hydrogenation of maleic anhydride to tetrahydrofuran
RU2119905C1 (en) Method of synthesis of 1,4-butanediol
JPS61109785A (en) Production of lactone
JPS615036A (en) Production of alcohol
JPH0788376A (en) Catalyst for steam-reforming-hydrocarbon
US5070058A (en) Method for making a catalyst composition used in the production of lower aliphatic alcohols
JPH01121228A (en) Production of 1,4-butylene glycol
US5639927A (en) Process of producing cycloolefin
US5637735A (en) Process for the preparation of gamma-butyrolactone
JP2874017B2 (en) Method for producing gamma-butyrolactone
JPS59115746A (en) Catalyst for making morpholine and its manufacture
JP2000080053A (en) Production of cyloalkyldimethanol
JP2549400B2 (en) Method for producing γ-butyrolactone
US6958404B2 (en) Method for the hydrogenation of maleic anhydride and related compounds in a fluid bed reactor