JPH0236135A - Production of alcohol - Google Patents

Production of alcohol

Info

Publication number
JPH0236135A
JPH0236135A JP63184878A JP18487888A JPH0236135A JP H0236135 A JPH0236135 A JP H0236135A JP 63184878 A JP63184878 A JP 63184878A JP 18487888 A JP18487888 A JP 18487888A JP H0236135 A JPH0236135 A JP H0236135A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
copper
weight
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63184878A
Other languages
Japanese (ja)
Other versions
JP2716737B2 (en
Inventor
Akira Yamamuro
山室 朗
Yasuyuki Hattori
泰幸 服部
Noriaki Fukuoka
福岡 紀明
Kiyoshi Tsukada
清 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP63184878A priority Critical patent/JP2716737B2/en
Publication of JPH0236135A publication Critical patent/JPH0236135A/en
Application granted granted Critical
Publication of JP2716737B2 publication Critical patent/JP2716737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an alcohol by hydrogenating a carboxylic ester in the presence of a catalyst prepared by reduction of a compound metal oxide containing CuO, ZnO, MoO3 and/or WO3 or containing an alkaline (earth) metal oxide, iron family metal oxide, etc., other than the above-mentioned oxides. CONSTITUTION:A carboxylic ester is reacted with hydrogen under 50-300kg/cm2 hydrogen pressure at 150-300 deg.C in the presence of a catalyst prepared by reduction of a compound metal oxide represented by formula I (AO is MoO3 and/or WO3, a is 55-75wt.%; b is 25-45wt.%; c is 0.1-10wt.%) or formula II [BO is oxide of alkaline (earth) metal, iron family metal, etc.; a', b' and c' are respectively synonymous with a, b and c; d' is 0.1-8wt.%] to prepare an alcohol. The above-mentioned catalyst has durability against poisoning by trace impurities in the raw materials or heat deterioration in a high-activity state. The catalyst is prepared by the coprecipitation method, etc., where a precipitant is added to an aqueous mixture solution of respective metal salts.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルコールの製造法に関し、更に詳しくは特定
の組成で表される複合金属酸化物の還元により得られる
触媒を用いてカルボン酸エステルを水素化し対応するア
ルコールを製造する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing alcohol, and more specifically to a method for producing a carboxylic acid ester using a catalyst obtained by reducing a composite metal oxide having a specific composition. It relates to a method for hydrogenating and producing the corresponding alcohols.

〔従来の技術及び発明が解決しようとする課題]カルボ
ン酸あるいはカルボン酸エステルを水素化して脂肪族ア
ルコール、脂環式アルコールあるいは芳香族アルコール
を製造する方法については1930年代以降多くの方法
が開示されてきている。しかしカルボン酸エステルを水
素化し対応するアルコールを工業的に製造する方法のほ
とんどは裔温高圧の反応条件下で銅−クロム系触媒を用
いている。このことは、反応条件が苛酷であることによ
る経済的不利益性もさることながら、クロムの使用とい
う点で不利であり、銅−クロム系触媒にとって代わるク
ロムを含有しない触媒の開発が叫ばれている。
[Prior Art and Problems to be Solved by the Invention] Many methods have been disclosed since the 1930s for producing aliphatic alcohols, alicyclic alcohols, or aromatic alcohols by hydrogenating carboxylic acids or carboxylic acid esters. It's coming. However, most of the industrial methods for hydrogenating carboxylic acid esters to produce the corresponding alcohols use copper-chromium catalysts under reaction conditions at low temperatures and high pressures. This is not only an economic disadvantage due to the harsh reaction conditions, but also a disadvantage in terms of the use of chromium, and there is a call for the development of a chromium-free catalyst to replace the copper-chromium catalyst. There is.

銅−クロム系触媒に代わる触媒として銅−亜鉛系複合酸
化物触媒を用い、カルボン酸エステルの水素化により対
応するアルコールを得ようとする試みはいくつか行われ
ているが、銅−亜鉛系複合酸化物触媒は一般に原料エス
テル中の@量不純物による被毒あるいは触媒の熱的安定
性において銅−クロム系触媒より劣っており、触媒耐久
性の面で不十分である。
Several attempts have been made to obtain the corresponding alcohol by hydrogenating carboxylic acid esters using a copper-zinc composite oxide catalyst as a catalyst to replace the copper-chromium catalyst; Oxide catalysts are generally inferior to copper-chromium catalysts in terms of poisoning due to impurities in the raw material ester and thermal stability of the catalyst, and are insufficient in terms of catalyst durability.

(課題を解決するための手段) そこで、本発明者らはカルボン酸エステルを水素化し対
応するアルコールを製造する方法において、高活性でか
つ高度の触媒耐久性を有する銅−亜鉛系複合酸化物触媒
を見い出すべく鋭意研究した結果、次のような触媒が目
的に適う触媒であるとの知見を得ることができた。
(Means for Solving the Problems) Therefore, the present inventors developed a method for hydrogenating a carboxylic acid ester to produce a corresponding alcohol using a copper-zinc composite oxide catalyst having high activity and high catalyst durability. As a result of intensive research to find out, we were able to obtain the knowledge that the following catalysts are suitable for the purpose.

即ち、次式(I)もしくは(II) (I)  (CuO)、(Zr+0)JAO’)。That is, the following formula (I) or (II) (I) (CuO), (Zr+0)JAO').

^0 : Mo01及び/又はWO。^0: Mo01 and/or WO.

a :55〜75重量% b :25〜45重量% c:0.1〜10重里% (H)  (Cub)−・(ZnO)b・(AO)−・
(BO’:Ja・AO: Moot及び/又は−〇。
a: 55-75% by weight b: 25-45% by weight c: 0.1-10% (H) (Cub)-・(ZnO)b・(AO)-・
(BO': Ja・AO: Moot and/or -〇.

BO:アルカリ金属、アルカリ土類金属、鉄族金属から
選ばれる1種以上の金属の 酸化物 a”:55〜75重量% b’:25〜45重世% c’:0.1〜10重量% d’:0.1〜8重量% で示される複合金属酸化物の還元により得られる触媒が
、従来公知の銅−亜鉛系触媒では不十分であった、原料
エステル中の微量不純物による被毒あるいは触媒の熱的
劣化に対し、高活性を維持した状態で高度の耐久性を有
するという結果を得るに至り、本発明を完成した。
BO: Oxide of one or more metals selected from alkali metals, alkaline earth metals, and iron group metals a": 55 to 75% by weight b': 25 to 45% by weight c': 0.1 to 10% by weight % d': 0.1 to 8% by weight The catalyst obtained by reducing the composite metal oxide is poisoned by trace impurities in the raw material ester, which was insufficient with conventionally known copper-zinc catalysts. Alternatively, the present invention was completed by obtaining the result that the catalyst has a high degree of durability while maintaining high activity against thermal deterioration.

即ち、本発明は、上記の式(I)もしくは(II)で示
される複合金属酸化物の還元により得られる触媒の存在
下、カルボン酸エステルを水素と接触せしめることを特
徴とするアルコールの製造法を提供するものである。
That is, the present invention provides a method for producing alcohol, which comprises bringing a carboxylic acid ester into contact with hydrogen in the presence of a catalyst obtained by reducing a composite metal oxide represented by the above formula (I) or (II). It provides:

銅−亜鉛系複合酸化物触媒に対する第三金属成分の添加
によって触媒耐久性を向上しようとする試みはいくつか
行われている。例えば、〔工業化学雑誌、第53巻、7
4ページ(I950年)〕ではママツコラ麦皮の水素化
反応において、珪藻土に担持した酸化銅−酸化亜鉛触媒
に少量の酸化クロムを添加することにより触媒の耐久性
を向上せしめたと報告している。しかしながら、この場
合、クロムの使用は実用上不利益である。
Several attempts have been made to improve catalyst durability by adding a third metal component to a copper-zinc composite oxide catalyst. For example, [Industrial Chemistry Journal, Vol. 53, 7
4 (1950)] reported that in the hydrogenation reaction of Mamatzkola barley, the durability of the catalyst was improved by adding a small amount of chromium oxide to a copper oxide-zinc oxide catalyst supported on diatomaceous earth. However, in this case, the use of chromium is disadvantageous in practice.

特開昭53−133594号公報ではポリグリコレイト
のエチレングリコールへの水素化反応において、共沈殿
コバルト−亜鉛−銅酸化物触媒が共沈殿銅−亜鉛酸化物
触媒よりも安定性において優位であると述べているが、
大量の触媒を用いているにもかかわらず高い活性は得ら
れていない。
JP-A-53-133594 discloses that a coprecipitated cobalt-zinc-copper oxide catalyst is superior in stability to a coprecipitated copper-zinc oxide catalyst in the hydrogenation reaction of polyglycolate to ethylene glycol. Although it is stated,
Despite using a large amount of catalyst, high activity has not been obtained.

また特開昭54−32191号公報では、本発明者等が
開示した上記複合金属酸化物の1つである酸化銅−モリ
ブデン酸銅−酸化亜鉛触媒を用いてヤシ脂肪酸メチルエ
ステルの水素化反応を行っているが、高′温で反応を行
うことかられかるように十分な活性は得られておらず、
また触媒耐久性に関して何ら言及していない。
Furthermore, in JP-A No. 54-32191, a hydrogenation reaction of coconut fatty acid methyl ester was conducted using a copper oxide-copper molybdate-zinc oxide catalyst, which is one of the above-mentioned composite metal oxides disclosed by the present inventors. However, as the reaction is carried out at high temperatures, sufficient activity is not obtained.
Furthermore, there is no mention of catalyst durability.

以上のいずれの製造法においても、高級脂肪酸エステル
を水素化し、対応する高級脂肪族アルコールを製造する
方法において、原料エステル中の微量不純物による被毒
、あるいは触媒の熱的劣化に対し、高活性を維持し、且
つ高度の耐久性を有する銅−亜鉛系複合酸化物触媒を見
い出した例は今まで知られていない。ここで、ドイツ特
許DE3443277^1号明細書中の「銅−亜鉛触媒
中にFe、 C0. Ni、 Ru、 Rh、 Pd、
 Os、 [r。
In any of the above production methods, in the method of hydrogenating a higher fatty acid ester to produce the corresponding higher aliphatic alcohol, high activity is achieved against poisoning by trace impurities in the raw material ester or thermal deterioration of the catalyst. Up to now, there has been no known example of a copper-zinc-based composite oxide catalyst that maintains its properties and has a high degree of durability. Here, in the specification of German Patent DE 3443277^1, "in the copper-zinc catalyst, Fe, C0. Ni, Ru, Rh, Pd,
Os, [r.

ptといった■へ族元素、Cr、 M0.−といったV
IA族元素、Tc+ Ag、 Re+ Au、 caと
いった元素、あるいはIlg、 Pbといった原子番号
80番以上の元素が0.1重■%以上存在すると水素化
分解等の副反応が起きたり、触媒毒となり触媒活性が失
われる。」という記述を考慮する時、銅−亜鉛系複合酸
化物触媒に対する第三成分の添加によってアルコール製
造時における高度の触媒耐久性が銅−亜鉛系触媒本来の
高活性を維持したままの状態で実現し得るとは予想だに
出来なかったのである。
■He group elements such as pt, Cr, M0. - such as V
If 0.1% or more of group IA elements, elements such as Tc+Ag, Re+Au, and ca, or elements with atomic numbers of 80 or higher such as Ilg and Pb are present, side reactions such as hydrogenolysis may occur, or they may become catalyst poisons. Catalytic activity is lost. When considering the statement ``, by adding a third component to the copper-zinc composite oxide catalyst, a high degree of catalyst durability during alcohol production can be achieved while maintaining the original high activity of the copper-zinc catalyst. I never expected it to be possible.

本発明に係わる触媒組成物の製法は特に限定されず、公
知の方法により調製される。例えば複合金属酸化物を構
成するそれぞれの金属塩の混合水溶液に沈殿剤を添加す
る共沈殿法により得られる沈殿物を乾燥、焼成して得ら
れる触媒前駆体、あるいはそれぞれの酸化物、水酸化物
、炭酸塩、カルボン酸塩、金属アルコラードもしくは硝
酸塩等の化合物を均一に混合し焼成した触媒前駆体、更
には、触媒前駆体を構成する少なくとも1種以上の金属
酸化物に他の残りの成分を含浸担持した後、乾燥、焼成
することにより得られる触媒前駆体を還元性物質で還元
する方法により調製される。
The method for producing the catalyst composition according to the present invention is not particularly limited, and it can be prepared by a known method. For example, a catalyst precursor obtained by drying and calcining a precipitate obtained by a coprecipitation method in which a precipitant is added to a mixed aqueous solution of each metal salt constituting a composite metal oxide, or each oxide or hydroxide. , a catalyst precursor obtained by uniformly mixing and calcining compounds such as carbonates, carboxylates, metal alcoholades, or nitrates, and further adding other remaining components to at least one or more metal oxides constituting the catalyst precursor. It is prepared by a method in which a catalyst precursor obtained by impregnating and supporting, drying, and firing is reduced with a reducing substance.

触媒前駆体である複合金属酸化物の化合物組成は酸化銅
として55〜75重量%、酸化亜鉛として25〜45重
量%、モリブデン酸及び/又はタングステン酸として0
01〜10重量%好ましくは0.3〜2重量%である。
The compound composition of the composite metal oxide that is the catalyst precursor is 55 to 75% by weight as copper oxide, 25 to 45% by weight as zinc oxide, and 0% as molybdic acid and/or tungstic acid.
01 to 10% by weight, preferably 0.3 to 2% by weight.

更に第4触媒成分であるアルカリ金属、アルカリ土類金
属、鉄族金属から選ばれる1種以上の金属の酸化物を0
.1〜8重世%含むこともできる。ここで第4触媒成分
であるアルカリ金属、アルカリ土類金属、鉄族金属から
選ばれる1種以上の金属の酸化物としては、酸化ナトリ
ウム、酸化カルシウム、酸化コバルト、酸化カリウム、
酸化セシウム、酸化マグネシウム、酸化バリウム、酸化
鉄、酸化ニッケル等が挙げられる。
Furthermore, the fourth catalyst component, an oxide of one or more metals selected from alkali metals, alkaline earth metals, and iron group metals, is added to zero.
.. It can also contain 1-8%. Here, the oxide of one or more metals selected from alkali metals, alkaline earth metals, and iron group metals, which is the fourth catalyst component, includes sodium oxide, calcium oxide, cobalt oxide, potassium oxide,
Examples include cesium oxide, magnesium oxide, barium oxide, iron oxide, and nickel oxide.

触媒前駆体である複合金属酸化物を例えば共沈殿法によ
り調製する場合、使用される金属塩は水溶性のものであ
るなら全て可能であるが、−船釣には硫酸塩、硝酸塩、
アンモニウム錯塩、酢酸塩あるいは塩化物が用いられる
。更にタングステン酸化合物、モリブデン酸化合物の水
溶性の塩としてはナトリウム塩の他にパラタングステン
酸アンモン、バラモリブデン酸アンモンと言ったアンモ
ニウム塩を用いることができる。
When preparing a composite metal oxide, which is a catalyst precursor, by a co-precipitation method, any metal salt can be used as long as it is water-soluble; however, for boat fishing, sulfates, nitrates,
Ammonium complex salts, acetates or chlorides are used. Furthermore, as water-soluble salts of tungstic acid compounds and molybdic acid compounds, in addition to sodium salts, ammonium salts such as ammonium paratungstate and ammonium baramolybdate can be used.

また、含浸法により調製する場合にも上に述べた水溶性
の金属塩類を用いることができる。
Furthermore, the water-soluble metal salts described above can also be used when preparing by impregnation method.

斯かる触媒前駆体は活性あるいは選択性がそれほど損な
われない程度において、珪藻土、アルミナ、シリカゲル
、シリカ−アルミナ、マグネシア、カルシア、ジルコニ
ア、チタニア、クロミア、酸化亜鉛、酸化イツトリウム
、酸化トリウムなどの公知の担体上に担持した状態もし
くは担体を均一に混合した状態で還元し、使用に供して
も何ら差支えがない。また、触媒前駆体を上記の担体に
担持する場合、共沈殿法により担持する方法もしくは触
媒成分となる金属塩を水溶液の状態で含浸担持する方法
などが挙げられる。担持量は特に限定されないが、担体
重量に対し10〜200%が好ましい。
Such catalyst precursors may include known catalysts such as diatomaceous earth, alumina, silica gel, silica-alumina, magnesia, calcia, zirconia, titania, chromia, zinc oxide, yttrium oxide, thorium oxide, etc., to the extent that activity or selectivity is not significantly impaired. There is no problem in using it after reducing it while it is supported on a carrier or in a state where it is homogeneously mixed with the carrier. Further, when supporting the catalyst precursor on the above-mentioned carrier, examples include a method of supporting the catalyst precursor by a coprecipitation method, a method of supporting the catalyst precursor by impregnating it with an aqueous solution of a metal salt as a catalyst component, and the like. Although the supported amount is not particularly limited, it is preferably 10 to 200% of the carrier weight.

また、本発明の効果を害しない範囲で、触媒の強度等の
向上のため黒鉛、脂肪酸塩、澱粉、Fh油、タルク、ベ
ントナイト、アルカリ金属塩、アルカリ土類金属塩等、
微量の第3成分を添加してもよい。
In addition, graphite, fatty acid salts, starch, Fh oil, talc, bentonite, alkali metal salts, alkaline earth metal salts, etc. may be used to improve the strength of the catalyst, within a range that does not impair the effects of the present invention.
A trace amount of a third component may be added.

触媒前駆体である金属複合酸化物を共沈殿法により調製
する場合、調製pHや焼成温度の選定が重要となる。例
えば、調製pHとしては2〜11が、また焼成温度とし
ては300〜600°Cで行うのが望ましい。
When preparing a metal composite oxide, which is a catalyst precursor, by a coprecipitation method, it is important to select the preparation pH and calcination temperature. For example, it is desirable that the preparation pH be 2 to 11 and the firing temperature be 300 to 600°C.

次に、触媒前駆体を還元性物質で還元する場合、気相還
元法あるいは流動パラフィン等の炭化水素、ジオキサン
、脂肪族アルコールもしくは脂肪酸エステルなどの溶媒
中で行う液相還元法のいずれの方法を用いても良い。例
えば、水素ガスを用いて還元する場合、100〜800
’C1好ましくは150〜500°Cの温度で水の生成
が認められなくなる迄、もしくは水素の吸収が認められ
なくなる迄行うのが望ましい。特に、溶媒中で還元を行
う場合、150〜350°Cの温度で水素吸収が認めら
れな(なる迄行うのが望ましい。更に、水素化原料であ
るエステル中において、触媒前駆体を水素雰囲気下、昇
温、還元し、そのまま反応に供する通常の活性化方法を
用いても何ら問題が無い。
Next, when reducing the catalyst precursor with a reducing substance, either a gas phase reduction method or a liquid phase reduction method performed in a solvent such as a hydrocarbon such as liquid paraffin, dioxane, an aliphatic alcohol, or a fatty acid ester is used. May be used. For example, when reducing using hydrogen gas, 100 to 800
'C1 It is preferable to carry out the reaction at a temperature of preferably 150 to 500° C. until water generation is no longer observed or hydrogen absorption is no longer observed. In particular, when reduction is carried out in a solvent, it is desirable to carry out the reduction until no hydrogen absorption is observed at a temperature of 150 to 350°C. There is no problem in using the usual activation method of heating, reducing, and directly subjecting to the reaction.

触媒前駆体を還元する場合に用いられる還元性物質とは
、前述の水素以外に一酸化炭素、アンモニア、ヒドラジ
ン、ホルムアルデヒドあるいはメタノール等の低級アル
コールなどであり、これらの還元性物質を単独もしくは
混合した状態で使用しても良い。また、窒素、ヘリウム
、アルゴン等の不活性気体で希釈した状態もしくは少量
の水蒸気の存在下で使用しても差支えない。
In addition to the aforementioned hydrogen, the reducing substances used to reduce the catalyst precursor include carbon monoxide, ammonia, hydrazine, formaldehyde, and lower alcohols such as methanol, and these reducing substances may be used alone or in combination. May be used in any condition. Further, it may be used diluted with an inert gas such as nitrogen, helium, or argon, or in the presence of a small amount of water vapor.

本廃明の方法において、カルボン酸エステルを例えば液
相懸濁床反応方式により水素化するに際し、溶媒を使用
することも可能であるが、生産性を考慮した場合には無
溶媒で反応を行うのが望ましい。溶媒としては、アルコ
ール、ジオキサンあるいは炭化水素等の反応に悪影響を
与えないようなものが選ばれる。
In the method of the present invention, it is possible to use a solvent when hydrogenating a carboxylic acid ester, for example, by a liquid phase suspended bed reaction method, but in consideration of productivity, the reaction may be carried out without a solvent. is desirable. As the solvent, one is selected that does not adversely affect the reaction of alcohol, dioxane, hydrocarbon, or the like.

触媒量はカルボン酸エステル100重量部に対し0.1
〜20In−fft部が好ましいが、反応温度あるいは
反応圧力に応じ実用的な反応速度が得られる範囲内にお
いて任意に選択できる。
The amount of catalyst is 0.1 per 100 parts by weight of carboxylic acid ester.
-20 In-fft parts is preferred, but it can be arbitrarily selected within a range that provides a practical reaction rate depending on the reaction temperature or reaction pressure.

反応温度は一般的には150〜300’Cの温度が選ば
れる。水素圧力は1〜350kg/cm2であるが、5
0〜300kg/cmzで行うのがアルコール収率及び
反応速度の点から好ましい。
The reaction temperature is generally selected to be 150 to 300'C. Hydrogen pressure is 1 to 350 kg/cm2, but 5
It is preferable to conduct the reaction at 0 to 300 kg/cmz from the viewpoint of alcohol yield and reaction rate.

また、本発明の触媒を粒状もしくは打錠あるいは円柱状
等に成形することにより、固定床反応方式、更には流動
床反応方式にてカルボン酸エステルを水素化することも
可能となる。
Furthermore, by forming the catalyst of the present invention into granules, tablets, cylinders, etc., it becomes possible to hydrogenate carboxylic acid esters in a fixed bed reaction system or even in a fluidized bed reaction system.

本発明によって水素化されるカルボン酸エステル類のカ
ルボン酸部分、アルコール部分は共に脂肪族、芳香族あ
るいは脂環式化合物のいずれであっても良く、分子内で
ラクトンを形成していても良い。また分子内に二重結合
や水酸基といった別の官能基を有していてもかまわない
Both the carboxylic acid moiety and the alcohol moiety of the carboxylic acid esters to be hydrogenated according to the present invention may be aliphatic, aromatic or alicyclic compounds, and may form a lactone within the molecule. Further, the molecule may have another functional group such as a double bond or a hydroxyl group.

更に天然産の基質、例えば大豆油、ひまわり油、ビーナ
ツツ油、ココヤシ油、パーム油、パーム核油及び牛脂等
から誘導されるカルボン酸エステル類は本発明の方法に
おいて好ましく使用される。
Furthermore, carboxylic acid esters derived from naturally occurring substrates such as soybean oil, sunflower oil, bean oil, coconut oil, palm oil, palm kernel oil and beef tallow are preferably used in the process of the invention.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれら実施例により限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these Examples.

実施例1 (タングステン酸ナトリウム、含浸法)(]
)触媒調製 酸化銅と酸化亜鈴の重量比が7対3であるような硝酸銅
及び硝酸亜鉛の混合水溶液を90〜100°Cに昇温し
た後、沈殿剤として10重量%の炭酸ナトリウム水溶液
を漸次添加することによりpHが9程度のスラリーを得
た。このスラリーより沈殿物を濾別し十分水洗すること
によって酸化銅と酸化亜鉛の重量比が7対3であるよう
な沈殿ケークを得た。
Example 1 (Sodium tungstate, impregnation method) (]
) Catalyst Preparation After heating a mixed aqueous solution of copper nitrate and zinc nitrate to 90 to 100°C in which the weight ratio of copper oxide and zinc oxide is 7:3, a 10% by weight aqueous sodium carbonate solution was added as a precipitant. By gradual addition, a slurry having a pH of about 9 was obtained. The precipitate was filtered from this slurry and thoroughly washed with water to obtain a precipitate cake in which the weight ratio of copper oxide to zinc oxide was 7:3.

次にタングステン酸ナトリウム・2水和物71.1mg
を500−の蒸留水に溶かした水溶液に上記沈殿ケーク
の焼成後の重量で10gに相当する量を加えて十分に撹
拌した後、水を蒸発乾固して110°Cで乾燥し、更に
450°Cで2時間焼成することにより酸化銅−酸化亜
鉛−タングステン酸ナトリウム(Cu吐ZnO: W(
h :Na、0=69.5 : 29.8 : 0.5
5 : 0.15 (重量比))複合金属酸化物を得た
。得られた触媒前駆体をAとする。
Next, 71.1 mg of sodium tungstate dihydrate
An amount equivalent to 10 g of the above precipitate cake after firing was added to an aqueous solution prepared by dissolving 500 °C in distilled water, and after stirring thoroughly, the water was evaporated to dryness and dried at 110 ° C. Copper oxide-zinc oxide-sodium tungstate (Cu deposited ZnO: W(
h: Na, 0=69.5: 29.8: 0.5
5:0.15 (weight ratio)) composite metal oxide was obtained. The obtained catalyst precursor is designated as A.

(2)触媒耐久性評価 上記触媒前駆体A7.5gとラウリン酸メチル150g
を0.5!回転撹拌式オートクレーブ中、水素圧100
kg/co+2、温度200°Cで5時間還元した。こ
の際30分間隔で水素をブローすることにより触媒の還
元により生成する水を系外に除去した。還元終了後、得
られたスラリーから遠心分離によって還元触媒を得た。
(2) Catalyst durability evaluation 7.5 g of the above catalyst precursor A and 150 g of methyl laurate
0.5! In a rotating stirring autoclave, hydrogen pressure 100
kg/co+2 and a temperature of 200°C for 5 hours. At this time, water produced by reduction of the catalyst was removed from the system by blowing hydrogen at 30 minute intervals. After completion of the reduction, a reduced catalyst was obtained from the resulting slurry by centrifugation.

ヤシ脂肪酸メチルエステル(鹸化価(SV)=253.
9) 150gと還元触媒の全量を0.51回転撹拌式
オートクレーブに仕込み、水素圧lo。
Coconut fatty acid methyl ester (saponification value (SV) = 253.
9) Charge 150 g and the entire amount of the reduction catalyst into a 0.51 rotation stirring autoclave, and set the hydrogen pressure to lo.

kg/cm”、温度240°C1撹拌速度800rpm
で1時間反応した。反応終了混合物を遠心分離すること
により往成物アルコールと触媒とを分離した。生成物ア
ルコールの鹸化価を測定したところ107.5であった
。回収された触媒の全量を用い、上記と同じ反応方法に
従ってヤシ脂肪酸メチルエステルの還元反応を9回繰り
返し行い生成物アルコールの鹸化価を測定した。得られ
た結果を表1に示す。
kg/cm”, temperature 240°C, stirring speed 800 rpm
It reacted for 1 hour. The resultant alcohol and catalyst were separated by centrifuging the reaction mixture. The saponification value of the product alcohol was measured and found to be 107.5. Using the entire amount of the recovered catalyst, the reduction reaction of coconut fatty acid methyl ester was repeated nine times according to the same reaction method as above, and the saponification value of the product alcohol was measured. The results obtained are shown in Table 1.

表         1 本実施例における反応では反応時間1分間当たりの鹸化
価減少速度をもって触媒活性の尺度とする。即ち、 =2.44/min  と表す。
Table 1 In the reaction in this example, the rate of decrease in saponification value per minute of reaction time is used as a measure of catalyst activity. That is, it is expressed as =2.44/min.

また1、縦軸に上記鹸化価減少速度、横軸に回収回数を
とったグラフ上に表1の結果をプロントして得られる直
線の傾きをもって触媒耐久性の尺度とし、直線の傾きが
小さい程、触媒耐久性が良いことを示す。上記表1の結
果をプロットして得られた直線のグラフを第1図に示す
In addition, 1. The slope of the straight line obtained by displaying the results in Table 1 on a graph with the saponification value decreasing rate on the vertical axis and the number of collections on the horizontal axis is used as a measure of catalyst durability, and the smaller the slope of the straight line, the more , indicating good catalyst durability. A straight line graph obtained by plotting the results in Table 1 above is shown in FIG.

実施例2(タングステン酸銅、混練法)別途に調製した
タングステン酸銅100mgに実施例1の酸化銅と酸化
亜鉛の重量比が7対3である沈殿ケークの焼成後重量で
10gに相当する量を加えて十分に混練した後110°
Cで乾燥、4.50°Cで2時間焼成した。得られた触
媒前駆体をBとする。Bを実施例1の方法に従って還元
し、活性、耐久性を評価した。
Example 2 (Copper tungstate, kneading method) An amount equivalent to 10 g after firing of the precipitation cake in which the weight ratio of copper oxide and zinc oxide of Example 1 was 7:3 to 100 mg of copper tungstate prepared separately. After adding and kneading thoroughly, 110°
It was dried at 4.50°C and fired at 4.50°C for 2 hours. The obtained catalyst precursor is designated as B. B was reduced according to the method of Example 1, and its activity and durability were evaluated.

結果を表2に示す。The results are shown in Table 2.

実施例3(モリブデン酸す1−リウム、含浸法)タング
ステン酸ナトリウム・2水和物の代わりにモリブデン酸
ナトリウム・2水和物168.1a+gを用いて実施例
1の要領で含浸法により触媒前駆体Cを得た。Cを実施
例1の方法に従って還元し、活性、耐久性を評価した。
Example 3 (1-lium molybdate, impregnation method) A catalyst precursor was prepared by the impregnation method in the same manner as in Example 1, using sodium molybdate dihydrate 168.1a+g instead of sodium tungstate dihydrate. Body C was obtained. C was reduced according to the method of Example 1, and the activity and durability were evaluated.

結果を表2に示す。The results are shown in Table 2.

実施例4(モリブデン酸銅、混練法) タングステン酸銅の代わりに別途に調製したモリブデン
酸銅100mgを用いて実施例2の要領で混練法により
触媒前駆体りを得た。Dを実施例1の方法に従って還元
し、活性、耐久性を評価した。
Example 4 (Copper molybdate, kneading method) A catalyst precursor was obtained by the kneading method in the same manner as in Example 2, using 100 mg of copper molybdate prepared separately instead of copper tungstate. D was reduced according to the method of Example 1, and its activity and durability were evaluated.

結果を表2に示す。The results are shown in Table 2.

実施例5(タングステン酸カルシウム、混練法)タング
ステン酸銅の代わりに別途に調製したタングステン酸カ
ルシウム100 mgを用いて実施例2の要領で混線法
により触媒前駆体Eを得た。
Example 5 (Calcium tungstate, kneading method) Catalyst precursor E was obtained by the cross-wire method in the same manner as in Example 2, using 100 mg of separately prepared calcium tungstate instead of copper tungstate.

Eを実施例1の方法に従って還元し、活性、耐久性を評
価した。
E was reduced according to the method of Example 1, and its activity and durability were evaluated.

結果を表2に示す。The results are shown in Table 2.

実施例6(モリブデン酸コバルト、混練法)タングステ
ン酸銅の代わりに別途に調製したモリブデン酸コバルト
100mgを用いて実施例2の要領で混練法により触媒
前駆体Fを得た。Fを実施例1の方法に従って還元し、
活性、耐久性を評価した。
Example 6 (Cobalt molybdate, kneading method) Catalyst precursor F was obtained by the kneading method in the same manner as in Example 2, using 100 mg of separately prepared cobalt molybdate instead of copper tungstate. F was reduced according to the method of Example 1,
Activity and durability were evaluated.

結果を表2に示す。The results are shown in Table 2.

比較例1(無添加) 実施例1の酸化銅と酸化亜鉛の重量比が7対3である沈
殿ケークを110°Cで乾燥し、更に450“Cで2時
間焼成することにより触媒前駆体Gを得た。Gを実施例
1の方法に従って還元し、活性、耐久性を評価した。
Comparative Example 1 (No Additives) The precipitation cake of Example 1 in which the weight ratio of copper oxide and zinc oxide was 7:3 was dried at 110°C and further calcined at 450"C for 2 hours to prepare catalyst precursor G. G was reduced according to the method of Example 1, and the activity and durability were evaluated.

結果を表2に示す。The results are shown in Table 2.

比較例2 酸化銅と酸化亜鉛と酸化コバルトとしての重量比が66
.5 : 28.5 : 5であるような硝酸銅、硝酸
亜鉛、硝酸コバルトの混合水溶液を90〜100゛Cに
昇温した後、沈殿剤として10重量%の炭酸す]−リウ
ム水溶液を漸次添加することによりpH−9程度のスラ
リーを得た。このスラリーより沈殿物を濾別し十分水洗
することにより酸化銅、酸化亜鉛、酸化コバルトの重量
比が66.5 : 28.5 :5であるような沈殿ケ
ークを得た。このケークを110℃で乾燥し更に450
″Cで2時間焼成した。
Comparative Example 2 Weight ratio of copper oxide, zinc oxide and cobalt oxide is 66
.. After heating a mixed aqueous solution of copper nitrate, zinc nitrate, and cobalt nitrate with a ratio of 5:28.5:5 to 90 to 100°C, a 10% by weight aqueous solution of lium carbonate as a precipitant was gradually added. By doing so, a slurry having a pH of about -9 was obtained. The precipitate was filtered from this slurry and thoroughly washed with water to obtain a precipitate cake in which the weight ratio of copper oxide, zinc oxide, and cobalt oxide was 66.5:28.5:5. This cake was dried at 110℃ and further dried at 450℃.
It was fired for 2 hours at ``C''.

得られた触媒前駆体をHとする。Hを実施例1の方法に
従って還元し活性、耐久性を評価した。
The obtained catalyst precursor is designated as H. H was reduced according to the method of Example 1, and activity and durability were evaluated.

結果を表2に示す。The results are shown in Table 2.

表2に示す結果の比較から、M0.−添加触媒の優れた
触媒耐久性は明らかである。
From the comparison of the results shown in Table 2, M0. - The excellent catalyst durability of the added catalyst is evident.

また実施例1.4及び比較例1の回収触媒についてCu
のX線平均粒径、BET表面積を測定した結果を表3に
示す。
Furthermore, regarding the recovered catalysts of Example 1.4 and Comparative Example 1, Cu
Table 3 shows the results of measuring the X-ray average particle diameter and BET surface area.

表      3 て204mg)の300 mlの水溶液中に加えて十分
撹拌した後、水を蒸発乾固して110°Cで乾燥し更に
450 ’Cで焼成した。得られた触媒前駆体をIとす
る。■を実施例1の方法に従って還元して還元触媒を得
た後、実施例1と同様にしてヤシ脂肪酸メチルエステル
の還元反応を8回繰り返して行い生成物アルコールの鹸
化価を測定した。
The mixture was added to a 300 ml aqueous solution of 204 mg (Table 3) and thoroughly stirred, and the water was evaporated to dryness, dried at 110°C, and further calcined at 450°C. The obtained catalyst precursor is designated as I. After reducing (2) according to the method of Example 1 to obtain a reduction catalyst, the reduction reaction of coconut fatty acid methyl ester was repeated 8 times in the same manner as in Example 1, and the saponification value of the product alcohol was measured.

測定結果を表4に示す。The measurement results are shown in Table 4.

また触媒前駆体Iの組成及び触媒耐久性の評価結果を表
5に示す。
Further, Table 5 shows the composition of catalyst precursor I and the evaluation results of catalyst durability.

表        4 表3から明らかなようにM0. W添加触媒は反応に伴
うCu粒径の増大及び表面積の減少度合が小さく、熱的
に安定化されている。
Table 4 As is clear from Table 3, M0. The W-added catalyst has a small increase in Cu particle size and a small decrease in surface area due to the reaction, and is thermally stabilized.

実施例7 アジピン酸銅18.28g (焼成後重遣で酸化銅とし
て7g)とアジピン酸亜鉛7.72g  (焼成後重量
で酸化亜鉛として3g)を新しく調製したパラタングス
テン酸アンモン(酸化タングステンとし比較例3 実施例7のアジピン酸銅及びアジピン酸亜鉛を十分に混
練した後450 ’Cで焼成した。得られる触媒前駆体
をJとする。Jを実施例1の方法に従って還元し、活性
、耐久性を評価した。結果を表5に示す。
Example 7 18.28 g of copper adipate (7 g as copper oxide weighed after firing) and 7.72 g of zinc adipate (3 g as zinc oxide weighed after firing) were compared with newly prepared ammonium paratungstate (as tungsten oxide). Example 3 Copper adipate and zinc adipate of Example 7 were thoroughly kneaded and then calcined at 450'C. The resulting catalyst precursor was designated as J. J was reduced according to the method of Example 1 to improve activity and durability. The results are shown in Table 5.

表   5 また触媒前駆体により得られる触媒の活性及び触媒耐久
性を実施例1と比較した評価結果を表7に示す。
Table 5 Table 7 also shows the evaluation results of comparing the activity and durability of the catalyst obtained with the catalyst precursor with Example 1.

表        6 比較例4 市販の銅−クロム触媒を触媒前駆体にとする。Table 6 Comparative example 4 A commercially available copper-chromium catalyst is used as a catalyst precursor.

Kを実施例1の方法に従って還元して還元触媒を得た後
、反応温度240 ’Cを275°Cに変える以外は実
施例1と同様にしてヤシ脂肪酸メチルエステルの還元反
応を9回繰り返して行い生成物アルコールの鹸化価を測
定した。測定結果を表6に示す。
After obtaining a reduction catalyst by reducing K according to the method of Example 1, the reduction reaction of coconut fatty acid methyl ester was repeated 9 times in the same manner as in Example 1 except that the reaction temperature was changed from 240'C to 275°C. The saponification value of the product alcohol was measured. The measurement results are shown in Table 6.

表 表7より明らかなように、触媒前駆体Aより得られる触
媒は35゛C低い反応温度条件下、銅クロム触媒と同等
の活性、耐久性を有している。
As is clear from Table 7, the catalyst obtained from catalyst precursor A has the same activity and durability as the copper chromium catalyst under reaction temperature conditions lower by 35°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の触媒の回収回数と鹸化価減少速度と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the number of times the catalyst was recovered and the saponification value decreasing rate of Example 1.

Claims (1)

【特許請求の範囲】 次式( I )もしくは(II) ( I )〔CuO)_a〔ZnO〕_b〔AO〕_cA
O:MoO_3及び/又はWO_3 a:55〜75重量% b:25〜45重量% c:0.1〜10重量% (II)〔CuO〕_a_′〔ZnO〕_b_′〔AO〕
_c_′〔BO〕_d_′AO:MoO_3及び/又は
WO_3 BO:アルカリ金属、アルカリ土類金属、鉄族金属から
選ばれる1種以上の金属の 酸化物 a′:55〜75重量% b′:25〜45重量% c′:0.1〜10重量% d′:0.1〜8重量% で示される複合金属酸化物の還元により得られる触媒の
存在下、カルボン酸エステルを水素と接触せしめること
を特徴とするアルコールの製造法。
[Claims] The following formula (I) or (II) (I) [CuO)_a [ZnO]_b [AO]_cA
O: MoO_3 and/or WO_3 a: 55-75% by weight b: 25-45% by weight c: 0.1-10% by weight (II) [CuO]_a_'[ZnO]_b_' [AO]
___c_′ [BO]_d_′AO: MoO_3 and/or WO_3 BO: Oxide of one or more metals selected from alkali metals, alkaline earth metals, and iron group metals a': 55 to 75% by weight b': 25 -45% by weight c': 0.1-10% by weight d': 0.1-8% by weight Contacting the carboxylic acid ester with hydrogen in the presence of a catalyst obtained by reduction of a composite metal oxide. A method for producing alcohol characterized by:
JP63184878A 1988-07-25 1988-07-25 Alcohol production Expired - Lifetime JP2716737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184878A JP2716737B2 (en) 1988-07-25 1988-07-25 Alcohol production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184878A JP2716737B2 (en) 1988-07-25 1988-07-25 Alcohol production

Publications (2)

Publication Number Publication Date
JPH0236135A true JPH0236135A (en) 1990-02-06
JP2716737B2 JP2716737B2 (en) 1998-02-18

Family

ID=16160895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184878A Expired - Lifetime JP2716737B2 (en) 1988-07-25 1988-07-25 Alcohol production

Country Status (1)

Country Link
JP (1) JP2716737B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576467A (en) * 1992-08-21 1996-11-19 Japan Tobacco Inc. Method of preparing an alcohol
JP2007258594A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Method for reducing metal, multilayer interconnection and its manufacturing method, and semiconductor device and its manufacturing method
WO2022220138A1 (en) * 2021-04-12 2022-10-20 三菱瓦斯化学株式会社 Method for producing dimethanol compound having norbornane skeleton

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432191A (en) * 1977-08-15 1979-03-09 Nikki Chem Co Ltd Copperrmolybdenum hydrogenation catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432191A (en) * 1977-08-15 1979-03-09 Nikki Chem Co Ltd Copperrmolybdenum hydrogenation catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576467A (en) * 1992-08-21 1996-11-19 Japan Tobacco Inc. Method of preparing an alcohol
JP2007258594A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Method for reducing metal, multilayer interconnection and its manufacturing method, and semiconductor device and its manufacturing method
DE102006039001B4 (en) * 2006-03-24 2009-05-20 Fujitsu Microelectronics Ltd. Method for producing a multilayer connection structure
US8440577B2 (en) 2006-03-24 2013-05-14 Fujitsu Semiconductor Limited Method for reducing metal, multilayer interconnection structure and manufacturing method for the same, and semiconductor device and manufacturing method for the same
WO2022220138A1 (en) * 2021-04-12 2022-10-20 三菱瓦斯化学株式会社 Method for producing dimethanol compound having norbornane skeleton

Also Published As

Publication number Publication date
JP2716737B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
EP0523818B2 (en) Hydrogenation process
US5134108A (en) Process for preparing catalyst with copper or zinc and with chromium, molybdenum, tungsten, or vanadium, and product thereof
US7335800B2 (en) Hydrogenation catalyst and hydrogenation method
US10226760B2 (en) Hydrogenation catalyst and method for producing same
US20100087312A1 (en) Chromium-free catalysts of metallic cu and at least one second metal
US9132418B2 (en) Manganese oxide-stabilized zirconia catalyst support materials
US4280928A (en) Catalyst compositions and their use for the preparation of methacrolein
US20080097112A1 (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride
US4306090A (en) Catalyst compositions and their use for the preparation of methacrolein
AU3783185A (en) Catalytic process for the production of alcohols from carbon monoxide, hydrogen and olefins
KR100809133B1 (en) Porous catalyst for the hydrogenation of maleic anhydride to tetrahydrofuran
JPH0236135A (en) Production of alcohol
JP2851667B2 (en) Alcohol production
JP3238456B2 (en) Method for producing catalyst precursor for hydrogenation reaction, and method for producing alcohol using said catalyst precursor
JPH0436140B2 (en)
US6350923B1 (en) Hydrogenation of aldehydes
JPH09221437A (en) Production of ethanol
WO2015072871A1 (en) Hydrotalcite-based catalyst for the hydrogenation of fatty acid esters
JPS61109785A (en) Production of lactone
JPS63141937A (en) Production of higher alcohol