JPS6148735A - Measuring device for concentration and partial pressure of gas - Google Patents

Measuring device for concentration and partial pressure of gas

Info

Publication number
JPS6148735A
JPS6148735A JP59169995A JP16999584A JPS6148735A JP S6148735 A JPS6148735 A JP S6148735A JP 59169995 A JP59169995 A JP 59169995A JP 16999584 A JP16999584 A JP 16999584A JP S6148735 A JPS6148735 A JP S6148735A
Authority
JP
Japan
Prior art keywords
light
gas
measured
mirror
sector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59169995A
Other languages
Japanese (ja)
Inventor
Toru Inouchi
徹 井内
Taizo Hoshino
泰三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59169995A priority Critical patent/JPS6148735A/en
Publication of JPS6148735A publication Critical patent/JPS6148735A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To remove a back light noise and to take accurate measurement by providing rotary sectors which rotate synchronously with each other on the optical axis of laser light emitted toward gas to be measured and a reflecting mirror between both sectors, and further providing a parabolic mirror for convergence and a spectroscope on the optical axis of reflected light. CONSTITUTION:The rotary sectors 4A and 4B which rotate in synchronization with each other are provided on the optical axis of light emitted by a light source 1 through an elliptic mirror 2 and a parabolic mirror 3; a transmission hole 14 and a total absorbing surface 15 are arranged on the sector 4A at the light source side and a total reflecting surface 16, a total absorbing surface 16, and a transmission hole 4 are arranged on the sector 4B at the side of the gas to be measured. A half-mirror 6 is arranged between the sectors 4A and 4B and a reflecting surface 7 is provided behind the gas 9 to be measured. Reflected light from the mirror 6 is incident on a spectroscope 10 through an off-axis parabolic mirror 8 and a photodetector 11 detects light emitted by the spectroscope 10. Measurement light and reference light pass through a window 13 provided to a main body 12. Thus, the concn. and partial pressure of many kinds of gas are measured simultaneously and accurately while a back light noise is removed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば鉄鋼業において使用される各種熱処理
炉その他、各業種において使用されている各行プロセス
において雰囲気気体の濃度および分圧を?i今理するた
めの測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is applicable to various heat treatment furnaces used in the steel industry, and other processes that are used in various industries to determine the concentration and partial pressure of atmospheric gases. The present invention relates to a measuring device for measuring i.

(従来の技術) 鉄鋼業において使用される加熱炉、焼鈍炉を始め、気体
の成分濃度および分圧が!i↑理された雰囲気中で行わ
れるプロセスは数多く存在し、そこでは気体の濃度およ
び分圧を測定することか不Or欠である。そのため現在
は、測定用プローブを被測定雰囲気中に直接挿入し測定
を行う方法や、被測定カスを適当な装置を用いて吸引し
プロセスの外1・″ス1(で4111定する方法なとか
行われている。
(Conventional technology) Gas component concentrations and partial pressures, including heating furnaces and annealing furnaces used in the steel industry! There are many processes that take place in controlled atmospheres, in which it is essential to measure the concentration and partial pressure of gases. Therefore, currently there are two methods: one is to directly insert a measurement probe into the atmosphere to be measured, and the other is to aspirate the scum to be measured using an appropriate device and determine it outside the process. It is being done.

(発明か解決しようとする問題点) しかしながらこれらの方法は、例えばプロセスの雰囲気
か高温、高圧状態にある114合や腐食性の強い気体成
分から構成されている場合等々苛酷な条件下では、I!
111 足用プローブの1耐熱、耐圧、 1lliJ腐
食性能に限界かあることや、ガスを外Bl!に取出すこ
とに起因して、カス成分が失われてしまうことがある等
々挿々の問題があり、正確なfllll定を行うことが
できない場合かあった。
(Problem to be solved by the invention) However, these methods cannot be used under harsh conditions, such as when the process atmosphere is at high temperature and pressure, or when the atmosphere is composed of highly corrosive gaseous components. !
111 There is a limit to the heat resistance, pressure resistance, and 1lliJ corrosion performance of the foot probe, and there is a limit to the gas resistance! There have been occasional problems such as the loss of waste components due to the removal of the waste, and there have been cases in which accurate full determination has not been possible.

未発り11は、1;記のような間STj点を解決し、光
の吸収強度を利用し、1111I定川の光をプロセス中
の管理雰四2中を直接通過させることにより、背景雑音
の影響を常時除去しつつ、そのカス成分の濃度および分
圧を正確に3111定するだめの装置を提供せんとする
ものである6 (問題点を解決するだめの手段7作用)本発明は、前記
のように光の吸収強度を利用して気体の濃度およ0分圧
を測定するもので、光源から被測定気体に向けて放射さ
れる光の光軸上に、互に同期して回転する2枚の回転セ
クタを設け、かつ該回転セクタの中間に、被4111定
気体の後方に設けた反射面により反射した光を反身4さ
せるハーフミラ−を設け、さらに6核反射光の光)11
1+ J二に集光用放物面競と分光器および光検出2:
(を6没けるとともに、+iii記回転上回転セクタ光
源側の回Φムセクタには全吸収面と透過孔とを設け、他
方の回転セクタには全反射mj、全吸収1のおよび透過
孔とを11ジ(すたことを牛ν徴とする。
The unreleased 11 solves the STj point as shown in 1; and uses the absorption intensity of the light to directly pass the light of 1111I Sadakawa through the control atmosphere during the process, thereby eliminating the background noise. It is an object of the present invention to provide an apparatus that accurately determines the concentration and partial pressure of the waste components while constantly removing the influence of As mentioned above, the concentration and zero partial pressure of a gas are measured using the absorption intensity of light. Two rotating sectors are provided, and a half mirror is provided between the rotating sectors to reflect the light reflected by the reflecting surface provided at the rear of the constant gas to be 4111, and further 6 nuclear reflected light) 11
1 + J2 condensing paraboloid, spectrometer and light detection 2:
(6) and a total absorption surface and a transmission hole are provided in the rotation sector on the light source side of the rotation upper rotation sector described in +iii, and a total absorption surface and a transmission hole are provided in the other rotation sector. 11.

先ず本発明装置の測定原理について説明する。First, the measurement principle of the device of the present invention will be explained.

第1表に示すように気体分子は分子振動に対応して41
定の波長の光を強く吸収する。そこで、この特定の吸収
波長をもつ光を用いて、気体の吸収強度を7111I定
し、これから測定対象カスの濃度を測定する方法は1例
えば時分01351−20904号公報に開示されてい
るようにすでに行われている。
As shown in Table 1, gas molecules correspond to 41
It strongly absorbs light of a certain wavelength. Therefore, the method of determining the absorption intensity of the gas using light with this specific absorption wavelength and measuring the concentration of the target scum from this is 1, for example, as disclosed in Publication No. 01351-20904. It's already been done.

第    1    表 本発明装置は上記の特Wの吸収波長をもつ光(以下測定
光という。)の他に、吸収波長に近いか、光吸収を受け
ない波長の光(以下参照光という9)を用い、しかも岬
工光が同一光路を通過するようにし、かつ測定光および
参照光について光源の光強度(以下始強度という。)お
よび被ll1l+定気体中を通過し、該気体による光吸
収を受けた後の光強度(以上−終強度という。)を4(
11定し、これらの値からカス濃度の平均値を測定しよ
うとするものである。
Table 1 In addition to the light having the absorption wavelength of the above-mentioned special W (hereinafter referred to as measurement light), the device of the present invention also uses light with a wavelength close to the absorption wavelength or not subject to optical absorption (hereinafter referred to as reference light 9). In addition, the measurement light and the reference light are made to pass through the same optical path, and the measurement light and the reference light are set to the light intensity of the light source (hereinafter referred to as initial intensity) and to pass through a constant gas and undergo light absorption by the gas. The light intensity (hereinafter referred to as the final intensity) is 4 (
11, and the average value of the scum concentration is measured from these values.

一般に、光吸収はLambert−Beerの法則に従
いI(L)   =IOexp(−ct*   n  
争 L)と表わされる。但しI(0)は始強度、nは被
j[]1定気体の体積モル0度、Lは光路長、αは吸収
係数、I (L)は終強度である。なお、吸収係数αは
被4111定気体、使用波長により−4(的に決まる物
理定数である。
In general, light absorption follows the Lambert-Beer law: I(L) =IOexp(-ct*n
It is expressed as L). Here, I(0) is the initial intensity, n is the volume molar 0 degrees of the target j[]1 constant gas, L is the optical path length, α is the absorption coefficient, and I (L) is the final intensity. The absorption coefficient α is a physical constant determined by −4 (−4) depending on the wavelength used in a constant gas.

そこで本発明においては測定光、参照光および背光外g
を4111定するため、光源側の回転セクタ(以下No
、lセクタという。)には透過孔と全吸収面を設け、他
方の(被測定ガス側の)回転セクタ(以下N002セク
タという。)には全反射面、全吸収面および透過孔を設
け、第2表に示す組合せを4+11成させ、組合せ■で
は始強度を、・匂では検出Z:;の暗雑音を、(う)で
は終強度を、■では青光雑音としての放出光を測定する
Therefore, in the present invention, the measurement light, the reference light, and the backlight g
4111, the rotating sector on the light source side (hereinafter No.
, is called l sector. ) is provided with a transmission hole and a total absorption surface, and the other (measured gas side) rotating sector (hereinafter referred to as N002 sector) is provided with a total reflection surface, a total absorption surface, and a transmission hole, as shown in Table 2. 4+11 combinations are formed, and for combination (2), the initial intensity is measured; for odor, the dark noise of detection Z: ; is measured; for (c), the final intensity is measured; and for (2), the emitted light as blue light noise is measured.

第2表 すなわち回転セクタの組合せによりイ8)られる光弓ら
1度11〜I4はl欠のよう(こなる。
In Table 2, the light arches 11 to 14 formed by A8) are like L-missing by the combination of rotating sectors.

1組合せ■の場合 I 1= IAI (o) + I
I r  = IA2(0) + I //  I唆 //    I2=工z//     
・3ノ    tt        I  3   =
  K  IU  (o)exp(−cc A1   
@   n・L)+I8+IZ I  3  =  K  IA2  (o)exp(−
αA2 ψ  n・L)+I≦ +11 //  (a3  //    I4  =IB  +
IzIa=To+T− イ4..j L、入、は祭!に+、光の波長、入2はa
ll+定光)UD長 αA1は1.会長入1 に対する
吸収係数、αA2は岐長入2に対する吸収係数、工λ1
(0)は参照光の始強度、Iλ2(0)はA111に尤
の妬強度、nは被41す電気体の体積モル濃度、Lは光
路長、Iz  は検出器の暗雑音、  1B  は背光
雑音としての放出光のうらiJU長入1 の成分の強度
、九 は前記放出光のうちj皮長入2の成分の強度、K
は被測定気体による光吸収以外の光損失を表わす係数で
ある。(なおこの係数は、光路に存在する窓カラスのl
F′Jれによる損失、光路において測定光の一部か欠け
ることによる損失りやを表わす。)。上記式のうち、グ
ンシュのないものは参照光に関する光強度、タンンユの
あるものは測定光に関する光強度を表わす。
In the case of one combination ■ I 1= IAI (o) + I
I r = IA2 (0) + I // I suggest // I2 = engineering z //
・3 no tt I 3 =
K IU (o)exp(-cc A1
@ n L) + I8 + IZ I 3 = K I A2 (o) exp (-
αA2 ψ n・L)+I≦+11 // (a3 // I4 =IB +
IzIa=To+T- A4. .. j L, entering, is a festival! +, wavelength of light, input 2 is a
ll+constant light) UD length αA1 is 1. The absorption coefficient for Chairman's entry 1, αA2 is the absorption coefficient for Kichoiri 2, engineering λ1
(0) is the initial intensity of the reference light, Iλ2(0) is the expected intensity of A111, n is the volume molar concentration of the electric substance to be covered, L is the optical path length, Iz is the background noise of the detector, and 1B is the backlight. The intensity of the component of iJU Nagairi 1 behind the emitted light as noise, 9 is the intensity of the component of j Skin Nagairi 2 of the emitted light, K
is a coefficient representing optical loss other than optical absorption by the gas to be measured. (Note that this coefficient is calculated by the l of the window crow existing in the optical path
It represents the loss due to F'J deviation and the loss due to part of the measurement light missing in the optical path. ). In the above equations, those without Gunshu represent the light intensity with respect to the reference light, and those with Tanyu represent the light intensity with respect to the measurement light.

これらにより、参照光およびJl’l定尤の透過;tり
R,、R2は さらに透過率比Rは となり、経時変化する未知の係数Kを消去することかで
きる。また参照先は被測定気体により吸収されないので
 αA2〉〉αA1とすることができ、従って透過率比
Rは R−exp(αg I n SL )        
−・−(2)どなる。さらにこの (2)式の両辺の対
数をとり、被測定気体の体積モル濃度nについて整理す
るととなる。そこでこの体積モル濃度nと気体の状態方
程式 %式%(4) (但しPは被測定気体の分圧、Tは被測定気体の温度、
Rは気体常8りを組合せることにより被4111定気体
の分圧を1lll+定することかできる。
As a result, the transmission of the reference light and Jl'l constant likelihood; t R, , R2 further becomes the transmittance ratio R, and it is possible to eliminate the unknown coefficient K that changes over time. Also, since the reference target is not absorbed by the gas to be measured, αA2〉〉αA1 can be set, and therefore the transmittance ratio R is R-exp(αg I n SL )
−・−(2) Yell. Furthermore, by taking the logarithm of both sides of this equation (2), we can organize the volume molar concentration n of the gas to be measured. Therefore, this volume molar concentration n and the gas state equation % formula % (4) (where P is the partial pressure of the gas to be measured, T is the temperature of the gas to be measured,
By combining R with gas constant 8, the partial pressure of the target 4111 constant gas can be determined as 1llll+.

本発明装置はこのような理論に基いて被Al11定気体
の濃度および分圧を測定する装(乙に関するもので、以
下図面により本発明について説明する。第1図は本発明
の構成を示す説明図で、1は光17シ2は光源1からの
放射光を集光させるだめの楕円面鏡、3は平行光束を作
るための輔はオし放物1=鏡である。4Aおよび4Bは
モーター5により回中入する回転セクタで、光源側のN
011回転セクタ4Aには第3図に示すように、透過孔
14と全吸収面15をと?交互に1没けてあり、また被
測定気体側のNo、2回転セクタ4Bには全反射1m1
6.全吸収面15および2個の透過孔14を、両回転セ
クタによる組合せか+ii+記第2表に示すとおりにな
るように、没けである。
The device of the present invention is a device for measuring the concentration and partial pressure of a constant Al11 gas based on such a theory.The present invention will be explained below with reference to the drawings. In the figure, 1 is a light 17, 2 is an ellipsoidal mirror for condensing the emitted light from light source 1, 3 is a parabolic mirror for creating a parallel beam, and 4A and 4B are mirrors. In the rotation sector that is rotated by the motor 5, N on the light source side
As shown in FIG. 3, the 011 rotation sector 4A has a transmission hole 14 and a full absorption surface 15. 1 m1 is placed alternately, and 1 m1 of total reflection is placed on No. 2 rotation sector 4B on the gas side to be measured.
6. The entire absorption surface 15 and the two transmission holes 14 are sunk so that the combination of both rotational sectors is as shown in Table 2.

6は両回転セクタ4A、4Bの中間に配置した/\−フ
ミラー、7は被、1111定気体9の後方(こ設けた反
用面、8はハーフミラ−6による反射光を分光器10に
集光して導入するための輔はずし放物面鏡、11は該分
光器lOから放出された光を検出するで91えば一次元
アレイ検出器のような光検出÷(g、12は本体、13
は本体12に設けた窓で、この窓は各波長に対する透過
率が既知であり、かつ各波長に対する透過1%か等しい
ものを使用することか望ましい。
Reference numeral 6 indicates a /\-fumirror placed between both rotating sectors 4A and 4B; 11 is a parabolic mirror for detecting the light emitted from the spectrometer lO, 91 is a light detection unit such as a one-dimensional array detector ÷ (g, 12 is the main body, 13
is a window provided in the main body 12, and it is preferable that the window has a known transmittance for each wavelength, and that the transmittance for each wavelength is 1% or equal.

本発明装置により気体の濃度および分圧を測定するには
、光で;(1から白色光を楕円面鏡2に投射して集光さ
せ、さらに軸はずし放物面鏡3により平行光束を作り、
モーター5により回転している回転セクタ4Aに投射す
る。この回転セクタ4Aには前記のように透過孔14と
反射率かOzの全吸収面15とを交互に設けてあり、ま
た他方の回転セクタ4Bには透過孔14.全吸収面15
および光の反射率100zの全反射面16を前記第2表
に示す組合せになるように配置苫しであるので1回転セ
クタ4Aの透過孔14を到達した光のみが回転セクタ4
Bに到達する。
In order to measure the concentration and partial pressure of a gas using the device of the present invention, the white light (from 1) is projected onto an ellipsoidal mirror 2 to be focused, and then a parallel light beam is created by an off-axis parabolic mirror 3. ,
The image is projected onto a rotating sector 4A that is rotated by a motor 5. As described above, this rotation sector 4A is provided with transmission holes 14 and total absorption surfaces 15 with a reflectance of 0.5 oz alternately, and the other rotation sector 4B is provided with transmission holes 14. Total absorption surface 15
Since the total reflection surfaces 16 with a light reflectance of 100z are arranged in the combinations shown in Table 2 above, only the light that reaches the transmission hole 14 of the rotation sector 4A once reaches the rotation sector 4.
Reach B.

そこで先す始強度I (o)を求めるには回転セクタ4
Aの透過孔14と回転セクタ4Bの全反射面16の組合
せ(第2表■)を光軸上に位置させる。このときには光
源1からの光は楕円面鏡2.軸はずし放物面鏡3を経て
平行光束となり、回転セクタ4Aの透過孔15を透過し
、ハーフミラ−7を透過し、回転セクタ4Bの全反射面
16に至り反射し、さらにハーフミラ−7で反射し、軸
はずし放物面鏡8により集光されて分光器10に入射し
、分光されて光検出器11によりその光強度I、、I’
、が同時検出される。なおこの場合−回の分光で2波長
の光について光強度を同時に測定できるようにするため
、光検出器(−次元アレイ検出器)上に参照光および測
定光が位置するようにそれぞれの光の波長を選択するも
のとする0次に回転セクタ4A5よひ4Bがそれぞれ全
吸収面15となる組合せ(第2表・2))で光軸上に位
122するようにすると1分光器10に入射する光が遮
断されるので、検出器11には自身の暗雑音l2(=I
Z)のみが検出されることになる。次に回転セクタ4A
よび4Bがともに透過孔14の組合せ(第2表(旦))
で光軸上に位置すると。
Therefore, to find the initial strength I (o), rotate sector 4
The combination of the transmission hole 14 of A and the total reflection surface 16 of the rotating sector 4B (Table 2) is located on the optical axis. At this time, the light from the light source 1 is transmitted to the ellipsoidal mirror 2. It becomes a parallel beam of light through the off-axis parabolic mirror 3, passes through the transmission hole 15 of the rotating sector 4A, passes through the half mirror 7, reaches the total reflection surface 16 of the rotating sector 4B, is reflected, and is further reflected by the half mirror 7. The light is focused by the off-axis parabolic mirror 8, enters the spectroscope 10, is split into spectra, and is detected by the photodetector 11 as the light intensity I,,I'
, are detected simultaneously. In this case, in order to be able to measure the light intensity of two wavelengths of light simultaneously in - times of spectroscopy, the reference light and measurement light are positioned on the photodetector (-dimensional array detector). When the wavelength is selected, the zero-order rotational sectors 4A5 and 4B are positioned on the optical axis in a combination (Table 2, 2) that gives a total absorption surface of 15, respectively, and then the light enters the spectrometer 10. Detector 11 has its own dark noise l2 (=I
Z) will be detected. Next, rotating sector 4A
and 4B are both combinations of transmission holes 14 (Table 2 (Dan))
When positioned on the optical axis.

光源1からの光は回転セクタ4Aの透過孔14./\−
フミラー61回転セクタ4Bの透過孔14.窓13を透
過して被測定気体9に至り、該気体9を通過してその後
方に設けた反射面7で反射し、II)び被11111定
気体9を通過し、窓13から再び本体12内に入り回転
セクタ4Bの透過孔14を透過し、ハーフミラ−6で反
射し軸はずし放物面鏡8で反射し、さらに分光器10で
分光され光検出器11に至る。従って光検出器11では
参照光およびM1定光の終強度工3およびビ3か同時に
検出される。さらに回転セクタ4Aの全吸収面15およ
び回転セクタ4Bの透過孔14の組合せ(第2表171
))が光軸上に位置すると、光検出器+1には光源以外
の背光雑音の光強度I4.I4が同時に検出される。
The light from the light source 1 passes through the transmission hole 14 of the rotating sector 4A. /\-
Transmission hole 14 of humirar 61 rotation sector 4B. It passes through the window 13 and reaches the gas to be measured 9, passes through the gas 9, is reflected by the reflective surface 7 provided behind it, passes through the constant gas 9, and returns to the main body 12 from the window 13. The light enters the interior, passes through the transmission hole 14 of the rotating sector 4B, is reflected by the half mirror 6, is reflected by the off-axis parabolic mirror 8, is further separated into spectra by the spectroscope 10, and reaches the photodetector 11. Therefore, the photodetector 11 simultaneously detects the reference light and the final intensity of the M1 constant light 3 and 3. Further, the combination of all absorption surfaces 15 of rotation sector 4A and transmission holes 14 of rotation sector 4B (Table 2 171
)) is located on the optical axis, the photodetector +1 detects the light intensity I4 of backlight noise other than the light source. I4 is detected at the same time.

このようにして始強度、IJI5雑音、終強度、放出光
(背光雑音)の光強度I、  、I’、  、I2  
、I3、 I’3  、I4  、 I’4のA111
定値が得られるので、これらの値から1111記のよう
に参照光および測定光の透過率R,,R2を求めること
ができ、さらに(1)式、 (2)式および(3)式に
より体積モル濃度nを、また (4)式から被′All
+定気体の分圧を求めることかできる。
In this way, the initial intensity, IJI5 noise, final intensity, and light intensity of emitted light (backlight noise) I, , I', , I2
, I3, I'3, I4, I'4 A111
Since constant values can be obtained, the transmittances R,, R2 of the reference light and measurement light can be calculated from these values as shown in Section 1111, and the volume can be calculated using equations (1), (2), and (3). The molar concentration n is also calculated from equation (4) as
+ You can find the partial pressure of a constant gas.

第4図は検出器11により求められた前記の光強電工、
〜I′4から体積モル濃度nおよび分圧Pを求めるだめ
の演算回路の一例を示すもので、検出器11によって光
から変換された電流信号は、回転セクタ4Aおよび4B
の回転に伴って発生し、デコーダ−20を経て供給され
る同期回路18からの信号に従って、プリアンプ17あ
るいは該プリアンプ17およびAGCアンプ19を経て
サンプルホールド回路21〜27のいずれかに入力され
、光強度11〜工4として出力される。さらにこの光強
電工1および工2は演算回路31により(II  I2
)の演算が行われ、又光強度I′lおよび工2は演算回
路32にの結果はAGO制御回路30に入力され、その
出力はAGOアンプにフィードバックされる。−力先強
度I4は演算回路33により基a電圧発生器28からの
信号と比1咬され、さらに演算回路36により光強電工
3との間で(I3−I4)の演算が行われる。
FIG.
This shows an example of an arithmetic circuit for calculating the volume molar concentration n and the partial pressure P from ~I'4.
According to the signal generated from the synchronization circuit 18 which is generated with the rotation of the synchronous circuit 18 and supplied via the decoder 20, the signal is input to one of the sample and hold circuits 21 to 27 via the preamplifier 17 or the preamplifier 17 and the AGC amplifier 19, and the optical The strength is output as 11 to 4. Furthermore, the Kou-strong Electric Works 1 and Works 2 are operated by the arithmetic circuit 31 (II I2
) are performed, and the results of the light intensity I'l and 2 are input to the arithmetic circuit 32 to the AGO control circuit 30, and the output thereof is fed back to the AGO amplifier. - The force tip strength I4 is multiplied by the signal from the base a voltage generator 28 by the arithmetic circuit 33, and further, the arithmetic circuit 36 performs the calculation (I3-I4) with the optical power electrician 3.

また光強電工′4は演算回路34により基壁電圧発生器
28からの信号と比較され、さらに演算回路37によっ
て(I3   I4)の演算が行われる。さらに1.0
gアンプ39を経、演算回路40により透過率比R1体
積モル濃度nが演算出力される。また得られた体積モル
濃度nと別途求めた温度T (K)を乗算アンプ41に
より乗算し、演算回路42を経て分圧Pを演算出力する
Further, the signal from the optical power source '4 is compared with the signal from the base wall voltage generator 28 by the arithmetic circuit 34, and further, the arithmetic circuit 37 calculates (I3 I4). Another 1.0
The transmittance ratio R1 volume molar concentration n is calculated and outputted by the calculation circuit 40 through the g amplifier 39. Further, the obtained volumetric molar concentration n is multiplied by a separately determined temperature T (K) by a multiplier amplifier 41, and a partial pressure P is calculated and outputted via an arithmetic circuit 42.

また上記の演算、すなわち光強度11〜工4より体積モ
ル濃度nおよび分圧Pを求める演算を、マイクロコンピ
ュータを用い、ディジタル的に行わせることもできる。
Further, the above calculations, that is, calculations for determining the volume molar concentration n and the partial pressure P from the light intensities 11 to 4, can also be performed digitally using a microcomputer.

第5図は本発明を鋼板の焼鈍炉中の鋼板近傍の雰囲気ガ
スの濃度および分圧測定に適用した場合を示すもので、
43は焼鈍炉、44は本体12と焼鈍炉43に設けた窓
45とを接続するベローズ、46はレトロリフレクタ−
等の反射面7と焼鈍炉43の窓48との間に設はフラン
ジ継手、47は炉内に位差させた鋼板である。このよう
に構成すると、鋼板47の極く近傍の雰囲気ガスの濃度
および分圧を測定することかできる。
FIG. 5 shows a case where the present invention is applied to measuring the concentration and partial pressure of atmospheric gas near a steel plate in a steel plate annealing furnace.
43 is an annealing furnace, 44 is a bellows connecting the main body 12 and a window 45 provided in the annealing furnace 43, and 46 is a retroreflector.
A flange joint is provided between the reflective surface 7 and the window 48 of the annealing furnace 43, and 47 is a steel plate positioned within the furnace. With this configuration, the concentration and partial pressure of the atmospheric gas in the very vicinity of the steel plate 47 can be measured.

なお、上記の説明は測定対象として1種類のガスの場合
について行ったが、他1種ガスについて吸収される他の
波長入3 、入4・・・を加え、2種類以上のrlll
+定光を用いることにより上記の場合と同様にして、同
時に2種類以上のガスの濃度および分圧を測定すること
ができる。
Note that the above explanation was made for the case of one type of gas as the measurement target, but in addition to the other wavelengths absorbed by one other type of gas, including two or more types of rllll.
By using + constant light, the concentrations and partial pressures of two or more gases can be measured simultaneously in the same manner as in the above case.

(実施例) 次に本発明装置により、 co2カス濃度をJl11定
した場合の実施例を示す。光0:(とじて温度900°
Cの黒体炉を用い、参照光として入1=4.10gm 
、測定光として入2 =4.25gmの波長を使用した
。長さL = loamの測定セルを用い、これに気体
温度T=25°Cのco2カスを1.■し、Al11定
を行った。第61X!lは回転セクタが前記の組合せ■
の場合の一次元アレイ検出2:4の出力であり、始強度
のスペクトルである。この図中使用波長入、および入2
における光強度が、各々111」記の工、および1.で
ある。第7図は回転セクタが前記の組合せ(段の場合の
一次元アレイ検出器の出力であり、終強度のスペクトル
である0図中使用波長入1および入2における光強度が
、各々On記の工3およびISである。このように本発
明装置によれば使用波長入1わよひ八2の光強度を一度
の分光で得ることができる。
(Example) Next, an example will be shown in which the CO2 scum concentration was determined to be Jl11 using the apparatus of the present invention. Light 0: (closed temperature 900°
Using a C blackbody furnace, input as reference light 1 = 4.10gm
, a wavelength of 2 = 4.25 gm was used as the measurement light. A measuring cell with a length L = loam is used, and 1. (2) Then, Al11 was determined. 61st X! l is the rotation sector that is the combination of the above ■
This is the output of one-dimensional array detection 2:4 in the case of , and is the spectrum of the initial intensity. In this figure, the wavelength used is input, input 2
The light intensity at 1.1 and 1.1 respectively. It is. Figure 7 shows the output of the one-dimensional array detector when the rotating sectors are the above-mentioned combinations (stages), and is the spectrum of the final intensity. As described above, according to the apparatus of the present invention, a light intensity of 1, 8, or 2 wavelengths can be obtained in one spectral operation.

このようにして得た光強度11〜工′4 より前記(2
)式を用いて透過率比Rを求めると、H=3.73とな
った。また前記(3)式を用いて体積モル濃度を求める
と、n = 3.7mol/lとなった。さらに前記(
4)式を用いてC02ガスの分圧を求めると、P=70
mmHgとなった。
From the light intensity 11 to
) When the transmittance ratio R was determined using the formula, H=3.73. Further, when the volume molar concentration was determined using the above formula (3), it was found that n = 3.7 mol/l. Furthermore, the above (
4) When calculating the partial pressure of C02 gas using the formula, P=70
It became mmHg.

(発明の効果) 以上説明したように本発明装置によれば、被測定気体が
持つ温度、圧力などの条件によらず、測定光および参照
光を被測定気体中を通過させるのみで、常時背光雑音の
影響を除去しつつ多種類の気体濃度および分圧を同時に
正確にI!l11定することかでき、しかもJE、構的
にも簡易に構成し得、かつ多方面に必用し得る等その実
用上の効果は極めて大きい。
(Effects of the Invention) As explained above, according to the device of the present invention, the measurement light and the reference light are simply passed through the gas to be measured, regardless of the conditions such as the temperature and pressure of the gas to be measured, and the backlight is constantly illuminated. Accurately measure the concentrations and partial pressures of many different gases simultaneously while removing the effects of noise! Its practical effects are extremely large, as it can be easily constructed, and can be used in many fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の構成を示す説明図、第2図は本発
明における回転セクタの構成を示す説明図、第3図は回
転セクタに配設した全吸収面、全反射uj 、透過孔の
組合せを示す説明図、第4図は本発明装置に使用する演
算回路の一例を示す図、第5図は本発明を銅板の焼鈍炉
に適用した場合を示す説明図、第6図および第7図は本
発明装置による測定結果を示す図である。 1・・・光源、2・・・楕円面鏡、3・・・軸はずし放
物面鏡、4・・・回転セクタ、5・・・モーター、6・
・・ハーフミラ−17・・・反射面、8・・・軸はずし
放物面鏡、9・・・被測定気体、10・・・分光器、1
1・・・光検出器、12・・・本体、13・・・窓、1
4・・・透過孔、15・・・全吸収面、16・・・全反
射面、17・・・プリアンプ、18・・・同期回路、I
S・・・AGCアンプ、20・・・デコーダー、21〜
27・・・サンプルホールI・回路、28.28・・・
基僧電圧発生器、30・・・AGC制御回路、31〜3
8・・・演算回路、38・・・Logアンプ、40・・
・も;(初回路、41・・・乗p回路、42・・・江;
i算回路、43・・・焼鈍炉、44・・・ベローズ、4
5.48・・・窓、46・・・フランジ継手、47・・
・鋼板。 4、シ許出願人 代理人 Jf理士 矢 葺 知 之 (ほか1名)
Fig. 1 is an explanatory diagram showing the configuration of the device of the present invention, Fig. 2 is an explanatory diagram showing the configuration of the rotating sector in the present invention, and Fig. 3 is a diagram showing the total absorption surface, total reflection uj, and transmission hole arranged in the rotating sector. 4 is a diagram showing an example of the arithmetic circuit used in the apparatus of the present invention, FIG. 5 is an explanatory diagram showing the case where the present invention is applied to a copper plate annealing furnace, and FIGS. FIG. 7 is a diagram showing measurement results by the apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Light source, 2... Elliptical mirror, 3... Off-axis parabolic mirror, 4... Rotating sector, 5... Motor, 6...
... Half mirror 17 ... Reflection surface, 8 ... Off-axis parabolic mirror, 9 ... Gas to be measured, 10 ... Spectrometer, 1
1... Photodetector, 12... Main body, 13... Window, 1
4... Transmission hole, 15... Total absorption surface, 16... Total reflection surface, 17... Preamplifier, 18... Synchronous circuit, I
S...AGC amplifier, 20...decoder, 21~
27...Sample hole I/circuit, 28.28...
Basic voltage generator, 30...AGC control circuit, 31-3
8... Arithmetic circuit, 38... Log amplifier, 40...
・Mo; (first circuit, 41... power p circuit, 42... ji;
i-arithmetic circuit, 43... annealing furnace, 44... bellows, 4
5.48... window, 46... flange joint, 47...
・Steel plate. 4. Applicant for license, agent JF Physician Tomoyuki Yafuki (and one other person)

Claims (1)

【特許請求の範囲】[Claims] 光源から被測定気体に向けて放射される光の光軸上に、
互に同期して回転する2枚の回転セクタを設け、かつ該
回転セクタの中間に、被測定気体の後方に設けた反射面
により反射した光を反射させるハーフミラーを設け、さ
らに該反射光の光軸上に集光用放物面鏡と分光器および
光検出器を設けるとともに、前記回転セクタのうち光源
側の回転セクタには全吸収面と透過孔とを設け、他方の
回転セクタには全反射面、全吸収面および透過孔とを設
けたことを特徴とする気体の濃度および分圧測定装置。
On the optical axis of the light emitted from the light source toward the gas being measured,
Two rotating sectors that rotate in synchronization with each other are provided, and a half mirror is provided between the rotating sectors to reflect the light reflected by the reflective surface provided at the rear of the gas to be measured. A condensing parabolic mirror, a spectroscope, and a photodetector are provided on the optical axis, and the rotating sector on the light source side is provided with a total absorption surface and a transmission hole, and the other rotating sector is provided with a total absorption surface and a transmission hole. A gas concentration and partial pressure measuring device characterized by having a total reflection surface, a total absorption surface, and a transmission hole.
JP59169995A 1984-08-16 1984-08-16 Measuring device for concentration and partial pressure of gas Pending JPS6148735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169995A JPS6148735A (en) 1984-08-16 1984-08-16 Measuring device for concentration and partial pressure of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169995A JPS6148735A (en) 1984-08-16 1984-08-16 Measuring device for concentration and partial pressure of gas

Publications (1)

Publication Number Publication Date
JPS6148735A true JPS6148735A (en) 1986-03-10

Family

ID=15896639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169995A Pending JPS6148735A (en) 1984-08-16 1984-08-16 Measuring device for concentration and partial pressure of gas

Country Status (1)

Country Link
JP (1) JPS6148735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312938A (en) * 1986-04-19 1988-01-20 プロカル・アナリテツクス・リミテツド Gas analyzer and gas analyzing method
WO2018101690A1 (en) * 2016-11-30 2018-06-07 주식회사 템퍼스 Optical gas-sensor using multiple inner reflection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117177A (en) * 1976-03-27 1977-10-01 Anritsu Electric Co Ltd Spectrometer
JPS5314938A (en) * 1976-07-26 1978-02-10 Kuriyama Satsushi Kougiyou Kk Manufacturing method of window frames for square and round sliding doors
JPS5633516A (en) * 1979-08-25 1981-04-04 Suga Shikenki Kk Color measuring device with automatic compensation based on standard value
JPS56150305A (en) * 1980-03-07 1981-11-20 Perkin Elmer Ltd Method of and apparatus for generating electrical output signal indicating ratio between two quantities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117177A (en) * 1976-03-27 1977-10-01 Anritsu Electric Co Ltd Spectrometer
JPS5314938A (en) * 1976-07-26 1978-02-10 Kuriyama Satsushi Kougiyou Kk Manufacturing method of window frames for square and round sliding doors
JPS5633516A (en) * 1979-08-25 1981-04-04 Suga Shikenki Kk Color measuring device with automatic compensation based on standard value
JPS56150305A (en) * 1980-03-07 1981-11-20 Perkin Elmer Ltd Method of and apparatus for generating electrical output signal indicating ratio between two quantities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312938A (en) * 1986-04-19 1988-01-20 プロカル・アナリテツクス・リミテツド Gas analyzer and gas analyzing method
WO2018101690A1 (en) * 2016-11-30 2018-06-07 주식회사 템퍼스 Optical gas-sensor using multiple inner reflection

Similar Documents

Publication Publication Date Title
US5731581A (en) Apparatus for automatic identification of gas samples
JPH07280730A (en) Method and equipment to determine concentration of gas
US5559333A (en) Apparatus of non-dispersive infrared analyzer
JPH08304282A (en) Gas analyzer
JPH08327545A (en) Infrared gas analyzer
JPH05505027A (en) Inline spectral reference method for spectrometers
Gardella et al. Comparison of attenuated total reflectance and photoacoustic sampling for surface analysis of polymer mixtures by Fourier transform infrared spectroscopy
JPS6148736A (en) Measuring device for concentration and partial pressure of gas
JPH01132935A (en) Method and apparatus for analyzing film
JPS6148735A (en) Measuring device for concentration and partial pressure of gas
GB1513938A (en) Determination of the concentration ratio between two components of a mixture of substances
JPH07198600A (en) Fourier transform multi-component continuous absorption analyzer
US20220381681A1 (en) Miniature multispectral detection system having multiple spectrometers for enhanced photodetection spectroscopy for detection of pathogens, biomarkers, or any compound
JPH11295159A (en) Stress measuring device
JPH10267845A (en) At-site analyzer for sample surface and controller of form of oxide film on steel plate
WO1996031765A1 (en) Photoacoustic measuring apparatus
JPS6148734A (en) Measuring device for concentration and partial pressure of gas
Alobaidi et al. A helium-neon laser infrared analyser for alcohol vapour in the breath
JPH01197631A (en) Gas concentration measuring method
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPS62156543A (en) Method and device for measuring density and partial pressure of gas
JPH0112188Y2 (en)
JPH0565023B2 (en)
JPH0460442A (en) Method for multicomponent analysis in spectral analysis
JPH02268252A (en) Method for measuring reflectivity of material