JPS62156543A - Method and device for measuring density and partial pressure of gas - Google Patents

Method and device for measuring density and partial pressure of gas

Info

Publication number
JPS62156543A
JPS62156543A JP60296854A JP29685485A JPS62156543A JP S62156543 A JPS62156543 A JP S62156543A JP 60296854 A JP60296854 A JP 60296854A JP 29685485 A JP29685485 A JP 29685485A JP S62156543 A JPS62156543 A JP S62156543A
Authority
JP
Japan
Prior art keywords
light
gas
measured
partial pressure
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60296854A
Other languages
Japanese (ja)
Other versions
JP2512423B2 (en
Inventor
Toru Inouchi
徹 井内
Yukio Nakamori
中森 幸雄
Taizo Hoshino
泰三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29685485A priority Critical patent/JP2512423B2/en
Publication of JPS62156543A publication Critical patent/JPS62156543A/en
Application granted granted Critical
Publication of JP2512423B2 publication Critical patent/JP2512423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Abstract

PURPOSE:To derive exactly density and partial pressure of gas to be measured, by setting a part of a measuring light as a reference light and measuring its intensity, making the remaining measuring light pass through the gas to be measured, and thereafter, dividing it into a light beam which is absorbed by the gas to be measured, and a light beam which is not absorbed, and measuring the intensity of the light beam. CONSTITUTION:A light beam which is radiated from a light source 1 is partially brought to a spectral processing as a reference light, becomes a monochromatic light and made incident on a photodetector 8, by a filter 7 for making only a light beam of wavelength lambda1 transmit through, and a start intensity I1 of the reference light lambda1 is obtained. On the other hand, a parallel luminous flux which has transmitted through a beam splitter 5 transmits through gas to be measured 11 and made incident on the inside of a housing 13. A part of a light beam which is made incident on a beam splitter 14 goes to a monochromatic light as a reference light by a filter 16 for making only a light beam of wavelength lambda1 transmit through, made incident on a photodetector 17, and a final intensity I2 of the reference light lambda1 can be derived. Also, said light beam transmits through a filter 19 for making only a light beam of wavelength lambda2 transmit through and made incident on a photodetector 20, and a final intensity I3 is obtained. In such a way, density and partial pressure of gas to be measured are derived.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体の濃度および分圧の測定に関し、特に1
例えば鉄鋼業において使用される各種熱処理炉その他、
各業種において使用されている各種プロセスにおいて行
なわれる雰囲気気体の濃度および分圧を管理するための
測定方法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the measurement of concentration and partial pressure of gases, and in particular to the measurement of gas concentrations and partial pressures.
For example, various heat treatment furnaces used in the steel industry, etc.
The present invention relates to a measuring method and apparatus for controlling the concentration and partial pressure of atmospheric gases used in various processes used in various industries.

〔従来の技術〕[Conventional technology]

鉄鋼業において使用される加熱炉、焼鈍炉を始め、気体
の成分濃度および分圧が管理された雰囲気中で行なわれ
るプロセスは数多く存在し、そこでは気体の濃度および
分圧kil19定することが不可欠である。そのため現
在は、測定用プローブを被測定雰囲気中に直接挿入し測
定を行う方法や、被測定気体(以下ガスという)を適当
な装置を用いて吸引しプロセスの外部で測定する方法な
どが行われている。
There are many processes, such as heating furnaces and annealing furnaces used in the steel industry, that are carried out in an atmosphere where the concentration and partial pressure of gases are controlled, and it is essential to control the concentration and partial pressure of gases. It is. Therefore, currently there are methods in which measurements are taken by directly inserting a measurement probe into the atmosphere to be measured, and methods in which the gas to be measured (hereinafter referred to as gas) is sucked in using an appropriate device and measured outside the process. ing.

しかしながらこれらの方法は5例えばプロセスの雰囲気
が高温、高圧状態にある場合や腐食性の強い気体成分か
ら構成されている場合等々、苛酷な条件下では、測定用
プローブの耐熱、耐圧、耐腐食性能に限界があることや
、ガスを外部に取出すことに起因して、ガス成分が失わ
れてしまうことがある等41種々の問題があり、正確な
測定を行なうことができない場合があった。
However, these methods cannot be used under harsh conditions, such as when the process atmosphere is at high temperature and pressure, or when it is composed of highly corrosive gas components. There are various problems such as there being a limit to the amount of gas, and gas components sometimes being lost due to the gas being taken out to the outside, and it has sometimes been impossible to perform accurate measurements.

本発明者は、上記のような問題点を解決し、光の吸収強
度を利用し、測定用の光のプロセス中の管理雰囲気中を
直接通過させることにより、そのガス成分の濃度および
分圧を正確にするための方法および装置を発明し、特願
昭59−169994号、同59−169995号およ
び同59−269996号に開示した。
The inventor of the present invention solved the above-mentioned problems and determined the concentration and partial pressure of gas components by using the absorption intensity of light and passing the measuring light directly through the controlled atmosphere during the process. A method and apparatus for achieving this accuracy were invented and disclosed in Japanese Patent Application Nos. 59-169994, 59-169995 and 59-269996.

この方法および装置は、ガス成分の濃度および分圧を正
確に測定することができ、非常に有効であるが、その測
定機楕中に機械的駆動部分があるため、使用環境によっ
ては、作動中駆動部分に支障を来たす可能性が考えられ
る。
This method and device can accurately measure the concentration and partial pressure of gas components and are very effective, but since the measuring device has a mechanically driven part, depending on the usage environment There is a possibility that the driving part may be damaged.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前記の先願発明における機械的駆動部分をな
くシ、装置の耐久性、信頼性の一層の向上を図るととも
に、光源の寿命、光学系の汚れ、光軸のずれ等を監視し
、それらの影響を補正し、被測定ガスの濃度および分圧
の測定を正確に行なうことを目的とするものである。
The present invention eliminates the mechanical drive part in the prior invention, further improves the durability and reliability of the device, and monitors the life of the light source, dirt on the optical system, misalignment of the optical axis, etc. , the purpose is to correct these influences and accurately measure the concentration and partial pressure of the gas to be measured.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、光源から被測定気体に向けて放射される測定
光をチョッピングした後、その一部を分割し、参照光と
してその強度を測定するとともに、残りの測定光を被測
定気体(成分の異なる複数の気体を含む)を通過させた
後、被測定気体により吸収を受ける波長の光と、吸収を
受けない波長の光とに分割し、それぞれの光の強度を測
定し、該測定値からの被測定気体の濃度および分圧を求
めることを特徴とする気体の濃度および分圧測定装置、
ならびに、光源、該光源から放射される測定光をチョッ
ピングするチョッパー、測定光の一部を分割して参照光
とするためのビームスプリッタを光軸上に配置し、さら
に該ビームスプリッタに対向して波長入Iの光のみを透
過するフィルタと光検出器を配置した投光部および、前
記測定光の光軸上に、ビームスプリッタと該ビームスプ
リンタにより分割された測定光のうち被測定気体により
吸収を受ける波長λ2 (被測定気体の複数の成分から
なり吸収を受ける波長がそれぞれA3゜A4・・・であ
る場合を含む)の光のみを透過するフィルタと光検出器
を1組以上設け、さらに該ビームスプリッタに対向して
被測定気体に吸収を受けない波長λ1の光のみを透過す
るフィルタと光検出器とからなる受光部を被測定気体を
介して投光部に対向して設けるとともに、前記投光部お
よび受光部に設けた光検出器からの信号を入力し被測定
気体の濃度および分圧を演算する信号処理系とからなる
気体の濃度および分圧測定装置に関するものである。
The present invention chops the measurement light emitted from the light source toward the gas to be measured, then splits a part of it and measures its intensity as a reference light, and uses the remaining measurement light to (containing multiple different gases), the light is divided into wavelengths of light that are absorbed by the gas being measured and light of wavelengths that are not absorbed, the intensity of each light is measured, and the intensity of each light is measured. A gas concentration and partial pressure measuring device characterized by determining the concentration and partial pressure of a gas to be measured;
In addition, a light source, a chopper that chops the measurement light emitted from the light source, and a beam splitter that splits a part of the measurement light and uses it as a reference light are arranged on the optical axis, and further opposite the beam splitter. A light emitting unit is equipped with a filter and a photodetector that transmit only the light of wavelength I, and a beam splitter is arranged on the optical axis of the measurement light.The measurement light split by the beam splitter is absorbed by the gas to be measured. At least one set of a filter and a photodetector is provided that transmits only the light of wavelength λ2 (including cases in which multiple components of the gas to be measured have absorption wavelengths of A3, A4, etc.), and A light-receiving section comprising a filter and a photodetector that transmits only light having a wavelength λ1 that is not absorbed by the gas to be measured is provided facing the beam splitter and facing the light-emitting section through the gas to be measured, The present invention relates to a gas concentration and partial pressure measuring device that includes a signal processing system that receives signals from a photodetector provided in the light projecting section and the light receiving section and calculates the concentration and partial pressure of the gas to be measured.

そこで先ず本発明の測定原理について説明する。First, the measurement principle of the present invention will be explained.

第1表に示すように気体分子は分子振動に対応して特定
の波長の光を強く吸収する。そこで、この特定の吸収波
長をもつ光を用いて、気体の吸収強度を測定し、これか
ら測定対象ガスの濃度を測定する方法は、例えば、特公
昭5] −2090/1号公報に開示されているように
すでに行なわれている。本発明は上記の特定の吸収波長
をもつ光(以下測定光という。)の他に、吸収波長に近
いが、光吸収を受けない波長の光(以下参照光という)
を用い、しかも両者が同一光路を通過するようにし、か
つこの測定光および参照光について光源の光強度(以下
始強度という)および被測定気体中を通過し、該気体に
よる光吸収を受けた後の光強度(以下線強度という)を
測定し、これらの値からガス濃度の光路に沿う平均値を
測定しようとするものである。
As shown in Table 1, gas molecules strongly absorb light of specific wavelengths in response to molecular vibrations. Therefore, a method for measuring the absorption intensity of a gas using light having a specific absorption wavelength and then measuring the concentration of the gas to be measured is disclosed, for example, in Japanese Patent Publication No. 5]-2090/1. This is already being done. In addition to the light having the above-mentioned specific absorption wavelength (hereinafter referred to as measurement light), the present invention also provides light with a wavelength close to the absorption wavelength but not subject to optical absorption (hereinafter referred to as reference light).
The measurement light and the reference light are used to pass through the light intensity of the light source (hereinafter referred to as the initial intensity) and the gas to be measured, and after receiving light absorption by the gas. The purpose of this method is to measure the light intensity (hereinafter referred to as linear intensity) of the light intensity, and to measure the average value of the gas concentration along the optical path from these values.

一般に、光吸収はLambert −Beerの法則に
従いI  (L) =rOeXp  (−a 0n 0
L)と表わされる。但し、I (o )は始強度、nは
被測定気体の体積モル濃度、Lは光路長、αは吸収係数
、I(L)は線強度である。なお、吸収係数αは被測定
気体、使用波長により一義的に決まる物理定数である。
In general, light absorption follows the Lambert-Beer law: I (L) = rOeXp (-a 0n 0
L). Here, I (o) is the initial intensity, n is the volume molar concentration of the gas to be measured, L is the optical path length, α is the absorption coefficient, and I(L) is the linear intensity. Note that the absorption coefficient α is a physical constant uniquely determined by the gas to be measured and the wavelength used.

本発明により得られる光強度11〜■3は下記のように
表わされる。ここで、I、は投光部の検出器で検出され
た信号出力、I2と■、はそれぞれ受光部の2つの検知
器で検出された信号出力である。
The light intensities 11 to 3 obtained by the present invention are expressed as follows. Here, I is the signal output detected by the detector of the light projecting section, and I2 and ■ are the signal outputs detected by the two detectors of the light receiving section, respectively.

I、=I入! (0) I2 =Kr 入t  (0) exp (−a入+ 
+n 1L)I3=KI 入2  (0) exp (
a入y  ・n−L)但し、λlは参照光の波長、A2
は測定光の波長。
I,=I enter! (0) I2 = Kr input t (0) exp (-a input +
+n 1L) I3=KI enter 2 (0) exp (
a input y ・n-L) However, λl is the wavelength of the reference light, A2
is the wavelength of the measurement light.

αA1は波長λlに対する被測定気体の吸収係数。αA1 is the absorption coefficient of the gas to be measured with respect to the wavelength λl.

αA2は波長λ2に対する被測定気体の吸収係数、■A
1 (0)は参照光の始強度、■入2 (o)は測定光
の始強度、nは被測定気体の体積モル濃度。
αA2 is the absorption coefficient of the gas to be measured for wavelength λ2, ■A
1 (0) is the initial intensity of the reference light, 2 (o) is the initial intensity of the measurement light, and n is the volume molar concentration of the gas to be measured.

Lは光路長、Kは被測定気体による光吸収以外の光損失
を表わす係数で、光路上に存在する窓ガラスのよごれに
よる損失、光軸ずれによる損失等を表わす。
L is the optical path length, and K is a coefficient representing optical loss other than light absorption by the gas to be measured, representing loss due to dirt on window glass existing on the optical path, loss due to optical axis deviation, etc.

光強度■1は光源強度を表わし、光源の劣化による輝度
低下を監視することで、光源寿命の推定。
Light intensity ■1 represents the light source intensity, and the life of the light source can be estimated by monitoring the decrease in brightness due to deterioration of the light source.

交換時期の見極めを行なう。参照光の透過率で1は t+=I2/11=Kexp(ct入t  ・n−L)
となる。αA1は被預り定気体に吸収されないので。
Determine when it is time to replace it. The transmittance of the reference light is 1, which is t+=I2/11=Kexp (ct included t・n-L)
becomes. Since αA1 is not absorbed by the deposited constant gas.

参照光は、 α入1鴇O としてよく、 τ 、=に となる。τ1は光路上での不要な光損失を表わすので、
τ1を監視することにより、窓ガラスのよごれの監視、
交換時期判定、光軸ずれの有無判定を行なう。また、測
定光の透過率で2は、r2=13 /11==K[I*
z (0)/IAI (の) exp(−a A2 ・
n−L)となる。さらに透過率τl、τ2の比τは、r
=τ2 /l l =(IA2 (0)/I入1 (0
)) exp(−aA2・n化)となり、経時変化する
係数Kを消去できる。
The reference light may be set to 1 with α, and τ becomes =. Since τ1 represents unnecessary optical loss on the optical path,
Monitoring of dirt on window glass by monitoring τ1,
Determines when it is time to replace it and determines whether there is optical axis misalignment. Also, the transmittance of the measurement light is 2, r2=13/11==K[I*
z (0)/IAI (of) exp(-a A2 ・
n-L). Furthermore, the ratio τ of transmittance τl and τ2 is r
=τ2 /l l =(IA2 (0)/I input 1 (0
)) exp(−aA2·n), and the coefficient K that changes over time can be eliminated.

本装置においては、同一光源から参照光、測定光を得て
いるから、それぞれの光源強度1入1(0)、IA2(
0)の間には、一定の関係があり、IA1(O)の値か
ら■A2(0)の値を推定することができる。従って光
源強度■入1(0)を測定するだけで参照光と測定光の
光強度の比1入2(0)/I入1(O)を知ることがで
きる。いまこの比をCとおくと、 t=c1exp(−aA2  +n 0L) °= (
1)となる。式(1)の両辺の対数をとり、被測電気の
体の体積モル濃度nについて整理すると。
In this device, the reference light and measurement light are obtained from the same light source, so the respective light source intensities are 1 in 1 (0) and IA2 (
0), and the value of ■A2(0) can be estimated from the value of IA1(O). Therefore, by simply measuring the light source intensity 1 (input 1 (0)), the ratio of the light intensities of the reference light and the measurement light (1 in 2 (0)/I in 1 (O)) can be determined. Now let this ratio be C, then t=c1exp(-aA2 +n 0L) °= (
1). If we take the logarithm of both sides of equation (1) and rearrange it for the volume molar concentration n of the body of electricity to be measured.

n =−(Q n t / c)/(a 入2  ・L
)−(2)となる。そこで式(2)と、気体の状態方程
式p = n RT (但し、pは被測定気体の分圧、Tは被測定気体の温度
、Rは気体定数)を組合せると、p=  CRTlCa
入2 ・L))Qn r/c−(3)となり、式(3)
より、被測定気体の分圧を求めることができる。
n = - (Q n t / c) / (a input 2 ・L
)-(2). Therefore, by combining equation (2) and the gas state equation p = n RT (where p is the partial pressure of the gas to be measured, T is the temperature of the gas to be measured, and R is the gas constant), p = CRTlCa
Input 2 ・L))Qn r/c-(3), and formula (3)
Therefore, the partial pressure of the gas to be measured can be determined.

本発明はこのような測定原理に基ずくもので、以下図面
により本発明について説明する。第1図は本発明を実施
する装置の一例を示すもので、投光部筐体9内に収容さ
れた光源1から放射された光は、楕円面@2により集光
され、さらに軸はずし放物面鏡3により、平行光束とさ
れる。この平行光束はさらにその光路上に設けた周波数
fでチョッピングするライトチョッパにより、断続され
た後、ビームスプリッタ5に至り、一部は分光され、参
照光として集光レンズ6により集光され、波長入1の光
のみを透過させるフィルタ7により、単色光となって光
検出器8に入射する。従って該光検出器8の検出信号L
1を後述の信号処理系21で処理することにより参照光
λ1の始強度■1を得ることができる。一方ビームスプ
リッタ5を透過した平行光束は投光部筐体9に設けた窓
10から筐体外に放射され、被測定気体11を透過して
受光部筐体13に設けた窓12から該筐体13の内部に
入射する。受光部筐体13内には窓12に対向してビー
ムスプリッタ14’&設けてあり、射入した光の一部は
参照光として分光され集光レンズ15により集光され、
さらに、波長λ1の光のみを透過させるフィルタ16に
より単色光となり、光検出器17に入射する。その結果
、該光検出器17の検出信号L2を信号処理系21で処
理することによって参照光λlの線強度I2を求めるこ
とができる。また、ビームスプリッタ14を透過した平
行光束は集光レンズ18により集光され、さらに波長λ
2の光のみを透過するフィルタ19を透過して光検出器
20に入射し、その検出信号LJを信号処理系21によ
り処理することによって測定光の線強度I3を得ること
ができる。
The present invention is based on such a measurement principle, and will be explained below with reference to the drawings. FIG. 1 shows an example of a device implementing the present invention, in which light emitted from a light source 1 housed in a light projector housing 9 is focused by an elliptical surface @2, and is further emitted off-axis. The object mirror 3 converts the light into a parallel light beam. This parallel light beam is further interrupted by a light chopper provided on the optical path that chops at a frequency f, and then reaches the beam splitter 5, where a part of it is separated and condensed by a condensing lens 6 as a reference light, and the wavelength The filter 7 allows only the incident light to pass through, so that it becomes monochromatic light and enters the photodetector 8. Therefore, the detection signal L of the photodetector 8
1 can be processed by a signal processing system 21, which will be described later, to obtain the initial intensity ■1 of the reference light λ1. On the other hand, the parallel light beam that has passed through the beam splitter 5 is radiated out of the housing through a window 10 provided in the emitter housing 9, passes through the gas to be measured 11, and passes through the window 12 provided in the light receiver housing 13 to the housing. 13. A beam splitter 14' is provided inside the light receiving unit housing 13 facing the window 12, and a part of the incident light is separated as a reference light and focused by a condensing lens 15.
Furthermore, the filter 16 transmits only the light of wavelength λ1, which converts the light into monochromatic light, which enters the photodetector 17. As a result, by processing the detection signal L2 of the photodetector 17 in the signal processing system 21, the line intensity I2 of the reference light λl can be determined. Further, the parallel light beam transmitted through the beam splitter 14 is condensed by a condensing lens 18, and is further condensed with a wavelength λ
The measured light beam passes through a filter 19 that transmits only the second light beam and enters the photodetector 20, and the detection signal LJ is processed by the signal processing system 21 to obtain the linear intensity I3 of the measuring light beam.

このようにして、光強度■1〜■3を測定できるので、
これから参照光および測定光の透過率τl、τ2を求め
ることができる。さらに、前記の式(1)および(2)
により被測定気体の体積モル濃度nを、また、式(3)
から被測定気体の分圧Pを求めることができる。この場
合被測定気体の温度Tは例えば熱雷対37により測定し
、これを式(3)に代入する。
In this way, the light intensities (1) to (3) can be measured, so
From this, the transmittances τl and τ2 of the reference light and measurement light can be determined. Furthermore, the above formulas (1) and (2)
The volume molar concentration n of the gas to be measured is determined by equation (3)
The partial pressure P of the gas to be measured can be determined from . In this case, the temperature T of the gas to be measured is measured by, for example, a thermal lightning pair 37, and this is substituted into equation (3).

次に本発明における信号処理系21による検出信号の処
理について説明する。第2図はその実例を示すもので、
光検知器8.17.20で測定されて検出信号L 1 
+ t、21 t、3のうちL3がLI+L2に比べて
小さい場合を示す。本発明の場合受光部の光検出器には
本来求めるべき信号の他に。
Next, processing of the detection signal by the signal processing system 21 in the present invention will be explained. Figure 2 shows an example of this.
Detection signal L 1 measured by photodetector 8.17.20
+ t, 21 The case where L3 is smaller than LI+L2 among t, 3 is shown. In the case of the present invention, the photodetector of the light receiving section receives in addition to the signals that are originally required.

測定対象から放出される迷光雑音も検出される。Stray light noise emitted from the measurement target is also detected.

しかしながら本発明の場合、前記のように光源からの光
をチョッパ4により周波数fでチョッピングしているた
めに光検知器に検出される検出信号のうち、光源のチョ
ッピングに同期して変動する周波数fをもつ成分が求め
る信号である。従って光検知器に検出される信号をロッ
クインアンプ乃至はCRアクティブフィルタに入力し周
波数fの成分を抽出することにより、迷光雑音を取り除
くことができる。すなわち検出信号LI+L2について
は、透過周波数fのCRアクティブフィルタ22.23
により光強度の信号TIyI2を抽出し、光強度L3に
ついてはライトチョッパ4からの同期信号を与えたロッ
クアンプ24によって光強度の信号■3を抽出する。こ
のようにして得られた11〜工3をA/D変換器25を
介して演算機構26に導き、前記の式(1)、(2)、
(3)に従って演算処理することにより、被測定気体の
体積モル濃度n、気体分圧pを求めることができる。
However, in the case of the present invention, since the light from the light source is chopped by the chopper 4 at the frequency f as described above, among the detection signals detected by the photodetector, the frequency f changes in synchronization with the chopping of the light source. The component with is the desired signal. Therefore, stray light noise can be removed by inputting the signal detected by the photodetector to a lock-in amplifier or CR active filter and extracting the frequency f component. That is, for the detection signal LI+L2, the CR active filter 22.23 with the transmission frequency f
As for the light intensity L3, the lock amplifier 24 to which the synchronization signal from the light chopper 4 is applied extracts the light intensity signal TIyI2. Steps 11 to 3 thus obtained are guided to the calculation mechanism 26 via the A/D converter 25, and the equations (1), (2),
By performing arithmetic processing according to (3), the volume molar concentration n and gas partial pressure p of the gas to be measured can be determined.

第3図は本発明を、熱処理炉内に収容した鋼板の近傍の
雰囲気ガスの濃度および分圧測定に適用した場合を示す
もので、鋼板29を収容した炉32の側壁に窓27およ
び30を設け、該窓27にフランジ継手27を介して投
光部を収容した筐体9を対向させ、窓30にはフランジ
継手31を介して受光部の筐体13を対向させ、第1図
に示した場合と同様の操作を行えば、炉内の鋼板29の
近傍の雰囲気ガス33の濃度および分圧を測定すること
ができる。この場合もし、鋼板と周囲の雰囲気との間で
化学反応が起きていれば、界面近傍の気体濃度2分圧を
測定することにより、化学反応の進行状況を把握するこ
とが可能となり、適格なプロセス制御のために不可欠な
情報を得ることができる。
FIG. 3 shows a case in which the present invention is applied to the measurement of the concentration and partial pressure of atmospheric gas near a steel plate housed in a heat treatment furnace. The housing 9 housing the light emitting unit is placed opposite to the window 27 via the flange joint 27, and the housing 13 of the light receiving unit is placed opposite to the window 30 via the flange joint 31, as shown in FIG. By performing the same operations as in the case above, it is possible to measure the concentration and partial pressure of the atmospheric gas 33 in the vicinity of the steel plate 29 in the furnace. In this case, if a chemical reaction is occurring between the steel plate and the surrounding atmosphere, it is possible to understand the progress of the chemical reaction by measuring the gas concentration 2 partial pressure near the interface, and it is possible to determine the progress of the chemical reaction. Obtain essential information for process control.

また本発明は複数の成分から成る気体のそれぞれの濃度
と分圧を測定することができる。第4図は二種類の気体
の濃度および分圧を測定する場合を示すもので、第1図
に示す測定装置の受光部側の集光レンズ18の後方に第
2のビームスプリッタ34を設けて1分光し、この光を
波長λ3の光のみを透過するフィルタ35を透過させて
光検出器36に入射させ、その光検出器36に入射させ
、その検出信号L4を信号処理系21により処理するこ
とによって測定光の終強度I4を得ることができる。
Further, the present invention can measure the concentration and partial pressure of each gas consisting of a plurality of components. FIG. 4 shows the case of measuring the concentration and partial pressure of two types of gases, in which a second beam splitter 34 is provided behind the condenser lens 18 on the light receiving section side of the measuring device shown in FIG. 1 minute of light is transmitted through a filter 35 that transmits only light of wavelength λ3, and is incident on a photodetector 36. The detected signal L4 is processed by a signal processing system 21. By this, the final intensity I4 of the measurement light can be obtained.

このように本発明においては白色光を被測定気体に透過
させ、光検知器直前で特定の波長の光のみを透過するフ
ィルタを用いて単色化するので被測定気体の複数の成分
の同時測定をビームスプリッタとフィルタと光検知器と
を追加するのみで容易に行うことができる。
In this way, in the present invention, white light is transmitted through the gas to be measured, and a filter that transmits only light of a specific wavelength is used just before the photodetector to make it monochromatic, making it possible to simultaneously measure multiple components of the gas to be measured. This can be easily accomplished by simply adding a beam splitter, a filter, and a photodetector.

〔実施例〕〔Example〕

次に第4図に示した装置により、H2CとCOの濃度を
同時測定した場合を示す。参照光としてλ1 =1.6
μm、H20に対応した測定光としてλ2=1.385
μm、Coに対応した測定光としてλ3=4.7μmの
光を使用し、光路長L =3.4m、気体温度T=80
0°Cという条件で測定を行なった場合の参照光と測定
光の透過率の比τを、セミログプロットした。H2Cに
ついては第5図に、またCQについては第6図に結果を
示す。なお、横軸はそれぞれH2C,GO分圧である。
Next, a case will be shown in which the concentrations of H2C and CO are simultaneously measured using the apparatus shown in FIG. λ1 = 1.6 as reference light
λ2=1.385 as measurement light corresponding to μm, H20
λ3 = 4.7 μm light is used as the measurement light corresponding to μm, Co, optical path length L = 3.4 m, gas temperature T = 80
The ratio τ of the transmittance of the reference light and the measurement light when the measurement was performed under the condition of 0° C. was plotted on a semilog plot. The results are shown in FIG. 5 for H2C and in FIG. 6 for CQ. Note that the horizontal axes are H2C and GO partial pressures, respectively.

これから明らかなように1分圧と透過率の比τの対数は
比例関係にあり、これから、被測定気体の体積モル濃度
や分圧を求めることができる。
As is clear from this, there is a proportional relationship between the logarithm of the ratio τ of partial pressure and transmittance, and from this, the volume molar concentration and partial pressure of the gas to be measured can be determined.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、被測定気体が持
つ温度、圧力などの条件によらず、測定光および参照光
を被測定気体中を通過させるのみで、常時背景雑音や、
光源の劣化による光源輝度低下の影響、透過窓等の光学
系の途中の汚れによる光損失の影響、光軸のずれによる
光損失の影響等、を除去しつつ、多種類の気体濃度およ
び分圧を測定することができる。しかも測定装置内に機
械的な駆動部分を持たないので装置の耐久性、信頼性に
も優れ、常に確実な測定を行なうことができる。また、
本発明の適用により、化学反応のオンラインモニタが可
能となるので、例えば鉄鋼業におけるステンレス光輝焼
鈍炉、溶鋼真空脱ガス装置の制御、半導体製造プロセス
におけるCVDプロセス、拡散炉の制御1食糧関連プロ
セスにおける穀物を始めとする各種類乾燥ラインの制御
As explained above, according to the present invention, the measurement light and the reference light are simply passed through the gas to be measured, regardless of the conditions such as the temperature and pressure of the gas to be measured, and the background noise is constantly eliminated.
While eliminating the effects of reduced light source brightness due to deterioration of the light source, effects of light loss due to dirt in the optical system such as transmission windows, and effects of light loss due to misalignment of the optical axis, it is possible to adjust the concentration and partial pressure of many types of gases. can be measured. Furthermore, since there is no mechanically driven part within the measuring device, the device has excellent durability and reliability, and reliable measurements can always be performed. Also,
Application of the present invention makes it possible to monitor chemical reactions online, so for example, control of stainless steel bright annealing furnaces in the steel industry, vacuum degassing equipment for molten steel, CVD processes in semiconductor manufacturing processes, control of diffusion furnaces 1 in food-related processes. Control of various drying lines including grains.

その他各種産業における側進プロセスの積極的な制御を
行なうことができる等、化学反応の伴う各種気体生成や
各種気体成分を含む工業プロセスに適用して著しい効果
を有する。
In addition, it is possible to actively control lateral processes in various industries, and has a remarkable effect when applied to various gas production accompanied by chemical reactions and industrial processes involving various gas components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を一態様で実施する装置構成を示すブロ
ック図、第2図は本発明に使用する信号処理系の構成の
一例を示すブロック図、第3図は本発明を鋼板焼鈍炉に
適用した場合の装置配置を示す側面図、第4図は2種類
の気体の濃度nおよび分圧Pを同時測定する場合の装置
構成の一例を示すブロック図、第5図および第6図は本
発明による測定結果を示すグラフである。 1:光源        2:楕円面鏡3:軸はずし放
物面鏡  4ニライトチョッパー5:ビームスプリッタ
  6:集光レンズ7:干渉フィルタ    8:光検
知器9:投光部属体    10:!!!。 ll:被測定気体   12:窓 13:受光部筐体   14:ビームスプリッタ15:
集光レンズ   16:フイルタ17:光検知器   
 18:集光レンズ19:フィルタ    20光検知
器 21:信号処理系 22.23:CRアクティブフィルタ 24:ロックインアンプ 25 : A/D変換器 26:マイクロコンピュータ 27:透過窓28:フラ
ンジ継手     29:鋼板30:透過窓     
   31:フランジ継手32:炉         
33:炉内雰囲気34:ビームスプリッタ   35:
フィルタ36−光検知器       37:熱電対透
迂李 誘過率
FIG. 1 is a block diagram showing the configuration of an apparatus for carrying out one aspect of the present invention, FIG. 2 is a block diagram showing an example of the configuration of a signal processing system used in the present invention, and FIG. 3 is a block diagram showing an example of the configuration of a signal processing system used in the present invention. 4 is a block diagram showing an example of the device configuration when simultaneously measuring the concentration n and partial pressure P of two types of gases, and FIGS. 5 and 6 are 3 is a graph showing measurement results according to the present invention. 1: Light source 2: Ellipsoidal mirror 3: Off-axis parabolic mirror 4 Nilight chopper 5: Beam splitter 6: Condensing lens 7: Interference filter 8: Photodetector 9: Light emitter part 10:! ! ! . ll: Gas to be measured 12: Window 13: Light receiving unit housing 14: Beam splitter 15:
Condensing lens 16: Filter 17: Photodetector
18: Condenser lens 19: Filter 20 Photodetector 21: Signal processing system 22. 23: CR active filter 24: Lock-in amplifier 25: A/D converter 26: Microcomputer 27: Transmission window 28: Flange joint 29: Steel plate 30: Transparent window
31: Flange joint 32: Furnace
33: Furnace atmosphere 34: Beam splitter 35:
Filter 36 - Photodetector 37: Thermocouple transparent permittivity

Claims (4)

【特許請求の範囲】[Claims] (1)光源から被測定気体に向けて放射される測定光を
チョッピングした後、その一部を分割し、参照光として
その強度を測定するとともに、残りの測定光を被測定気
体を通過させた後、被測定気体により吸収を受ける波長
の光と、吸収を受けない波長の光とに分割し、それぞれ
の光の強度を測定し、該測定値からの被測定気体の濃度
および分圧を求めることを特徴とする気体の濃度および
分圧測定方法。
(1) After chopping the measurement light emitted from the light source toward the gas to be measured, part of it is divided and its intensity is measured as a reference beam, and the remaining measurement light is passed through the gas to be measured. After that, the light is divided into light with a wavelength that is absorbed by the gas to be measured and light with a wavelength that is not absorbed, the intensity of each light is measured, and the concentration and partial pressure of the gas to be measured are determined from the measured values. A method for measuring gas concentration and partial pressure, characterized by:
(2)光源から被測定気体に向けて放射される測定光を
チョッピングした後、その一部を分割し、参照光として
その強度を測定するとともに、残りの測定光を被測定気
体を通過させた後、被測定気体を構成する成分の異なる
複数の気体の各々により吸収を受ける各々の波長の光と
、被測定気体に吸収を受けない波長の光とに分割し、そ
れぞれの光の強度を測定し、該測定値から被測定気体各
成分の濃度および分圧を求める前記特許請求の範囲第(
1)項記載の気体の濃度および分圧測定方法。
(2) After chopping the measurement light emitted from the light source toward the gas to be measured, part of it is divided and its intensity is measured as a reference beam, and the remaining measurement light is passed through the gas to be measured. Then, the light is divided into light of each wavelength that is absorbed by each of the gases with different components that make up the gas to be measured, and light of a wavelength that is not absorbed by the gas to be measured, and the intensity of each light is measured. and the concentration and partial pressure of each component of the gas to be measured are determined from the measured values.
1) Method for measuring gas concentration and partial pressure as described in section 1).
(3)光源、該光源から放射される測定光をチョッピン
グするチョッパー、測定光の一部を分割して参照光とす
るためのビームスプリッタを光軸上に配置し、さらに該
ビームスプリッタに対向して被測定気体に吸収を受けな
い波長λ_1の光のみを透過するフィルタと光検出器を
配置した投光部および、前記測定光の光軸上に、ビーム
スプリッタと該ビームスプリッタにより分割された測定
光のうち被測定気体により吸収を受ける波長λ_2の光
のみを透過するフィルタと光検出器を設け、さらに該ビ
ームスプリッタに対向して被測定気体に吸収を受けない
波長λ_1の光のみを透過するフィルタと、光検出器と
からなる受光部を被測定気体を介して投光部に対向して
設けるとともに、前記投光部および受光部に設けた光検
出器からの信号を入力し被測定気体の濃度および分圧を
演算する信号処理系とからなる気体の濃度および分圧測
定装置。
(3) A light source, a chopper that chops the measurement light emitted from the light source, and a beam splitter that splits a part of the measurement light and uses it as a reference light are placed on the optical axis, and the beam splitter is further opposed to the beam splitter. A beam splitter and a measurement beam split by the beam splitter are arranged on the optical axis of the measurement light. A filter and a photodetector are provided that transmit only the light of wavelength λ_2 that is absorbed by the gas to be measured, and furthermore, a filter and a photodetector are provided that transmit only the light of wavelength λ_1 that is not absorbed by the gas to be measured, facing the beam splitter. A light receiving section consisting of a filter and a photodetector is provided opposite the light emitting section via the gas to be measured, and signals from the photodetectors provided in the light emitting section and the light receiving section are inputted to detect the gas to be measured. A gas concentration and partial pressure measuring device comprising a signal processing system that calculates the concentration and partial pressure of gas.
(4)光源、該光源から放射される測定光をチョッピン
グするチョッパー、測定光の一部を分割して参照光とす
るためのビームスプリッタを光軸上に配置し、さらに該
ビームスプリッタに対向して被測定気体に吸収を受けな
い波長λ_1の光のみを透過するフィルタと光検出器を
配置した投光部および、前記測定光の光軸上に、ビーム
スプリッタと該ビームスプリッタにより分割された測定
光のうち被測定気体により吸収を受けない波長λ_1の
光のみを透過するフィルタと光検出器を設け、さらに該
ビームスプリッタの後方の光軸上に1個以上のビームス
プリッタを設け、それぞれのビームスプリッタによる透
過乃至反射光路上にそれぞれ被測定気体を構成する各成
分の各々により吸収を受ける波長λ_3、λ_4・・・
の光のみを透過するフィルタと光検出器とを設けた受光
部を被測定気体を介して投光部に設けるとともに、前記
投光部および受光部に設けた光検出器からの信号を入力
し、被測定気体の濃度および分圧を演算する信号処理系
とからなる前記特許請求の範囲第(3)項記載の気体の
濃度および分圧測定装置。
(4) A light source, a chopper that chops the measurement light emitted from the light source, and a beam splitter that splits a part of the measurement light and uses it as a reference light are arranged on the optical axis, and further facing the beam splitter. A beam splitter and a measurement beam split by the beam splitter are arranged on the optical axis of the measurement light. A filter and a photodetector are provided that transmit only light with a wavelength λ_1 that is not absorbed by the gas to be measured, and one or more beam splitters are provided on the optical axis behind the beam splitter, and each beam Wavelengths λ_3, λ_4, which are absorbed by each component constituting the gas to be measured on the optical path transmitted or reflected by the splitter, respectively.
A light receiving section equipped with a filter and a photodetector that transmits only the light of and a signal processing system for calculating the concentration and partial pressure of the gas to be measured.
JP29685485A 1985-12-27 1985-12-27 Method and apparatus for measuring gas concentration and partial pressure Expired - Lifetime JP2512423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29685485A JP2512423B2 (en) 1985-12-27 1985-12-27 Method and apparatus for measuring gas concentration and partial pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29685485A JP2512423B2 (en) 1985-12-27 1985-12-27 Method and apparatus for measuring gas concentration and partial pressure

Publications (2)

Publication Number Publication Date
JPS62156543A true JPS62156543A (en) 1987-07-11
JP2512423B2 JP2512423B2 (en) 1996-07-03

Family

ID=17839020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29685485A Expired - Lifetime JP2512423B2 (en) 1985-12-27 1985-12-27 Method and apparatus for measuring gas concentration and partial pressure

Country Status (1)

Country Link
JP (1) JP2512423B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136154A1 (en) * 2009-05-23 2010-12-02 Hochschule für Angewandte Wissenschaften Hamburg Method and device for optical pressure measurement of a gas in a closed container
JP2013003038A (en) * 2011-06-20 2013-01-07 Nippon Signal Co Ltd:The Laser measurement device and laser measurement method
CN111855596A (en) * 2019-04-26 2020-10-30 株式会社堀场Stec Light absorption analyzer and program recording medium for recording light absorption analyzer program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151598A (en) * 1975-06-12 1976-12-27 Measurex Corp Method of and apparatus for measuring amount of substance related to transferring material wab
JPS5417898A (en) * 1977-06-22 1979-02-09 Kernforschungsz Karlsruhe Method and circuit apparatus for measuring partial pressure and concentration of mixed gas component
JPS5733342A (en) * 1980-08-07 1982-02-23 Toshiba Corp Spectrophotometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151598A (en) * 1975-06-12 1976-12-27 Measurex Corp Method of and apparatus for measuring amount of substance related to transferring material wab
JPS5417898A (en) * 1977-06-22 1979-02-09 Kernforschungsz Karlsruhe Method and circuit apparatus for measuring partial pressure and concentration of mixed gas component
JPS5733342A (en) * 1980-08-07 1982-02-23 Toshiba Corp Spectrophotometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136154A1 (en) * 2009-05-23 2010-12-02 Hochschule für Angewandte Wissenschaften Hamburg Method and device for optical pressure measurement of a gas in a closed container
US8707790B2 (en) 2009-05-23 2014-04-29 Heuft Systemtechnik Gmbh Method and device for optical pressure measurement of a gas in a closed container
JP2013003038A (en) * 2011-06-20 2013-01-07 Nippon Signal Co Ltd:The Laser measurement device and laser measurement method
CN111855596A (en) * 2019-04-26 2020-10-30 株式会社堀场Stec Light absorption analyzer and program recording medium for recording light absorption analyzer program

Also Published As

Publication number Publication date
JP2512423B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4288062A (en) Apparatus for control and monitoring of the carbon potential of an atmosphere in a heat-processing furnace
US20110042570A1 (en) Absorption Biased NDIR Gas Sensing Methodology
US4471220A (en) System for monitoring trace gaseous ammonia concentration in flue gases
JPH04151546A (en) Gas detecting apparatus
SE439544B (en) PROCEDURE AND DEVICE FOR DETERMINING A INGREDIENT IN A MEDIUM
JPS62156543A (en) Method and device for measuring density and partial pressure of gas
US5977546A (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
JPS6114529A (en) Measuring method of temperature using optical fiber
US4733084A (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
JPH0565023B2 (en)
JPS58156837A (en) Measuring device for optical gas analysis
JPH0638058B2 (en) Gas concentration and partial pressure measuring device
JP2014142299A (en) Gas concentration measurement device
JPS6114528A (en) Measuring method of temperature using optical fiber
JPS63263447A (en) Gas concentration detector
JPH0456145A (en) Measuring device for substrate temperature in plasma
JPH04313007A (en) Film inspecting device
JPS62175648A (en) Measuring method for temperature and density of gas
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPH03220444A (en) Measuring method of absorbing state and measuring apparatus of absorption
JP2560231B2 (en) Sulfate ion concentration detection sensor by wavelength in mid-infrared region and sulfate ion concentration detection method
JP4906477B2 (en) Gas analyzer and gas analysis method
JP2001330513A (en) Method and device for measuring temperature, and semiconductor manufacturing device
JPS6148735A (en) Measuring device for concentration and partial pressure of gas
JPH01196541A (en) Spectrochemical analyzer using semiconductor laser