JPH0565023B2 - - Google Patents

Info

Publication number
JPH0565023B2
JPH0565023B2 JP4322086A JP4322086A JPH0565023B2 JP H0565023 B2 JPH0565023 B2 JP H0565023B2 JP 4322086 A JP4322086 A JP 4322086A JP 4322086 A JP4322086 A JP 4322086A JP H0565023 B2 JPH0565023 B2 JP H0565023B2
Authority
JP
Japan
Prior art keywords
gas
light
measured
wavelength
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4322086A
Other languages
Japanese (ja)
Other versions
JPS62201334A (en
Inventor
Tooru Inai
Yukio Nakamori
Taizo Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61043220A priority Critical patent/JPS62201334A/en
Publication of JPS62201334A publication Critical patent/JPS62201334A/en
Publication of JPH0565023B2 publication Critical patent/JPH0565023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、気体の濃度および分圧を測定するも
ので、特に鉄鋼業において使用される各種熱処理
炉内における気体の濃度および分圧の測定、管理
や各業種において使用されている各種プロセスに
おける雰囲気気体の濃度および分圧の測定、管理
等に適用されるものである。 〔従来の技術〕 鉄鋼業において使用される加熱炉、焼鈍炉を始
め、気体の成分濃度および分圧が管理された雰囲
気中で行なわれるプロセスは数多く存在し、そこ
では気体の濃度および分圧を測定することが不可
欠である。そのため現在は、測定用プローブを被
測定雰囲気中に直接挿入し測定を行う方法や、被
測定気体(以下ガスという)を適当な装置を用い
て吸引しプロセスの外部で測定する方法などが行
われている。 しかしながらこれらの方法は、例えばプロセス
の雰囲気が高温、高圧状態にある場合や腐食性の
強い気体成分から構成されている場合等々、苛酷
な条件下では、測定用プローブの耐熱、耐圧、耐
腐食性能に限界があることや、ガスを外部に取出
すことに起因して、ガス成分が失われてしまうこ
とがある等々、種々の問題があり、正確な測定を
行なうことができない場合があつた。 本発明者は、上記のような問題点を解決し、光
の吸収強度を利用し、測定用の光のプロセス中の
管理雰囲気中を直接通過させることにより、その
ガス成分の濃度および分圧を正確にするための方
法および装置を発明し、特願昭59−169994号、同
59−169995号および同59−169996号に開示した。
この方法および装置は、ガス成分の濃度および分
圧を正確に測定することができ、非常に有効であ
るが、その測定機構中に機械的駆動部分があるた
め、使用環境によつては、作動中駆動部分に支障
を来たす可能性が考えられる。 〔発明が解決しようとする問題点〕 本発明は、前記の先願発明における機械的駆動
部分をなくし、装置の耐久性、信頼性の一層の向
上を図るとともに、光源の寿命、光学系の汚れ、
光軸のずれ等を監視し、それらの影響を補正し、
被測定ガスの濃度および分圧の測定を正確に行な
うことを目的とするものである。 〔問題点を解決するための手段〕 本発明は、光源から被測定気体に向けて放射さ
れる光の一部を分割し、参照光としてその始強度
を測定するとともに残りの光を被測定気体を通過
させ反射させて後、該測定光を分割し、その一方
から参照光の終強度を測定し、他方から測定光の
強度を測定し、これらの参照光の始強度および終
強度、および測定光の強度から被測定気体の濃度
および分圧測定方法;および光源から放射される
測定光の光軸上にチヨツパーおよび測定光の一部
を分割するビームスプリツタを設け、さらに該ビ
ームスプリツタの表面に対向して被測定気体に吸
収を受けない波長λ1の光のみを透過するフイルタ
とするためのビームスプリツタを光軸上に配置
し、さらに該ビームスプリツタに対向して波長λ1
の光のみを透過するフイルタと光検出器とを設け
るとともに、ビームスプリツタの裏面に対向して
前記の波長λ1の光のみを透過するフイルタと光検
出器を設け、さらに該ビームスプリツタの裏面に
被測定気体により吸収を受ける波長λ2の光のみを
透過するフイルタと光検出器を設け、さらに測定
光を投射する被互定気体の後方に測定光を反射す
るレトロリフレクタを設け、かつ前記各光検出器
からの信号を入力し、被測定気体の濃度および分
圧を演算する信号処理系とを設けたことを特徴と
する気体の濃度および分圧測定装置に関するもの
である。 そこで先ず本発明の測定原理について説明す
る。第1表に示すように気体分子は分子振動に対
応して特定の波長の光を強く吸収する。そこで、
この特定の吸収波長をもつ光を用いて、気体の吸
収強度を測定し、これから測定対象ガスの濃度を
測定する方法は、例えば、特公昭51−20904号公
報に開示されているようにすでに行なわれてい
る。本発明は上記の特定の吸収波長をもつ光(以
下測定光という。)の他に、吸収波長に近いが、
光吸収を受けない波長の光(以下参照光という)
を用い、しかも両者が同一光路を通過するように
し、かつこの測定光および参照光について光源の
光強度(以下始強度という)および被測定気体中
を通過し、該気体による光吸収を受けた後の光強
度(以下終強度という)を測定し、これらの値か
らガス濃度の光路に沿う平均値を測定しようとす
るものである。 一般に、光吸収はLambert−Beerの法則に従
い I(L)=I0 exp (−α・n・L) と表される。但し、I(0)は始強度、nは被測定
気体の体積モル濃度、Lは光路長、αは吸収係
数、I(L)は終強度である。なお、吸収係数αは被
測定気体、使用波長により一義的に決まる物理定
数である。
[Industrial Application Field] The present invention is for measuring the concentration and partial pressure of gas, and is particularly suitable for measuring and managing the concentration and partial pressure of gas in various heat treatment furnaces used in the steel industry, and for use in various industries. It is applied to the measurement and management of the concentration and partial pressure of atmospheric gases in various processes. [Prior Art] There are many processes, including heating furnaces and annealing furnaces used in the steel industry, that are carried out in atmospheres where the concentration and partial pressure of gases are controlled. It is essential to measure. Therefore, currently there are methods in which measurements are taken by directly inserting a measurement probe into the atmosphere to be measured, and methods in which the gas to be measured (hereinafter referred to as gas) is sucked in using an appropriate device and measured outside the process. ing. However, these methods cannot be used under harsh conditions, such as when the process atmosphere is at high temperature and pressure, or when it is composed of highly corrosive gas components. There are various problems such as there being a limit to the amount of gas, and gas components sometimes being lost due to the gas being taken out to the outside, and it has sometimes been impossible to perform accurate measurements. The inventor of the present invention solved the above-mentioned problems and determined the concentration and partial pressure of gas components by using the absorption intensity of light and passing the measuring light directly through the controlled atmosphere during the process. Invented a method and device for accuracy, and filed Japanese Patent Application No. 169994/1983.
It was disclosed in No. 59-169995 and No. 59-169996.
This method and device can accurately measure the concentration and partial pressure of gas components, and are very effective. There is a possibility that the middle drive part may be affected. [Problems to be Solved by the Invention] The present invention eliminates the mechanically driven part in the prior invention, further improving the durability and reliability of the device, and reducing the lifespan of the light source and the contamination of the optical system. ,
Monitors optical axis misalignment, etc. and corrects their effects,
The purpose is to accurately measure the concentration and partial pressure of a gas to be measured. [Means for Solving the Problems] The present invention splits a part of the light emitted from the light source toward the gas to be measured, uses it as a reference beam to measure the initial intensity, and uses the remaining light to direct the gas to the gas to be measured. After passing through and reflecting the measurement light, split the measurement light, measure the final intensity of the reference light from one of them, measure the intensity of the measurement light from the other, and calculate the initial and final intensities of these reference lights, and the measurement light. A method for measuring the concentration and partial pressure of a gas to be measured from the intensity of light; and a chopper and a beam splitter for splitting a part of the measurement light are provided on the optical axis of the measurement light emitted from the light source; A beam splitter is placed on the optical axis to act as a filter that faces the surface and transmits only light with a wavelength λ 1 that is not absorbed by the gas to be measured, and further faces the beam splitter to serve as a filter that transmits only light with a wavelength λ 1 that is not absorbed by the gas to be measured.
A filter and a photodetector that transmit only the light of the wavelength λ 1 are provided, and a filter and a photodetector that transmit only the light of the wavelength λ 1 are provided opposite to the back surface of the beam splitter. A filter and a photodetector are provided on the back surface to transmit only the light of wavelength λ 2 that is absorbed by the gas to be measured, and a retroreflector to reflect the measurement light is provided behind the gas to be measured onto which the measurement light is projected, and The present invention relates to a gas concentration and partial pressure measuring device characterized in that it is provided with a signal processing system that receives signals from each of the photodetectors and calculates the concentration and partial pressure of the gas to be measured. First, the measurement principle of the present invention will be explained. As shown in Table 1, gas molecules strongly absorb light of specific wavelengths in response to molecular vibrations. Therefore,
The method of measuring the absorption intensity of a gas using light having a specific absorption wavelength and measuring the concentration of the gas to be measured has already been carried out, for example, as disclosed in Japanese Patent Publication No. 51-20904. It is. In addition to the light having the above-mentioned specific absorption wavelength (hereinafter referred to as measurement light), the present invention uses light that is close to the absorption wavelength.
Light at a wavelength that does not undergo optical absorption (hereinafter referred to as reference light)
The measurement light and the reference light are used to pass through the light intensity of the light source (hereinafter referred to as the initial intensity) and the gas to be measured, and after receiving light absorption by the gas. The purpose is to measure the light intensity (hereinafter referred to as final intensity) of the light intensity, and to measure the average value of the gas concentration along the optical path from these values. Generally, light absorption is expressed as I(L)=I 0 exp (−α·n·L) according to Lambert-Beer's law. Here, I( 0 ) is the initial intensity, n is the volume molar concentration of the gas to be measured, L is the optical path length, α is the absorption coefficient, and I(L) is the final intensity. Note that the absorption coefficient α is a physical constant uniquely determined by the gas to be measured and the wavelength used.

【表】 本発明により得られる光強度I1〜I3は下記のよ
うに表わされる。ここでI1は投光部の検出器で検
出された信号出力、I2とI3はそれぞれ受光部の2
つの検知器で検出された信号出力である。 I1=I〓1(0) I2=KI〓1(0)exp(−α〓1・n・L) I3=KI〓2(0)exp(−α〓2・n・L) 但し、λ1は参照光の波長、λ2は測定光の波長、
α〓1は波長〓1に対する被測定気体の吸収係数、α〓2
は波長λ2に対する被測定気体の吸収係数、I〓1
(0)は参照光の始強度、I〓2(0)は測定光の始
強度、nは被測定気体の体積モル濃度、Lは光路
長、Kは被測定気体による光吸収以外の光損失を
表わす係数で、光路上に存在する窓ガラスのよご
れによる損失、光軸ずれによる損失等を表わす。 光強度I1は光源強度を表わし、光源の劣化によ
る輝度低下を監視することで、光源寿命の推定、
交換時期の見極めを行なう。参照光の透過率τ1は τ1=I2/I1=K exp(−α〓1
n・L) となる。α〓1は被測定気体に吸収されないので、
参照光は、 α〓1≒0 としてよく、 τ1=K となる。τ1は光路上での不要な光損失を表わすの
で、τ1を監視することにより、窓ガラスのよごれ
の監視、交換時期判定、光軸ずれの有無判定を行
なう。また、測定光の透過率τ2は、 τ2=I3/I1=K〔I〓2(0)/I〓1(0)〕exp(−α
2
n・L) となる。さらに透過率τ1,τ2の比τは、 τ=τ2/τ1=〔I〓2
[Table] The light intensities I 1 to I 3 obtained by the present invention are expressed as follows. Here, I 1 is the signal output detected by the detector of the light emitter, I 2 and I 3 are the two of the light receiver, respectively.
This is the signal output detected by two detectors. I 1 = I〓 1 (0) I 2 = KI〓 1 (0) exp (-α〓 1・n・L) I 3 = KI〓 2 (0) exp (−α〓 2・n・L) However, , λ 1 is the wavelength of the reference light, λ 2 is the wavelength of the measurement light,
α〓 1 is the absorption coefficient of the gas to be measured for the wavelength〓 1 , α〓 2
is the absorption coefficient of the gas to be measured for the wavelength λ 2 , I〓 1
(0) is the initial intensity of the reference light, I〓 2 (0) is the initial intensity of the measurement light, n is the volume molar concentration of the gas to be measured, L is the optical path length, and K is the optical loss other than light absorption by the gas to be measured. This is a coefficient representing loss due to dirt on window glass existing on the optical path, loss due to optical axis deviation, etc. The light intensity I1 represents the light source intensity, and by monitoring the decrease in brightness due to light source deterioration, it is possible to estimate the light source life,
Determine when it is time to replace it. The transmittance τ 1 of the reference light is τ 1 = I 2 /I 1 = K exp(−α〓 1
n・L). Since α〓 1 is not absorbed by the gas to be measured,
The reference light may be α〓 1 ≒0, and τ 1 =K. Since τ 1 represents unnecessary optical loss on the optical path, by monitoring τ 1 , it is possible to monitor dirt on the window glass, determine when it is time to replace it, and determine the presence or absence of optical axis deviation. In addition, the transmittance τ 2 of the measurement light is expressed as τ 2 =I 3 /I 1 =K [I〓 2 (0) / I〓 1 (0)]
2
n・L). Furthermore, the ratio τ of transmittance τ 1 and τ 2 is τ=τ 21 = [I〓 2

〔0〕/I〓1(0)〕exp(−α
2
n・L) となり、経時変化する係数Kを消去できる。 本装置においては、同一光源から参照光、測定
光を得ているから、それぞれの光源強度I〓1(0)、
I〓2(0)の間には、一定の関係があり、I〓1(0)
の値からI〓2(0)の値を推定することができる。
従つて光源強度I〓1(0)を測定するだけで参照光
と測定光の光強度の比I〓2(0)/I〓1(0)を知る
ことができる。いまこの比をCとおくと、 τ=C・exp(−α〓2・n・L) …(1) となる。式(1)の両辺の対数をとり、被測定気体の
体積モル濃度nについて整理すると、 n=−(lnτ/c)/(α〓2・L) …(2) となる。そこで式(2)と、気体の状態方程式 p=nRT (但し、pは被測定気体の分圧、Tは被測定気体
の温度、Rは気体定数)を組合せると、 p=−〔RT/(α〓2・L)〕lnτ/c …(3) となり、式(3)より、被測定気体の分圧を求めるこ
とができる。 本発明はこのような測定原理に基ずくもので、
以下図面により本発明について説明する。第1図
および第2図は本発明を実施する装置の実例の説
明図で、第1図は本発明の光学系を、第2図は信
号処理系を示すものである。図中1は投受筐体、
2は光源でその光は楕円面鏡3、軸はずし放物面
鏡4を経て平行光束となり、さらに、ライトチヨ
ツパ5により周波数fで断続するパルス光となつ
てビームスプリツタ6に到達し、その一部は該ビ
ームスプリツタ6の表面で反射し、集光レンズ
7、被測定気体に吸収を受けない波長〓1の光のみ
を透過するフイルタ8を経て光検出器9に射入
し、その強度に応じた電気信号L1に変換され、
さらにCRアクテイブフイルタ20を経て参照光
の始強度信号I1となる。一方ビームスプリツタ6
を透過した光は投受光筐体1に設けた窓17から
外部に放出され、被測定気体18を透過して吸収
を受け、さらにレトロリフレクタ19により反射
し、再び被測定気体18、窓17を透過してビー
ムスプリツタ6の裏面に至り、反射し、第2のビ
ームスプリツタ10に到達し、その一部は該ビー
ムスプリツタ10の表面で反射し、集光レンズ1
1は、前記フイルタ8と同様に被測定光の吸収を
受ない波長〓1の光のみを透過するフイルタ12を
経て光検出器13に入射し、その強度に応じた電
気信号L2に変換され、さらにCRアクテイブフイ
ルタ20を経て参照光の終強度信号I2となる。ま
た、ビームスプリツタ10を透過した光は集光レ
ンズ14、被測定気体により吸収を受ける波長〓2
の光のみを透過するフイルタ15を透過し、光検
出器16に射入し、その強度に応じた電気信号
L3に変換され、さらにロツクインアンプ21に
より、ライトチヨツパ5からの周波数fの同期信
号に対応する成分のみが抽出されて測定光の終強
度信号I3となる。このようにして、光強度I1〜I3
を測定できるので、これから前記のように参照光
および測定光の透過率τ1,τ2を求めることができ
る。さらに前記の式(1)および(2)により被測定気体
の体積モル濃度nを、また式(3)から被測定気体の
分圧Pを求めることができる。なお、この場合被
測定気体の温度Tは例えば熱電対22により測定
し、式(3)に代入する。これらの演算はA/D変換
器23を介して演算機構24に導き処理すること
によつて行なうことができる。 (実施例) 次に本発明をメタンガス分圧測定に適用した場
合の実施例を示す。 参照光として〓1=1600μm、測定光として〓2
3.31μmの光を使用し、光距離L=34cm、気体温
度T=30℃の条件でメタンガスの分圧を測定し
た。その結果を第3図に示す。縦軸は透過率比τ
をセミログプロツトしてもので、横軸はメタンガ
スの分圧およごモル濃度である。この図から明ら
かなように、透過率比τの対数と分圧および濃度
はそれぞれ式(3)および式(2)に示すとおり、比例関
係にあり、従つて透過率比τの変化からメタンガ
スの分圧測定又は濃度測定を行なうことができ
る。 (発明の効果」 以上説明したように、本発明によれば、被測定
気体が持つ温度、圧力などの条件によらず、測定
光および参照光を被測定気体中に通過させるのみ
で、常時背景雑音や、光源の劣化による光源輝度
低下の影響、透過窓等の光学系の途中の汚れによ
る光損失の影響、光軸のずれによる光損失の影響
等、を除去しつつ、多種類の気体濃度および分圧
を測定することができる。しかも測定装置内に機
械的な駆動部分を持たないので装置の耐久性、信
頼性にも優れ、常に確実な測定を行なうことがで
きる。また、本発明の適用により、化学反応のオ
ンラインモニタが可能となるので、例えば鉄鋼業
におけるステンレス光輝焼鈍炉、溶鋼真空脱ガス
装置の制御、半導体製造プロセスにおけるCVD
プロセス、拡散炉の制御、食糧関連プロセスにお
ける穀物を始めとする各種類乾燥ラインの制御、
その他各種産業における製造プロセスの積極的な
制御を行なうことができる等、化学反応の伴う各
種気体生成や各種気体成分を含む工業プロセスに
適用して著しい効果を有する。
[0]/I〓 1 (0)〕exp(−α
2
n・L), and the coefficient K that changes over time can be eliminated. In this device, the reference light and measurement light are obtained from the same light source, so the respective light source intensities I〓 1 (0),
There is a certain relationship between I〓 2 (0), and I〓 1 (0)
The value of I〓 2 (0) can be estimated from the value of .
Therefore, simply by measuring the light source intensity I〓 1 (0), the ratio of the light intensities of the reference light and the measurement light I〓 2 (0)/I〓 1 (0) can be determined. Now let this ratio be C, then τ=C・exp(−α〓 2・n・L)…(1). Taking the logarithm of both sides of equation (1) and rearranging it for the volume molar concentration n of the gas to be measured, it becomes n=-(lnτ/c)/(α〓 2 ·L) (2). Therefore, by combining equation (2) and the gas state equation p=nRT (where p is the partial pressure of the gas to be measured, T is the temperature of the gas to be measured, and R is the gas constant), we get p=-[RT/ (α〓 2・L)] lnτ/c (3), and the partial pressure of the gas to be measured can be obtained from equation (3). The present invention is based on such a measurement principle,
The present invention will be explained below with reference to the drawings. FIGS. 1 and 2 are explanatory diagrams of an example of an apparatus for implementing the present invention, with FIG. 1 showing an optical system of the present invention and FIG. 2 showing a signal processing system. In the figure, 1 is the throw/receive case;
Reference numeral 2 denotes a light source, and the light passes through an ellipsoidal mirror 3 and an off-axis parabolic mirror 4 to become a parallel beam of light, and is then turned into a pulsed light pulsed at a frequency f by a light chopper 5, reaching a beam splitter 6. The light is reflected by the surface of the beam splitter 6, passes through the condensing lens 7, and the filter 8, which transmits only light of wavelength 1 that is not absorbed by the gas to be measured, and enters the photodetector 9, where its intensity is measured. is converted into an electrical signal L 1 according to
Further, it passes through the CR active filter 20 and becomes the initial intensity signal I1 of the reference light. On the other hand, beam splitter 6
The light that has passed through is emitted to the outside from the window 17 provided in the light emitting/receiving housing 1, is transmitted through the gas to be measured 18, is absorbed, is further reflected by the retroreflector 19, and is reflected again through the gas to be measured 18 and the window 17. It passes through the beam splitter 6, reaches the back surface of the beam splitter 6, is reflected, and reaches the second beam splitter 10. A part of it is reflected by the surface of the beam splitter 10, and is reflected by the condenser lens 1.
1 enters the photodetector 13 through a filter 12 that transmits only light of wavelength 1 which does not absorb the measured light, similar to the filter 8, and is converted into an electrical signal L2 according to its intensity. , and further passes through the CR active filter 20 to become the final intensity signal I2 of the reference light. In addition, the light transmitted through the beam splitter 10 is absorbed by the condensing lens 14 and the gas to be measured at a wavelength 〓 2
The light passes through a filter 15 that transmits only the light of
Further , the lock-in amplifier 21 extracts only the component corresponding to the synchronization signal of the frequency f from the light chopper 5, resulting in the final intensity signal I3 of the measurement light. In this way, the light intensity I 1 ~ I 3
can be measured, and from this, the transmittances τ 1 and τ 2 of the reference light and measurement light can be determined as described above. Further, the volume molar concentration n of the gas to be measured can be determined from the above equations (1) and (2), and the partial pressure P of the gas to be measured can be determined from the equation (3). In this case, the temperature T of the gas to be measured is measured by, for example, the thermocouple 22, and substituted into equation (3). These calculations can be performed by leading the data to the calculation mechanism 24 via the A/D converter 23 for processing. (Example) Next, an example will be shown in which the present invention is applied to methane gas partial pressure measurement. As reference light = 1 = 1600μm, as measurement light = 2 =
The partial pressure of methane gas was measured using 3.31 μm light under conditions of optical distance L = 34 cm and gas temperature T = 30°C. The results are shown in FIG. The vertical axis is the transmittance ratio τ
is a semi-log plot, where the horizontal axis is the partial pressure and molar concentration of methane gas. As is clear from this figure, the logarithm of the transmittance ratio τ, the partial pressure, and the concentration are in a proportional relationship as shown in equations (3) and (2), respectively, and therefore, from the change in the transmittance ratio τ, the Partial pressure measurements or concentration measurements can be made. (Effects of the Invention) As explained above, according to the present invention, the measurement light and the reference light are simply passed through the gas to be measured, regardless of the conditions such as the temperature and pressure of the gas to be measured, and the light is always in the background. While eliminating noise, the influence of light source brightness reduction due to light source deterioration, the influence of light loss due to dirt in the optical system such as the transmission window, the influence of light loss due to misalignment of the optical axis, etc., the concentration of various gases can be adjusted. and partial pressure.Furthermore, since there is no mechanically driven part within the measuring device, the device has excellent durability and reliability, and reliable measurements can be performed at all times.Furthermore, the present invention Application enables online monitoring of chemical reactions, so it can be used, for example, in the control of stainless steel bright annealing furnaces in the steel industry, vacuum degassing equipment for molten steel, and CVD in semiconductor manufacturing processes.
process, control of diffusion furnaces, control of various types of drying lines including grains in food-related processes,
In addition, it can actively control manufacturing processes in various industries, and has remarkable effects when applied to industrial processes involving the production of various gases accompanied by chemical reactions and various gaseous components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例の構成を
示すブロツク図であり、第1図は光学系を、第2
図は信号処理系を示す。第3図は本発明によりメ
タンガスの分圧を測定した結果を示すグラフであ
る。 1:投受光筐体、2:光源、3:楕円面鏡、
4:軸はずし放物面鏡、5:ライトチヨツパー、
6:ビームスプリツタ、7:集光レンズ、8:フ
イルタ、9:光検出器、10:ビームスプリツ
タ、11:集光レンズ、12:フイルタ、13:
光検出器体、14:集光レンズ、15:フイル
タ、16:光検出器、17:窓、18:被測定気
体、19:レトロリフレクタ、20:CRアクテ
イブフイルタ、21:ロツクインアンプ、22:
熱電対、23:A/D変換器、24:演算機構、
L1,L2,L3:電気信号、I1:参照光の始強度信
号、I2:参照光の終強度信号、I3:測定光の終強
度信号。
1 and 2 are block diagrams showing the configuration of an embodiment of the present invention.
The figure shows the signal processing system. FIG. 3 is a graph showing the results of measuring the partial pressure of methane gas according to the present invention. 1: light emitting and receiving housing, 2: light source, 3: ellipsoidal mirror,
4: Off-axis parabolic mirror, 5: Light chopper,
6: Beam splitter, 7: Condensing lens, 8: Filter, 9: Photodetector, 10: Beam splitter, 11: Condensing lens, 12: Filter, 13:
Photodetector body, 14: Condenser lens, 15: Filter, 16: Photodetector, 17: Window, 18: Gas to be measured, 19: Retroreflector, 20: CR active filter, 21: Lock-in amplifier, 22:
Thermocouple, 23: A/D converter, 24: Arithmetic mechanism,
L 1 , L 2 , L 3 : Electrical signal, I 1 : Reference light initial intensity signal, I 2 : Reference light final intensity signal, I 3 : Measurement light final intensity signal.

Claims (1)

【特許請求の範囲】 1 光源から被測定気体に向けて放射される光ビ
ームの一部を分割し、被測定気体に吸収を受けな
い波長をもつ参照光としてその始強度を測定する
とともに、残りの測定用光ビームを被測定気体を
通過させ反射させた後、該測定用光ビームを分割
し、その一方から被測定気体に吸収を受けない波
長をもつ参照光の終強度を測定し、他方から被測
定気体に吸収を受ける波長をもつ測定光の終強度
を測定し、これら参照光の始強度および終強度、
および測定光の終強度から被測定気体の濃度およ
び分圧を求めることを特徴とする気体の濃度およ
び分圧測定方法。 2 光源から被測定気体に向けて放射される測定
光の光軸上にチヨツパーおよび測定光の一部を分
割するビームスプリツタを設け、さらに該ビーム
スプリツタの表面に対向して被測定気体に吸収を
受けない波長λ1の光のみを透過するフイルタと光
検出器とを設けるとともに、ビームスプリツタの
表面に対向して前記の波長λ1の光のみを透過する
フイルタと光検出器を設け、さらに該ビームスプ
リツタの表面に被測定気体により吸収を受ける波
長λ2の光のみを透過するフイルタと光検出器を設
け、さらに測定光を投射する被測定気体の後方に
測定光を反射するレトロリフレクタを設け、かつ
前記各光検出器からの信号を入力し被測定気体の
濃度および分圧を演算する信号処理系とを設けた
ことを特徴とする気体の濃度および分圧測定装
置。 3 光源、チヨツパー、第1および第2のビーム
スプリツタ、透過フイルタ、光検出器等を筺体に
収容し、さらに筺体に窓を設けた特許請求の範囲
第2項記載の気体の濃度および分圧測定装置。
[Claims] 1. Part of the light beam emitted from the light source toward the gas to be measured is divided, and its initial intensity is measured as a reference beam with a wavelength that is not absorbed by the gas to be measured, and the remaining beam is divided into two parts. After passing the measurement light beam through the gas to be measured and reflecting it, split the measurement light beam, measure the final intensity of the reference light having a wavelength that is not absorbed by the gas to be measured from one part, and measure the final intensity of the reference light having a wavelength that is not absorbed by the gas to be measured from the other part. The final intensity of the measurement light having a wavelength that is absorbed by the gas to be measured is measured, and the initial and final intensities of these reference lights,
and a method for measuring the concentration and partial pressure of a gas, characterized in that the concentration and partial pressure of the gas to be measured are determined from the final intensity of the measurement light. 2. A chopper and a beam splitter that splits a part of the measurement light are provided on the optical axis of the measurement light emitted from the light source toward the gas to be measured, and a beam splitter that splits a part of the measurement light is provided on the optical axis of the measurement light emitted from the light source toward the gas to be measured. A filter and a photodetector are provided that transmit only the light of wavelength λ 1 that is not absorbed, and a filter and a photodetector that transmit only the light of wavelength λ 1 are provided opposite to the surface of the beam splitter. Furthermore, a filter and a photodetector are provided on the surface of the beam splitter to transmit only the light having a wavelength λ 2 that is absorbed by the gas to be measured, and further the measurement light is reflected behind the gas to be measured onto which the measurement light is projected. 1. A gas concentration and partial pressure measuring device, comprising a retroreflector and a signal processing system that receives signals from each of the photodetectors and calculates the concentration and partial pressure of the gas to be measured. 3. The concentration and partial pressure of the gas according to claim 2, wherein the light source, chopper, first and second beam splitters, transmission filter, photodetector, etc. are housed in a housing, and the housing is further provided with a window. measuring device.
JP61043220A 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas Granted JPS62201334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61043220A JPS62201334A (en) 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61043220A JPS62201334A (en) 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas

Publications (2)

Publication Number Publication Date
JPS62201334A JPS62201334A (en) 1987-09-05
JPH0565023B2 true JPH0565023B2 (en) 1993-09-16

Family

ID=12657830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61043220A Granted JPS62201334A (en) 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas

Country Status (1)

Country Link
JP (1) JPS62201334A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031857B8 (en) * 2005-06-23 2006-11-16 GfG Ges. für Gerätebau mbH Optical analyzer
CN103185706A (en) * 2011-12-27 2013-07-03 中国科学院城市环境研究所 Laser measurement method and device for light obscuration of inorganization-emission particulate smoke plume
JP6316274B2 (en) 2012-03-27 2018-04-25 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Sensor configuration for measuring substance concentration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140192A (en) * 1974-06-17 1976-04-03 Aeronutronic Ford Corp Hibunsantagasubunsekisochi
JPS58213235A (en) * 1982-06-04 1983-12-12 Fujitsu Ltd Gas detection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140192A (en) * 1974-06-17 1976-04-03 Aeronutronic Ford Corp Hibunsantagasubunsekisochi
JPS58213235A (en) * 1982-06-04 1983-12-12 Fujitsu Ltd Gas detection system

Also Published As

Publication number Publication date
JPS62201334A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
US5331409A (en) Tunable diode laser gas analyzer
US20110042570A1 (en) Absorption Biased NDIR Gas Sensing Methodology
US4471220A (en) System for monitoring trace gaseous ammonia concentration in flue gases
JPH08304282A (en) Gas analyzer
JP2021170036A (en) Material characteristic inspection device
JPH0565023B2 (en)
JP2512423B2 (en) Method and apparatus for measuring gas concentration and partial pressure
JPH0638058B2 (en) Gas concentration and partial pressure measuring device
JPS6114529A (en) Measuring method of temperature using optical fiber
JPS58156837A (en) Measuring device for optical gas analysis
JP2540670B2 (en) Multi-type gas detector using optical fiber
US4499379A (en) Infrared radiation gas analyzer
JPS63263447A (en) Gas concentration detector
JPH0456145A (en) Measuring device for substrate temperature in plasma
JP4906477B2 (en) Gas analyzer and gas analysis method
JPH03220444A (en) Measuring method of absorbing state and measuring apparatus of absorption
JPS6330996Y2 (en)
JPH1183734A (en) Gas detector and gas detecting method
CN214374255U (en) High-precision photoacoustic spectrometer
JPH01197631A (en) Gas concentration measuring method
RU2207564C2 (en) Procedure determining concentration of alcohol and facility for its implementation
JPS6252436A (en) Gas detector
JP2560231B2 (en) Sulfate ion concentration detection sensor by wavelength in mid-infrared region and sulfate ion concentration detection method
JPS6114528A (en) Measuring method of temperature using optical fiber
JPH0112188Y2 (en)