JPS62201334A - Method and device for measuring concentration and partial pressure of gas - Google Patents

Method and device for measuring concentration and partial pressure of gas

Info

Publication number
JPS62201334A
JPS62201334A JP61043220A JP4322086A JPS62201334A JP S62201334 A JPS62201334 A JP S62201334A JP 61043220 A JP61043220 A JP 61043220A JP 4322086 A JP4322086 A JP 4322086A JP S62201334 A JPS62201334 A JP S62201334A
Authority
JP
Japan
Prior art keywords
light
gas
measured
intensity
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61043220A
Other languages
Japanese (ja)
Other versions
JPH0565023B2 (en
Inventor
Toru Inouchi
徹 井内
Yukio Nakamori
中森 幸雄
Taizo Hoshino
泰三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61043220A priority Critical patent/JPS62201334A/en
Publication of JPS62201334A publication Critical patent/JPS62201334A/en
Publication of JPH0565023B2 publication Critical patent/JPH0565023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To take a measurement securely by passing measurement light and reference light through gas to be measured without reference to conditions of the temperature, pressure, etc., of the gas to be measured. CONSTITUTION:Light beams from a light source 2 are made parallel and become pulse light beams by passing through a light chopper 5 and the pulse light beams reach a beam splitter 6; and part of it are reflected by the surface of the splitter 6 and enter a photodetector 9. The light beams are converted into an electric signal L1, which is the start intensity signal of the reference light. Light beams transmitted through the splitter 6, on the other hand, are emitted out of a window 17 and absorbed when passing through the gas 18 to be measured, and the light beams are reflected by a retroreflector 19 to reach the reverse surface of the splitter 6 and then reach a beam splitter 10. Part of it are incident on a photodetector 13 and converted into an electric signal L2 which is the end intensity signal of the reference light. Further, light beams passed through the splitter 10 are incident on a photodetector 16 and converted into an electric signal L3 and a lock-in amplifier extracts only a component corresponding to a synchronizing signal of frequency from the chopper 5 to become the end intensity signal of the measurement light. Thus, secure measuring operation is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体の濃度および分圧をalll定するもの
で、特に鉄鋼業において使用される各種熱処理炉内にお
ける気体の濃度および分圧の1lll+定、管理や各業
種において使用されている各種プロセスにおける雰囲気
気体の濃度および分圧の測定、管理等しこ適用されるも
のである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is for determining all the concentrations and partial pressures of gases, and particularly for determining the concentrations and partial pressures of gases in various heat treatment furnaces used in the steel industry. It is widely applied to measurements and management of atmospheric gas concentrations and partial pressures in various processes used in various industries.

〔従来の技術〕[Conventional technology]

鉄鋼業において使用される加熱炉、焼鈍炉を始め、気体
の成分濃度および分圧が管理された雰囲気中で行なわれ
るプロセスは数多く存在し、そこでは気体の濃度および
分圧を測定することが不可欠である。そのため現在は、
測定用プローブを被測定雰囲気中に直接挿入しB111
定を行う方法や、被測定気体(以下ガスという)を適当
な装置を用いて吸引しプロセスの外部で測定する方法な
どが行われている。
There are many processes, such as heating furnaces and annealing furnaces used in the steel industry, that are carried out in an atmosphere where the concentration and partial pressure of gases are controlled, and it is essential to measure the concentration and partial pressure of gases. It is. Therefore, currently,
Insert the measurement probe directly into the atmosphere to be measured.B111
There are methods in which the gas to be measured (hereinafter referred to as gas) is sucked in using an appropriate device and measured outside the process.

しかしながらこれらの方法は、例えばプロセスの雰囲気
が高温、高圧状態にある場合や腐食性の強い気体成分か
ら構成されている場合等々、苛酷な条件下では、」す走
用プローブの耐熱、耐圧、耐腐食性能に限界があること
や、ガスを外部に取出すことに起因して、ガス成分が失
われてしまうことがある等々、種々の問題があり、正確
な41す定を行なうことができない場合があった。
However, these methods cannot be used under harsh conditions, such as when the process atmosphere is at high temperatures and pressures, or when it consists of highly corrosive gas components. There are various problems such as limited corrosion performance and gas components being lost due to the gas being taken out, and it may not be possible to make accurate 41 measurements. there were.

本発明者は、上記のような問題点を解決し、光の吸収強
度を利用し、測定用の光のプロセス中の管理雰囲気中を
直接通過させることにより、そのガス成分の濃度および
分圧を正確にするための方法および装置を発明し、特願
昭59−169994号、同5!J−L6!11995
号および同59−169996号に開示した。
The inventor of the present invention solved the above-mentioned problems and determined the concentration and partial pressure of gas components by using the absorption intensity of light and passing the measuring light directly through the controlled atmosphere during the process. Invented a method and device for accuracy, and filed Japanese Patent Application No. 59-169994, No. 5! J-L6!11995
No. 59-169996.

この方法および装置tXは、ガス成分の濃度および分圧
を正確に81g定することができ、非常に有効であるが
、その測定機構中に機械的駆動部分があるため、使用環
境によっては、作動中駆動部分に支障を来たす可能性が
考えられる。
This method and device tX can accurately determine the concentration and partial pressure of gas components by 81g, and are very effective. There is a possibility that the middle drive part may be affected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前記の先願発明における機械的駆動部分をな
くシ、装置の耐久性、信頼性の一層の向上を図るととも
に、光源の寿命、光学系の汚れ、光軸のずれ等を監視し
、それらの影fJを補正し。
The present invention eliminates the mechanical drive part in the prior invention, further improves the durability and reliability of the device, and monitors the life of the light source, dirt on the optical system, misalignment of the optical axis, etc. , correct their shadow fJ.

被alll定ガスの濃度および分圧の測定を正確に行な
うことを目的とするものである。
The purpose is to accurately measure the concentration and partial pressure of all constant gases.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、光源から被測定気体に向けて放射される光の
一部を分割し、参照光としてその始強度を測定するとと
もに残りの光を被測定気体を通過させ反射させて後、該
測定光を分割し、その一方から参照光の終強度を測定し
、他方から測定光の強度を預り定し、これらの参照光の
始強度および終強度、および測定光の強度から被測定気
体の濃度および分圧allll法:および光源から放射
される測定光の光軸上にチョッパーおよび測定光の一部
を分割するビームスプリッタを設け、さらに該ビームス
プリッタの表面に対向して被測定気体に吸収を受けない
波長入1の光のみを透過するフィルタとするためのビー
ムスプリッタを光軸上に配置し、さらに該ビームスプリ
ッタに対向して波長入1の光のみを透過するフィルタと
光検出器とを1没けるるとともに、ビームスプリッタの
裏面に対向して前記の波長A1の光のみを透過するフィ
ルタと光検出器を設け、さらに該ビームスプリッタの裏
面に被測定気体しこより吸収を受ける波長入2の光のみ
を透過するフィルタと光検出器を設け。
The present invention splits a part of the light emitted from the light source toward the gas to be measured, measures its initial intensity as a reference beam, and passes the remaining light through the gas to be measured, reflects it, and then measures it. Split the light, measure the final intensity of the reference beam from one side, and determine the intensity of the measurement beam from the other, and determine the concentration of the gas to be measured from the initial and final intensities of these reference beams and the intensity of the measurement beam. and partial pressure allll method: A chopper and a beam splitter are provided on the optical axis of the measurement light emitted from the light source, and a beam splitter that splits a part of the measurement light is placed opposite the surface of the beam splitter to absorb absorption into the gas to be measured. A beam splitter is arranged on the optical axis to serve as a filter that transmits only the light of wavelength input 1 that is not received, and a photodetector and a filter that transmits only the light of wavelength input 1 are arranged opposite to the beam splitter. A filter and a photodetector are provided opposite to the back surface of the beam splitter to transmit only the light of the wavelength A1, and a filter and a photodetector are provided on the back surface of the beam splitter to absorb the wavelength A1, which is absorbed by the gas to be measured. Equipped with a filter and photodetector that only transmits light.

さらに測定光を投射する被互定気体の後方に測定光を反
射するレトロリンレクタを設け、かつ前記各光検出器か
らの信号を入力し、被測定気体の濃度および分圧を演算
する信号処理系とを設けたことを特徴とする気体の濃度
および分圧a1す定装置に関するものである。
Furthermore, a retrolin reflector is provided behind the gas to be measured to which the measurement light is projected, and signals from each of the photodetectors are inputted, and signal processing is performed to calculate the concentration and partial pressure of the gas to be measured. The present invention relates to an apparatus for determining the concentration and partial pressure a1 of a gas, characterized in that the present invention is provided with a gas concentration and partial pressure a1 system.

そこで先ず本発明の測定原理について説明する。First, the measurement principle of the present invention will be explained.

第1表に示すように気体分子は分子振動に対応して特定
の波長の光を強く吸収する。そこで、この特定の吸収波
長をもつ光を用いて、気体の吸収強度を測定し、これか
ら測定対象ガスの濃度を測定する方法は1例えば、特公
昭51−20’JO/I号公報に開示されているように
すでに行なわれている。本発明は上記の特定の吸収波長
をもつ光(以下測定光という。)の他に、吸収波長に近
いが、光吸収を受けない波長の光(以下参照光という)
を用い、しかも両者が同一光路を通過するようにし、か
つこの測定光および参照光について光源の光強度(以下
始強度という)および被測定気体中を通過し、該気体に
よる光吸収を受けた後の光強度(以下線強度という)を
測定し、これらの値からガス濃度の光路に沿う平均値を
all定しようとするものである。
As shown in Table 1, gas molecules strongly absorb light of specific wavelengths in response to molecular vibrations. Therefore, a method of measuring the absorption intensity of a gas using light having a specific absorption wavelength and measuring the concentration of the gas to be measured is disclosed in, for example, Japanese Patent Publication No. 51-20' JO/I. This is already being done. In addition to the light having the above-mentioned specific absorption wavelength (hereinafter referred to as measurement light), the present invention also provides light with a wavelength close to the absorption wavelength but not subject to optical absorption (hereinafter referred to as reference light).
The measurement light and the reference light are used to pass through the light intensity of the light source (hereinafter referred to as the initial intensity) and the gas to be measured, and after receiving light absorption by the gas. The purpose is to measure the light intensity (hereinafter referred to as linear intensity) of the light intensity and to determine the average value of the gas concentration along the optical path from these values.

一般に、光吸収はLambert −neerの法則に
従いI  (L) = I oexp  (−11・n
−L)と表わされる。但し、■(。)は始強度、口は被
a+15定気体の体積モル濃度、Lは光路長、αは吸収
係数、I(L)は終強度である。なお、吸収係数αは被
d1g定気体、使用波長により一濠的に決まる物理定数
である。
In general, light absorption follows the Lambert-neer law: I (L) = I oexp (-11・n
−L). However, ■ (.) is the initial intensity, the opening is the volume molar concentration of the a+15 constant gas, L is the optical path length, α is the absorption coefficient, and I (L) is the final intensity. Note that the absorption coefficient α is a physical constant that is determined entirely by the d1g constant gas and the wavelength used.

本発明によりqB+られるつ′コ強度11〜I3は下記
のように表わされろ。ここで、11は投光部の検出器で
検出されたイn−弓出力、I2とI3はそれぞれ受光部
の2つの検知8にで検出された信号出力である。
The force intensities 11 to I3 obtained by qB+ according to the present invention can be expressed as follows. Here, 11 is the in-bow output detected by the detector of the light projecting section, and I2 and I3 are the signal outputs detected by the two detectors 8 of the light receiving section, respectively.

11=[い1 (0) I2   =KIAI    (0)   exp  
 (−(IAI   ・  TI   ・  L)I3
   =K  I   A2    (0)   ex
p   (−α 入 2   ・  n   ・  L
)但し、A1は参照光の波長、A2はill!l定光の
波長。
11=[i1 (0) I2=KIAI (0) exp
(-(IAI・TI・L)I3
=K I A2 (0) ex
p (−α included 2 ・ n ・ L
) However, A1 is the wavelength of the reference light, and A2 is ill! l Constant wavelength of light.

αA1は波長λ1に対する被測定気体の吸収係数。αA1 is the absorption coefficient of the gas to be measured for wavelength λ1.

αA2は波長λ2に対する被81す定気体の吸収係数。αA2 is the absorption coefficient of the constant gas at wavelength λ2.

IAI (0)は参照光の始強度、1入2 (0)は測
定光の始強度、nは被測定気体の体積モル濃度。
IAI (0) is the initial intensity of the reference light, 1 in 2 (0) is the initial intensity of the measurement light, and n is the volume molar concentration of the gas to be measured.

Lは光路長、には被測定気体による光吸収以外の光損失
を表わす係数で、光路上に存在する窓ガラスのよごれに
よる損失、光1軸ずれによる損失等を表わす。
L is the optical path length, which is a coefficient representing optical loss other than light absorption by the gas to be measured, such as loss due to dirt on window glass existing on the optical path, loss due to deviation of one optical axis, etc.

光強度I、は光源強度を表わし、光源の劣化による輝度
低下を監視することで、光源寿命の推定、交換時期の見
極めを行なう。参照光の透過率τ1τH=12 / I
+ =K  exp (−(EAI  In−L)とな
る。6人1は被測定気体に吸収されないので。
The light intensity I represents the light source intensity, and by monitoring the reduction in brightness due to deterioration of the light source, the life of the light source is estimated and the time for replacement is determined. Transmittance of reference light τ1τH=12/I
+ = K exp (-(EAI In-L). Since 6 people 1 are not absorbed by the gas to be measured.

参照光は、 α入1″−0 としてよく、 τ1=l( となる。I1は光路上での不要な光損失を表わすので、
I1を監視することにより、窓ガラスのよごれの監視、
交換時期判定、光軸ずれの有無判定を行なう。また、測
定光の透過率で2は、τ2:I3 /It =K(IA
2(0)/I人+ (0)) exp(a A2 ・n
・I−)となる。さらに透過率τ1.τ2の比τは2c
 = I2 /T I =(IA2 (0)/Ixt 
(0)) cxp((L A2 ・n・L)となり、経
時変化する係数Kを消去できる。
The reference light may have α input of 1″-0, and τ1=l(. Since I1 represents unnecessary optical loss on the optical path,
Monitoring of dirt on window glass by monitoring I1,
Determines when it is time to replace it and determines whether there is optical axis misalignment. In addition, the transmittance of the measurement light is 2, which is τ2:I3/It =K(IA
2 (0) / I people + (0)) exp (a A2 ・n
・I-). Furthermore, the transmittance τ1. The ratio τ of τ2 is 2c
= I2 / T I = (IA2 (0) / Ixt
(0)) cxp((L A2 ・n・L), and the coefficient K that changes over time can be eliminated.

本装置においては、同一光源から参照光、測定光を得て
いるから、それぞれの光源強度Tい1(0)、IA2(
O)の1iilには、一定の関係があり、Iい1(0)
の値から工い。(0)の値を推定することができろ。従
って光源強度I入】(0)を811定するだけで参照光
と測定光の光強度の比Iい2 (0)/IAI (0)
を知ることができる。いまこの比をCとおくと、 τ=C−exρ(−αA2 n−L)・・・(1)とな
る。式(1)の両辺の対数をとり、被測定気体の体積モ
ル濃度nについて整理すると、n =−(Q n c 
/ c)/(αA2 ・L)”・(2)となる。そこで
式(2)と、気体の状態方程式p == It RT (但し、pは被測定気体の分圧、Tは被測定気体の温度
、Rは気体定数)を組介せると、p =−(RT/(0
人2  ・L))Qn で/c −(3)となり1式(
3)より、被測定気体の分圧を求めることができる。
In this device, the reference light and measurement light are obtained from the same light source, so the respective light source intensities T1(0) and IA2(
There is a certain relationship between 1iil of O), and Ii1(0)
Calculate from the value of . Can you estimate the value of (0)? Therefore, by simply determining the light source intensity I (0), the ratio of the light intensities of the reference light and measurement light is I2 (0)/IAI (0)
can be known. Letting this ratio be C, τ=C−exρ(−αA2 n−L) (1). Taking the logarithm of both sides of equation (1) and rearranging the volume molar concentration n of the gas to be measured, n = -(Q n c
/ c)/(αA2 ・L)”・(2). Therefore, equation (2) and the state equation of gas p == It RT (where p is the partial pressure of the gas to be measured and T is the gas to be measured temperature, R is a gas constant), then p = -(RT/(0
Person 2 ・L)) Qn becomes /c - (3) and 1 equation (
3), the partial pressure of the gas to be measured can be determined.

本発明はこのような測定原理に基ずくもので、以下図面
により本発明について説明する。第1図および第2図は
本発明を実施する装置の実例の説明図で、第1図は本発
明の光学系を、第2図は信号処理系を示すものである。
The present invention is based on such a measurement principle, and will be explained below with reference to the drawings. FIGS. 1 and 2 are explanatory diagrams of an example of an apparatus for implementing the present invention, with FIG. 1 showing an optical system of the present invention and FIG. 2 showing a signal processing system.

図中1は投受筐体。1 in the figure is the throw/receive case.

2は光源でその光は楕円面鏡3、軸はずし放物面鏡4を
経て平行光束となり、さらに、ライトチョッパ5により
周波数fで断続するパルス光となってビー11スプリツ
タ6に到達し、その一部は該ビームスプリッタ6の表面
で反射し、集光レンズ7、被測定気体に吸収を受けない
波長A1の光のみを透過するフィルタ8を経て光検出?
i:i 9 kこ封入し、その強度に応じた電気信℃L
Iに変換され、さらにCRアクティブフィルタ20を経
て参照光の始強度信号■1どなる。一方ビームスプリッ
タ6を透過した光は投受光筐体1に設けた窓17から外
部に放出され、被41す定気体18を透過して吸収を受
け、さらにレトロリフレクタ19により反射し、再び被
測定気体18、窓17を透過してビームスプリッタ6の
裏面に至り1反射し、第2のビームスプリッタ10に到
達し、その一部は該ビームスプリッタ10の表面で反射
し、集光レンズ11は、前記フィルタ8と同様に被測定
光の吸収を受ない波長入1の光のみを透過するフィルタ
12を経て光検出器13に入射し、その強度に応じた電
気信号L2に変換され、さらにCRアタティブフィルタ
20を経て参照光の終強度信号I2どなる。また、ビー
ムスプリッタ10を透過した光は集光レンズ14、被1
1111定気体により吸収を受ける波長入。の光のみを
透過するフィルタ15を透過し、光検出器16に射入し
、その強度に応じた電気信号L3に変換され、さらにロ
ックインアンプ21により、ライ]−チョッパ5からの
周波数fの同期信号に対応する成分のみが抽出されて測
定光の終強度信号I3となる。このようにして、光強度
11〜■3を測定できるので、これから前記のように参
照光および測定光の透過率τl、τ2を求めることがで
きる。さらに前記の式(1)および(2)により被測定
気体の体積モル濃度nを、また式(3)から被測定気体
の分圧Pを求めることができる。なお、この場合被測定
気体の温度Tは例えば熱雷対22により測定し、式(3
)に代入する。これらの演算はA/D変換器23を介し
て演算*構24に導き処理することによって行なうこと
ができる。
Reference numeral 2 denotes a light source, and the light passes through an ellipsoidal mirror 3 and an off-axis parabolic mirror 4 to become a parallel beam of light, and is then turned into a pulsed light beam intermittently at a frequency f by a light chopper 5, which reaches the beam 11 splitter 6. A part of the light is reflected by the surface of the beam splitter 6, passes through a condenser lens 7, and a filter 8 that transmits only the light of wavelength A1 that is not absorbed by the gas to be measured.
i: i 9k is enclosed, and an electrical signal according to its strength is ℃L.
It is converted into I, and further passes through the CR active filter 20 to become the starting intensity signal (1) of the reference light. On the other hand, the light transmitted through the beam splitter 6 is emitted to the outside through the window 17 provided in the light emitting/receiving housing 1, passes through the constant gas 18 of the object 41, is absorbed, is further reflected by the retroreflector 19, and is returned to the object to be measured. The gas 18 passes through the window 17, reaches the back surface of the beam splitter 6, is reflected, reaches the second beam splitter 10, a part of which is reflected by the surface of the beam splitter 10, and the condenser lens 11 Similar to the filter 8, the light at wavelength 1, which is not absorbed by the light to be measured, passes through the filter 12, and enters the photodetector 13, where it is converted into an electric signal L2 according to its intensity, and is then converted into an electrical signal L2 according to the intensity. After passing through the filter 20, the final intensity signal I2 of the reference light is generated. Further, the light transmitted through the beam splitter 10 is passed through the condensing lens 14,
1111 Wavelength input that is absorbed by a constant gas. It passes through a filter 15 that transmits only the light of Only the component corresponding to the synchronization signal is extracted and becomes the final intensity signal I3 of the measurement light. Since the light intensities 11 to 3 can be measured in this manner, the transmittances .tau.l and .tau.2 of the reference light and the measurement light can be determined from these as described above. Further, the volume molar concentration n of the gas to be measured can be determined from the above equations (1) and (2), and the partial pressure P of the gas to be measured can be determined from the equation (3). In this case, the temperature T of the gas to be measured is measured by, for example, a thermal lightning pair 22, and is expressed by the formula (3
). These calculations can be performed by leading the data through the A/D converter 23 to the calculation system 24 for processing.

(実施例) 次に本発明をメタンガス分圧測定に適用した場合の実施
例を示す。
(Example) Next, an example will be shown in which the present invention is applied to methane gas partial pressure measurement.

参照光として入1 =1600μm、測定光としてA2
 =3.31μmの光を使用し、光圧fI&L = 3
4cm、気体温rtT=30℃の条件でメタンガスの分
圧を測定した。その結果を第3図に示す。縦軸は透過率
比τをセミログプロットしてもので、横軸はメタンガス
の分圧およごモル濃度である。この図から明らかなよう
に、透過率比τの対数と分圧および濃度はそれぞれ式(
3)および式(2)に示すとおり、比例関係にあり、従
って透過率比τの変化からメタンガスの分圧測定又は濃
度測定を行なうことができる。
Input as reference light 1 = 1600μm, A2 as measurement light
= 3.31 μm light, light pressure fI&L = 3
The partial pressure of methane gas was measured under conditions of 4 cm and gas temperature rtT = 30°C. The results are shown in FIG. The vertical axis is a semilog plot of the transmittance ratio τ, and the horizontal axis is the partial pressure and molar concentration of methane gas. As is clear from this figure, the logarithm of the transmittance ratio τ, partial pressure, and concentration are expressed by the equation (
3) and equation (2), there is a proportional relationship, and therefore, the partial pressure or concentration of methane gas can be measured from the change in the transmittance ratio τ.

(発明の効果」 以−ヒ説明したように、本発明によれば、被al’l定
気体が持つ凸度、圧力などの条件によらず、測定光およ
び参照光を被i1+1定気体中を通過させるのみで、常
時背J丁(雑音や、光源の劣化による光源輝度低下の影
響、透過窓等の光学系の途中の汚れによる光損失の影響
、光軸のずれによる光損失の影響等、を除去しつつ、多
種類の気体濃度および分圧を8Iす定することができる
。しかもalす定装置内に機械的な駆動部分を持たない
ので装置の耐久性、信頼性にも優れ、常に確実なdIg
定を行なうことができる。また、本発明の適用により、
化学反応のオンラインモニタが可能となるので、例えば
鉄鋼業におけるステンレス光輝焼鈍炉、溶鋼真空脱ガス
装置の制御、半導体ai造プロセスにおけるCVDプロ
セス、拡散炉の制御1食糧関連プロセスにおける穀物を
始めとする各種類乾燥ラインの制御、その他各種産業に
おける測道プロセスの積極的な制御を行なうことができ
る等、化学反応の伴う各種気体生成や各種気体成分を含
む工業プロセスレこ適用して著しい効果を有する。
(Effects of the Invention) As explained below, according to the present invention, the measurement light and the reference light can be transmitted through the constant gas to be subjected to i1+1 regardless of the conditions such as the convexity and pressure of the constant gas to be treated. By simply letting it pass through, there are always problems such as noise, reduction in light source brightness due to deterioration of the light source, light loss due to dirt in the optical system such as the transmission window, light loss due to misalignment of the optical axis, etc. It is possible to control the concentrations and partial pressures of various gases while removing reliable dIg
can be determined. Furthermore, by applying the present invention,
Since it is possible to monitor chemical reactions online, it can be used, for example, to control stainless steel bright annealing furnaces in the steel industry, vacuum degassing equipment for molten steel, CVD processes in semiconductor AI manufacturing processes, control of diffusion furnaces 1, etc. in food-related processes. It has remarkable effects when applied to industrial processes that involve the production of various gases accompanied by chemical reactions and gaseous components, such as the ability to control various types of drying lines and the active control of surveying processes in various other industries. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例の構成を示すブロ
ック図であり、第1図は光学系を、第2図は信号処理系
を示す。第3図は本発明によりメタンガスの分圧を測定
した結果を示グラフである。 1:投受光筐体    2:光源 3:楕円面鏡     4:軸はずし放物面鏡5:ライ
1−チョッパー 6:ビー11スプリッタ7:集光レン
ズ     8;フィルタ9:光検知器    10:
ビームスプリソタ11:集光レンズ   12:フィル
タI3:光検出器体   14:集光レンズ15:フィ
ルタ    16:光検出器17:窓       1
8:被測定気体19:しlへロリフレクタ 20:CRアクティブフィルタ 21:ロノクインアンプ 22:熱電対     23 : A/D変換器24:
演算機構 1−1 + t、21 L3:電気信号ll =参照光
の始強度信号 ■2;参照光の終強度信号 IJ:ifl’l定光の線強度信号 ¥1図 第3目 CH4分L (Torr )
1 and 2 are block diagrams showing the configuration of an embodiment of the present invention, with FIG. 1 showing an optical system and FIG. 2 showing a signal processing system. FIG. 3 is a graph showing the results of measuring the partial pressure of methane gas according to the present invention. 1: Light transmitting/receiving housing 2: Light source 3: Elliptical mirror 4: Off-axis parabolic mirror 5: Lie 1-Chopper 6: Bee 11 splitter 7: Condensing lens 8; Filter 9: Photodetector 10:
Beam splitter 11: Condensing lens 12: Filter I3: Photodetector body 14: Condensing lens 15: Filter 16: Photodetector 17: Window 1
8: Gas to be measured 19: Low reflector 20: CR active filter 21: Ronoquin amplifier 22: Thermocouple 23: A/D converter 24:
Calculation mechanism 1-1 + t, 21 L3: Electrical signal ll = Initial intensity signal of reference light ■2; Final intensity signal of reference light IJ: ifl'l Linear intensity signal of constant light ¥1 Figure 3rd eye CH4 minute L ( Torr)

Claims (3)

【特許請求の範囲】[Claims] (1)光源から被測定気体に向けて放射される光の一部
を分割し、参照光としてその強度を測定するとともに、
残りの測定光を被測定気体を通過させ反射させた後、該
測定光を分割し、その一方から参照光の終強度を測定し
、他方から測定光の強度を測定し、これら参照光の始強
度および終強度、および測定光の強度から被測定気体の
濃度および分圧を求めることを特徴とする気体の濃度お
よび分圧測定方法。
(1) Divide a part of the light emitted from the light source toward the gas to be measured and measure its intensity as reference light,
After the remaining measurement light passes through the gas to be measured and is reflected, the measurement light is split, the final intensity of the reference light is measured from one part, the intensity of the measurement light is measured from the other part, and the initial intensity of these reference lights is measured. A method for measuring the concentration and partial pressure of a gas, characterized in that the concentration and partial pressure of a gas to be measured are determined from the intensity, final intensity, and intensity of measurement light.
(2)光源から被測定気体に向けて放射される測定光の
光軸上にチョッパーおよび測定光の一部を分割するビー
ムスプリッタを設け、さらに該ビームスプリッタの表面
に対向して被測定気体に吸収を受けない波長λ_1の光
のみを透過するフィルタと光検出器とを設けるとともに
、ビームスプリッタの表面に対向して前記の波長λ_1
の光のみを透過するフィルタと光検出器を設け、さらに
該ビームスプリッタの表面に被測定気体により吸収を受
ける波長λ_2の光のみを透過するフィルタと光検出器
を設け、さらに測定光を投射する被測定気体の後方に測
定光を反射するレトロリフレクタを設け、かつ前記各光
検出器からの信号を入力し被測定気体の濃度および分圧
を演算する信号処理系とを設けたことを特徴とする気体
の濃度および分圧測定装置。
(2) A chopper and a beam splitter that splits a part of the measurement light are provided on the optical axis of the measurement light emitted from the light source toward the gas to be measured, and a beam splitter that splits a part of the measurement light is provided on the optical axis of the measurement light emitted from the light source toward the gas to be measured. A filter and a photodetector are provided that transmit only the light of the wavelength λ_1 that is not absorbed, and a filter and a photodetector are provided that transmit only the light of the wavelength λ_1 that is not absorbed.
A filter and a photodetector are provided on the surface of the beam splitter that transmit only the light of wavelength λ_2 that is absorbed by the gas to be measured, and a photodetector is provided on the surface of the beam splitter that transmits only the light of wavelength λ_2, and the measurement light is projected. A retroreflector for reflecting measurement light is provided behind the gas to be measured, and a signal processing system is provided for inputting signals from each of the photodetectors and calculating the concentration and partial pressure of the gas to be measured. Gas concentration and partial pressure measuring device.
(3)光源、チョッパー、第1および第2のビームスプ
リッタ、透過フィルタ、光検出器等を筐体に収容し、さ
らに筐体に窓を設けた特許請求の範囲第2項記載の気体
の濃度および分圧測定装置。
(3) Concentration of the gas according to claim 2, in which a light source, a chopper, first and second beam splitters, a transmission filter, a photodetector, etc. are housed in a housing, and the housing is further provided with a window. and partial pressure measuring device.
JP61043220A 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas Granted JPS62201334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61043220A JPS62201334A (en) 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61043220A JPS62201334A (en) 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas

Publications (2)

Publication Number Publication Date
JPS62201334A true JPS62201334A (en) 1987-09-05
JPH0565023B2 JPH0565023B2 (en) 1993-09-16

Family

ID=12657830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61043220A Granted JPS62201334A (en) 1986-02-28 1986-02-28 Method and device for measuring concentration and partial pressure of gas

Country Status (1)

Country Link
JP (1) JPS62201334A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031857B3 (en) * 2005-06-23 2006-07-13 GfG Ges. für Gerätebau mbH Absorption optical analysis unit having first and second radiation sources, a gas tight housing, absorption space and reflectors for creating measurement and reference beams
CN103185706A (en) * 2011-12-27 2013-07-03 中国科学院城市环境研究所 Laser measurement method and device for light obscuration of inorganization-emission particulate smoke plume
US9625383B2 (en) 2012-03-27 2017-04-18 Tetra Laval Holdings & Finance S.A. Sensor arrangement for measuring the concentration of a substance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140192A (en) * 1974-06-17 1976-04-03 Aeronutronic Ford Corp Hibunsantagasubunsekisochi
JPS58213235A (en) * 1982-06-04 1983-12-12 Fujitsu Ltd Gas detection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140192A (en) * 1974-06-17 1976-04-03 Aeronutronic Ford Corp Hibunsantagasubunsekisochi
JPS58213235A (en) * 1982-06-04 1983-12-12 Fujitsu Ltd Gas detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031857B3 (en) * 2005-06-23 2006-07-13 GfG Ges. für Gerätebau mbH Absorption optical analysis unit having first and second radiation sources, a gas tight housing, absorption space and reflectors for creating measurement and reference beams
DE102005031857B8 (en) * 2005-06-23 2006-11-16 GfG Ges. für Gerätebau mbH Optical analyzer
CN103185706A (en) * 2011-12-27 2013-07-03 中国科学院城市环境研究所 Laser measurement method and device for light obscuration of inorganization-emission particulate smoke plume
US9625383B2 (en) 2012-03-27 2017-04-18 Tetra Laval Holdings & Finance S.A. Sensor arrangement for measuring the concentration of a substance

Also Published As

Publication number Publication date
JPH0565023B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
US5154512A (en) Non-contact techniques for measuring temperature or radiation-heated objects
US8143581B2 (en) Absorption biased NDIR gas sensing methodology
US4471220A (en) System for monitoring trace gaseous ammonia concentration in flue gases
US20160033783A1 (en) Optical system for generating beam of reference light and method for splitting beam of light to generate beam of reference light
JPH04151546A (en) Gas detecting apparatus
JPS62201334A (en) Method and device for measuring concentration and partial pressure of gas
JPH03221843A (en) Analyzer by light
CN108760653B (en) Method for accurately measuring concentration of sulfur dioxide gas by spectrometer
JPS6114529A (en) Measuring method of temperature using optical fiber
JPS62156543A (en) Method and device for measuring density and partial pressure of gas
JPH04326042A (en) Device for detecting variety of gases using optical fiber
JPH0638058B2 (en) Gas concentration and partial pressure measuring device
JP2007040981A (en) Method and device for measuring wafer temperature
JPS63122906A (en) Apparatus for measuring thickness of film
JPS6298235A (en) Distribution measuring method for gaseous body
JP2014142299A (en) Gas concentration measurement device
JPS63263447A (en) Gas concentration detector
JPH1183734A (en) Gas detector and gas detecting method
JPS6114528A (en) Measuring method of temperature using optical fiber
JP4124389B2 (en) Temperature measuring method and temperature measuring device
JPH01197631A (en) Gas concentration measuring method
KR0174651B1 (en) Real-time performance evaluation system for high temperature gas survey equipment
JPH01233382A (en) Laser distance measuring apparatus
JP2560231B2 (en) Sulfate ion concentration detection sensor by wavelength in mid-infrared region and sulfate ion concentration detection method
JPS6252436A (en) Gas detector