JPS6145892B2 - - Google Patents

Info

Publication number
JPS6145892B2
JPS6145892B2 JP1259679A JP1259679A JPS6145892B2 JP S6145892 B2 JPS6145892 B2 JP S6145892B2 JP 1259679 A JP1259679 A JP 1259679A JP 1259679 A JP1259679 A JP 1259679A JP S6145892 B2 JPS6145892 B2 JP S6145892B2
Authority
JP
Japan
Prior art keywords
electrode
transducer
displacement
axis
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1259679A
Other languages
Japanese (ja)
Other versions
JPS55105426A (en
Inventor
Tsutomu Nishikawa
Atsushi Tani
Kenji Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1259679A priority Critical patent/JPS55105426A/en
Publication of JPS55105426A publication Critical patent/JPS55105426A/en
Publication of JPS6145892B2 publication Critical patent/JPS6145892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/30Time-delay networks
    • H03H9/42Time-delay networks using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 本発明は水晶を用いた表面波デバイスにおいて
従来のSTカツト、X軸伝搬のレイリー波形表面
波に比較して周波数温度特性の良好な弾性表面波
デバイスを得ることにある。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to obtain a surface acoustic wave device using a crystal that has better frequency-temperature characteristics than the conventional ST-cut, X-axis propagation Rayleigh waveform surface wave. .

従来のSTカツト、X軸伝搬の表面波は室温付
近で1次の周波数温度係数が零となり、又2次の
周波数温度係数は約−40×10-9/C2であることが
知られている。この値はDTカツト水晶振動子等
に比較すると約2倍も大きく、温度安定度を厳し
く要求される通信機器等に使用する場合、この温
度係数では要求を満足し得ないことが多い。
It is known that for conventional ST cut and X-axis propagating surface waves, the first-order frequency temperature coefficient becomes zero near room temperature, and the second-order frequency temperature coefficient is approximately -40 × 10 -9 /C 2 . There is. This value is approximately twice as large as that of a DT-cut crystal resonator, etc., and when used in communications equipment, etc., which require strict temperature stability, this temperature coefficient often does not satisfy the requirements.

一般にこの温度係数を改善する方法として、圧
電基板面上に絶縁膜等を付着して補償する方法、
又圧電基板自体の切断方位、伝搬方法を変えて特
性を改善する等が考えられ、種々検討されてい
る。前者ではLiTaO3,LiNbO3等の基板の場合に
はその検討例が報告されているが経時変化が大き
いという欠点があり水晶ではまだ実用化例はみら
れない。
Generally, methods to improve this temperature coefficient include a method of compensating by attaching an insulating film etc. on the surface of the piezoelectric substrate;
In addition, various attempts have been made to improve the characteristics by changing the cutting direction and propagation method of the piezoelectric substrate itself, and various studies have been conducted. In the former case, studies have been reported in the case of substrates such as LiTaO 3 and LiNbO 3 , but the drawback is that the change over time is large, and no practical examples have yet been seen in the case of quartz.

又後者においてはSTカツトで伝搬方向をX軸
より約50度の方向にすることにより温度特性が改
善できるという報告もあるが、X軸伝搬の場合に
比較して、伝搬方向の角度偏差の温度特性に及ぼ
す影響が非常に大きく、かつエネルギ伝搬方向が
位相伝搬方向とずれる為、設計製造等が非常に困
難となるという欠点があり、現段階ではSTカツ
ト、X軸伝搬の表面波以外の実用化例はあまりな
い。一方最近Surface skimming bulk waveと呼
ばれる圧電板の表面近くを伝搬するバルク波を用
いたデバイスが報告されている。この報告による
と従来のSTカツト、X軸伝搬の表面波よりも周
波数温度特性が良好な切断方位が存在すると述べ
られている。しかしながらこの波は質量負荷のな
い伝搬路上を伝搬するバルク波に関するものであ
り、波が伝搬するに従がい、表面上での変位は減
衰し、損失が大きくなるという欠点がある。又交
又指電極部の電極膜厚による質量負荷の影響に関
して何ら記載されていない。
There is also a report that in the latter case, the temperature characteristics can be improved by setting the propagation direction at about 50 degrees from the X-axis using an ST cut. The effect on the characteristics is very large, and the direction of energy propagation deviates from the direction of phase propagation, making design and manufacturing very difficult. There are not many examples. On the other hand, a device called surface skimming bulk wave that uses bulk waves propagating near the surface of a piezoelectric plate has recently been reported. According to this report, it is stated that there is a cutting direction with better frequency-temperature characteristics than the conventional ST cut and X-axis propagation surface waves. However, this wave relates to a bulk wave propagating on a propagation path with no mass load, and as the wave propagates, the displacement on the surface is attenuated and the loss increases. Further, there is no description regarding the influence of mass load due to the electrode film thickness of the interdigital electrode portion.

本発明は上記欠点に鑑みてなされたものであり
その目的は周波数温度特性が従来のSTカツトX
軸伝搬の表面波に比較して良好であり、伝搬方向
の角度偏差による特性変化も少なく、かつ質量負
荷により変位を充分表面に集中させ、損失の少な
い弾性表面波デバイスを提供することにある。
The present invention has been made in view of the above drawbacks, and its purpose is to improve the frequency temperature characteristics of the conventional ST cut
It is an object of the present invention to provide a surface acoustic wave device which is better than an axially propagating surface wave, has less change in characteristics due to angular deviation in the propagation direction, and which allows displacement to be sufficiently concentrated on the surface by mass loading and has less loss.

上記目的を達成する為の本発明はIRE標準によ
り(Yx1)Θで表わされる水晶回転Y板において
回転後のZ′軸の方向に金電極よりなる交又指形ト
ランスジユーサを水晶基板面に構成し、該トラン
スジユーサの電極膜厚をho、電極指巾をa、電
極指間の間げきをb、該トランスジユーサにより
励振されるX軸方向に主変位をもつ弾性表面波の
波長をλとする時 X=a/a+b・ho/λ で表わされるXと、切断方位Θが Θ=(−18707.5x2+21.429x+129.5) (度) で関係ずけられていることを特徴とし、更に隣り
合う交又指形トランスジユーサの伝搬路上に金電
極を付着し、該金電極の質量負荷により変位を表
面に集中させることを特徴とする。
To achieve the above object, the present invention is based on the IRE standard, in which an interdigital transducer consisting of gold electrodes is attached to the surface of the crystal substrate in the direction of the Z' axis after rotation in the crystal rotating Y plate represented by (Yx1)Θ. The electrode film thickness of the transducer is ho, the electrode finger width is a, the gap between the electrode fingers is b, and the wavelength of the surface acoustic wave excited by the transducer and having a principal displacement in the X-axis direction. When is λ, X expressed as X=a/a+ b・ho/λ and the cutting direction Θ are related by the following equation Furthermore, gold electrodes are attached to the propagation paths of adjacent interdigital transducers, and the displacement is concentrated on the surface by the mass load of the gold electrodes.

以下本発明について詳細に説明する。 The present invention will be explained in detail below.

まず本発明の概略を第1図を用いて説明する。
本発明においては第1図の点線で示されるYカツ
ト板をX軸に関してΘ度回転した角度で切断した
回転Yカツト板を用いる。これを実線で示す。こ
の切断方位はIRE標準では(Yx1)Θで表わされ
る。
First, an outline of the present invention will be explained using FIG. 1.
In the present invention, a rotary Y-cut plate is used, which is obtained by cutting the Y-cut plate shown by the dotted line in FIG. 1 at an angle of Θ degrees about the X-axis. This is shown as a solid line. This cutting direction is expressed as (Yx1)Θ in the IRE standard.

この様に切断した回転Yカツト板のZ′軸の方向
に交又指形トランスジユーサTを形成する。
A cross-finger type transducer T is formed in the direction of the Z' axis of the rotary Y-cut plate cut in this manner.

トランスジユーサTは金で形成するが、その理
由は後述する。
The transducer T is made of gold, and the reason will be explained later.

第2図によるZ′軸方向に伝搬する表面波を用い
る理由について説明する。
The reason for using the surface wave propagating in the Z'-axis direction as shown in FIG. 2 will be explained.

第2図に示すような座標系xj(j=1,2,
3)をとり、これに対応して、変位uj(j=1,
2,3)をとる。又電位4のx1(X軸)方向の一
様性を考慮し、X3(Z′軸)方向に伝搬する波につ
いて運動方程式、電極保存則を解いた結果、回転
Yカツト板の場合、変位u1,u2とは結合せず、か
つ圧電的に励振される変位はu1のみで、u2,u3
圧電的に励振されないことが判明した。この結果
従来のSTカツト、X軸伝搬の表面波でみられる
ようなスプリアスは存在せず、単一モードの特性
もつことがわかつた。尚図において1は電極膜、
2は水晶基板である。又境界条件であるが交又指
電極部では等価的に h′=a/a+b・ho の膜厚をもつ電極が全面に付着していると近似で
きx2=0で水晶基板2と電極膜1の変位と応力が
夫々連続しており、かつ電位が零となる。又x2
h′で電極膜の応力が零として考えればよい。以上
をもとに本発明の構成を以下に説明する。本発明
の一例である129度30分回転Y板において回転し
たZ′軸にそつて設ける交又指形トランスジユーサ
をアルミニウムA1、金Auを使用して形成した時
のh′を使用波長λで規準化した値Xと変位分布の
関係を第3図に示す。
The coordinate system xj (j=1, 2,
3) and correspondingly, the displacement uj (j=1,
Take 2, 3). Also, considering the uniformity of the potential 4 in the x 1 (X-axis) direction, we solved the equation of motion and electrode conservation law for waves propagating in the X 3 (Z'-axis) direction, and found that in the case of a rotating Y-cut plate, It has been found that the displacement u 1 is the only one that is not coupled to the displacements u 1 and u 2 and is piezoelectrically excited, and that the displacements u 2 and u 3 are not piezoelectrically excited. As a result, it was found that there is no spurious as seen in the conventional ST cut and X-axis propagation surface waves, and that it has single mode characteristics. In the figure, 1 is an electrode film,
2 is a crystal substrate. As for the boundary condition, it can be approximated that an electrode with a film thickness of h'=a/a+b・ho is attached to the entire surface of the interdigitated electrode part, equivalently, when x 2 = 0, the crystal substrate 2 and the electrode film are The displacement and stress of 1 are continuous, and the potential becomes zero. Also x 2 =
It can be considered that the stress in the electrode film is zero at h′. Based on the above, the configuration of the present invention will be explained below. When an interdigitated transducer is formed along the Z' axis rotated on a Y plate rotated by 129 degrees and 30 minutes, which is an example of the present invention, using aluminum A1 and gold Au, h' is the used wavelength λ. FIG. 3 shows the relationship between the value X normalized by and the displacement distribution.

図において、横軸は基板の表面上での変位を1
として基準化した相対変位であり、縦軸は、表面
からの深さを波長λで規準化した値を示し、曲線
x1〜x4はAu電極の場合、x1′〜x4′はAl電極の場合
を示す。又曲線x1はX=0.2×10-2の場合、曲線
x2はx=0.4×10-2、曲線x3=0.6×10-2、曲線x4
はX=8×10-2とした場合である。
In the figure, the horizontal axis represents the displacement on the surface of the substrate.
The vertical axis shows the value of the depth from the surface normalized by the wavelength λ, and the curve
x 1 to x 4 are Au electrodes, and x 1 ′ to x 4 ′ are Al electrodes. Also, the curve x 1 is a curve when X=0.2×10 -2
x 2 is x = 0.4 x 10 -2 , curve x 3 = 0.6 x 10 -2 , curve x 4
is the case when X=8×10 -2 .

この図からAl電極の場合はAu電極に比較して
質量負荷の影響が非常に小さくAu電極の約40倍
も膜厚を厚くしないと同程度の変位の表面集中が
できないことが判明した。一例として使用周波数
300MHZ(λ=11.1μ)とした時、Au電極の場合
ho1330Å(b/a=1)でx=6×10-3となり深さ 方向に対し5λ程度で相対変位が1/20以下にな
るのに対しAl電極では約5.3μ(b/a=1)もの膜厚 にしないと同程度の表面集中が得られないことに
なる。又この時の質量負荷の周波数温度特性に対
する1次の温度係数を検討した結果、Au電極に
比較しAu電極の方が約1桁以上も大きくなり、
周波数温度特性に大きく影響することも判明し
た。以上により本発明の特徴の1つであるAu電
極を使用することにより、容易に変位を表面に集
中させ、損失の少ない、かつ温度特性の質量負荷
による変化の少ない表面波が得られることがわか
る。次に第4図に本発明の一例である129度30分
回転Y板でのAu電極使用の場合の周波数温度特
性の質量負荷による影響について示す。
This figure shows that the effect of mass load on Al electrodes is much smaller than on Au electrodes, and that the same level of displacement cannot be achieved on the surface unless the film is approximately 40 times thicker than that of Au electrodes. Frequency used as an example
At 300MHZ (λ = 11.1μ), in the case of Au electrode
For ho1330Å (b/a=1), x=6×10 -3 and the relative displacement in the depth direction becomes less than 1/20 at about 5λ, whereas for Al electrode it is about 5.3μ (b/a=1) Unless the film thickness is increased, the same degree of surface concentration cannot be obtained. Also, as a result of examining the first-order temperature coefficient for the frequency-temperature characteristics of the mass load at this time, the Au electrode is about one order of magnitude larger than the Au electrode.
It was also found that the frequency temperature characteristics are greatly affected. From the above, it can be seen that by using the Au electrode, which is one of the features of the present invention, it is possible to easily concentrate displacement on the surface and obtain a surface wave with less loss and less change in temperature characteristics due to mass load. . Next, FIG. 4 shows the influence of mass load on the frequency temperature characteristics when using Au electrodes on a Y-plate rotated at 129 degrees and 30 minutes, which is an example of the present invention.

図において横軸は温度(℃)、縦軸は周波数変
化率(△f/fo)を示す。又曲線x11はX=0.2×
10-2曲線X22はX=0.4×10-2、曲線X33はX=0.6
×10-2、曲線x44はX=0.8×10-2とした場合であ
る。
In the figure, the horizontal axis shows temperature (° C.), and the vertical axis shows frequency change rate (Δf/fo). Also, the curve x 11 is X=0.2×
10 -2 curve X 22 is X = 0.4 × 10 -2 , curve X 33 is X = 0.6
×10 −2 , and the curve x 44 is for the case where X=0.8×10 −2 .

まず2次の周波数温度係数Tfであるが、約−
20x10-9/C2であり、従来のSTカツトX軸伝搬の
表面波に比較し、1/2と大きく改善されている
ことがわかる。
First, the second-order frequency temperature coefficient Tf is approximately -
20x10 -9 /C 2 , which is a significant improvement of 1/2 compared to the conventional ST cut X-axis propagation surface wave.

又図を基に質量負荷の周波数温度特性への影響
について考慮すると、前述したようにAl電極の
場合よりも小さいが、それでもXの値により変化
し、通信機器等に使用する場合は無視し得る量で
はなく、質量負荷の影響を考慮し最適な切断方位
の選定が必要となる。この関係を求めたのが第5
図であり、室温25℃で零温度係数となる切断方位
ΘとAu電極による質量負荷Xの関係を示してい
る。このΘとXの関係は近似的に Θ=(−18707.5x2+21.429x+129.5) (度) (4)で示される。第5図(又は(1)式)に従つてΘ、
xを選択することにより良好な周波数温度特性を
有する弾性表面波デバイスが得られる。
Also, when considering the influence of mass load on the frequency-temperature characteristics based on the figure, as mentioned above, it is smaller than in the case of Al electrodes, but it still changes depending on the value of X, and can be ignored when used in communication equipment, etc. It is necessary to select the optimal cutting direction considering the influence of mass load, not quantity. This relationship was sought in the fifth
This figure shows the relationship between the cutting direction Θ, which has a zero temperature coefficient at a room temperature of 25° C., and the mass load X caused by the Au electrode. The relationship between Θ and X is approximately expressed as Θ = (-18707.5x 2 +21.429x + 129.5) (degrees) (4). According to Figure 5 (or equation (1)), Θ,
By selecting x, a surface acoustic wave device with good frequency-temperature characteristics can be obtained.

さらに本発明のもう一つの特徴は第1図に示す
如く伝搬路上に金電極3を付着し、その質量負荷
の影響により変位を充分表面に集中させ、損失が
少なく、温度特性が良好で、かつ長時間遅延特性
をもつ弾性表面波デバイスが提供できる。
Furthermore, another feature of the present invention is that a gold electrode 3 is attached on the propagation path as shown in FIG. 1, and the displacement is sufficiently concentrated on the surface due to the influence of the mass load, resulting in low loss and good temperature characteristics. A surface acoustic wave device with long delay characteristics can be provided.

以上本発明の利点を要約すると 2次の周波数温度係数は約−20x10-9/C2
あり従来のSTカツトX軸伝搬の表面波に比較
して約1/2と小さくなる。又Au電極の質量
負荷の影響も考慮した最適な切断方位の選定が
可能となる。
To summarize the advantages of the present invention as described above, the second-order frequency temperature coefficient is about -20x10 -9 /C 2 , which is about 1/2 smaller than that of a conventional ST cut X-axis propagation surface wave. Furthermore, it is possible to select the optimum cutting direction taking into consideration the influence of the mass load of the Au electrode.

Au電極使用により経時変化の少ない安定な
弾性表面波デバイスが得られる。
By using Au electrodes, a stable surface acoustic wave device with little change over time can be obtained.

変位u2,u3が圧電的に励振されない為、スプ
リアスの少ない弾性表面波デバイスが得られ
る。
Since the displacements u 2 and u 3 are not piezoelectrically excited, a surface acoustic wave device with less spurious can be obtained.

伝搬路上にAu電極を付着させることにより
伝搬路上における変位を表面に集中させて表面
波とし、損失が少なく、温度特性が良好でかつ
長時間遅延特性をもつ弾性表面波デバイスが得
られる。
By attaching Au electrodes on the propagation path, displacements on the propagation path are concentrated on the surface and turned into surface waves, resulting in a surface acoustic wave device with low loss, good temperature characteristics, and long delay characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概略を説明するための図、第
2図は水晶回転Y板、Z′軸伝搬の波の座標系を示
す図であり、1は電極膜、2は水晶基板を示す。
第3図は本発明の一例である129度30分回転Y板
におけるAl電極、及びAu電極よる質量負荷の深
さ方向(x2方向)への変位分布の変化を示す図、
第4図は第3図における切断方位での質量負荷の
周波数温度特性に及ぼす影響を示す図、第5図は
本発明によるAu電極の質量負荷を考慮した最適
な切断方位を示す図である。
FIG. 1 is a diagram for explaining the outline of the present invention, and FIG. 2 is a diagram showing the coordinate system of the crystal rotating Y plate and Z'-axis propagation waves, where 1 is an electrode film and 2 is a crystal substrate. .
FIG. 3 is a diagram showing changes in the displacement distribution in the depth direction (x 2 direction) of the mass load due to the Al electrode and the Au electrode on a Y plate rotated at 129 degrees and 30 minutes, which is an example of the present invention,
FIG. 4 is a diagram showing the influence of the mass load on the frequency temperature characteristics in the cutting direction in FIG. 3, and FIG. 5 is a diagram showing the optimal cutting direction in consideration of the mass load of the Au electrode according to the present invention.

Claims (1)

【特許請求の範囲】 1 IRE標準により(XY1)Θで表わされる水晶
回転Y板において、回転後のZ′軸の方向に金電極
よりなる送信用及び受信用の交又指形トランスジ
ユーサを水晶基板に構成し、該交又指形トランス
ジユーサの電極膜厚をho、電極指幅をa、電極
指間の間げきをb、該トランスジユーサにより励
振されるX軸方向に主変位をもつ弾性表面波の波
長をλとする時、 X=a/a+b・ho/λ で表わされるXと、切断方位Θが、 Θ=(−
18707.5X2+21.429X+129.5) (度) で関係づけられることを特徴とした弾性表面波デ
バイス。 2 IRE標準により(YX1)Θで表わされる水晶
回転Y板において、回転後のZ′軸の方向に金電極
よりなる送信用及び受信用交又指形トランスジユ
ーサを水晶基板面に構成し、該交又指形トランス
ジユーサ間の伝搬路上に金電極を付着させ該金電
極の質量負荷により変位を表面に集中させて、金
電極よりなる交又指形トランスジユーサを水晶基
板面に構成し、該交又指形トランスジユーサの電
極膜厚をho、電極指幅をa、電極指間の間げき
をb、該トランスジユーサにより励振されるX軸
方向に主変位をもつ弾性表面波の波長をλとする
時、 X=a/a+b・ho/λ で表わされるXと、切断方位Θが、 Θ=(−18707.5X2+21.429X+129.5) (度) で関係づけられることを特徴とした弾性表面波デ
バイス。
[Claims] 1. In a rotating quartz Y plate represented by (XY1)Θ according to the IRE standard, interdigitated transducers for transmitting and receiving consisting of gold electrodes are arranged in the direction of the Z' axis after rotation. Constructed on a crystal substrate, the electrode film thickness of the interdigital transducer is ho, the electrode finger width is a, the gap between the electrode fingers is b, and the main displacement is excited in the X-axis direction by the transducer. When the wavelength of a surface acoustic wave with
18707.5X 2 +21.429X+129.5) (degrees) A surface acoustic wave device. 2. In a rotating crystal Y-plate represented by (Y A gold electrode is attached on the propagation path between the interdigitated transducers, and displacement is concentrated on the surface due to the mass load of the gold electrode, thereby forming an interdigitated transducer made of gold electrodes on the surface of the crystal substrate. The electrode film thickness of the interdigitated transducer is ho, the electrode finger width is a, the gap between the electrode fingers is b, and the elastic surface excited by the transducer has a principal displacement in the X-axis direction. When the wavelength of the wave is λ, X expressed as A surface acoustic wave device featuring
JP1259679A 1979-02-06 1979-02-06 Elastic surface wave device Granted JPS55105426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259679A JPS55105426A (en) 1979-02-06 1979-02-06 Elastic surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259679A JPS55105426A (en) 1979-02-06 1979-02-06 Elastic surface wave device

Publications (2)

Publication Number Publication Date
JPS55105426A JPS55105426A (en) 1980-08-13
JPS6145892B2 true JPS6145892B2 (en) 1986-10-11

Family

ID=11809722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259679A Granted JPS55105426A (en) 1979-02-06 1979-02-06 Elastic surface wave device

Country Status (1)

Country Link
JP (1) JPS55105426A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833309A (en) * 1981-08-21 1983-02-26 Toyo Commun Equip Co Ltd Slip wave resonator

Also Published As

Publication number Publication date
JPS55105426A (en) 1980-08-13

Similar Documents

Publication Publication Date Title
US6933810B2 (en) Surface acoustic wave device with lithium tantalate on a sapphire substrate and filter using the same
US6710509B1 (en) Surface acoustic wave device
US6346864B1 (en) Saw resonator filter and duplexer utilizing SH waves, substrate edge reflection, and sub-interdigital transducer portions
EP0034351B1 (en) Surface acoustic wave device
JPH08125485A (en) Love wave device
JP3864697B2 (en) Surface acoustic wave device
JPH09298446A (en) Surface acoustic wave device and its design method
US6903630B2 (en) Surface acoustic wave device having a polarization inverted region
JP3269466B2 (en) Surface wave resonator, surface wave filter, duplexer, communication device
JP2002076835A (en) Surface acoustic wave element
JPH11191720A (en) Surface acoustic wave device and surface accosting wave filter
JP3204112B2 (en) Surface acoustic wave resonator filter
JPS6145892B2 (en)
JP3255502B2 (en) Highly stable surface acoustic wave device
JPH1022765A (en) Surface acoustic wave resonator and resonator type filter
US11606079B2 (en) Transducer structure for source suppression in saw filter devices
JP3393945B2 (en) Vertically coupled dual mode SAW filter
JP3442202B2 (en) Surface acoustic wave filter
JPS6145891B2 (en)
JPS5930332B2 (en) surface acoustic wave device
JPH09130192A (en) Surface wave device
JPH0124366B2 (en)
JP3597483B2 (en) Surface acoustic wave device
JP3724544B2 (en) Surface wave resonator, surface wave filter, duplexer, communication device, and surface wave device
JPH04265009A (en) Electrode structure for surface acoustic wave filter