JPS6145891B2 - - Google Patents

Info

Publication number
JPS6145891B2
JPS6145891B2 JP54012595A JP1259579A JPS6145891B2 JP S6145891 B2 JPS6145891 B2 JP S6145891B2 JP 54012595 A JP54012595 A JP 54012595A JP 1259579 A JP1259579 A JP 1259579A JP S6145891 B2 JPS6145891 B2 JP S6145891B2
Authority
JP
Japan
Prior art keywords
electrode
transducer
axis
acoustic wave
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54012595A
Other languages
Japanese (ja)
Other versions
JPS55105425A (en
Inventor
Tsutomu Nishikawa
Kenji Shirai
Atsushi Tani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1259579A priority Critical patent/JPS55105425A/en
Publication of JPS55105425A publication Critical patent/JPS55105425A/en
Publication of JPS6145891B2 publication Critical patent/JPS6145891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02551Characteristics of substrate, e.g. cutting angles of quartz substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 本発明は水晶を用いた弾性表面波デバイスにお
いて、位相速度が大きく、かつ周波数温度特性の
良好な切断方位の選定に関するものである。従来
水晶を用いた弾性表面波デバイスは主に温度特性
の良好なSTカツト、X軸伝搬のレイリー波形表
面波が用いられている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to selection of a cutting direction with a large phase velocity and good frequency-temperature characteristics in a surface acoustic wave device using quartz crystal. Conventional surface acoustic wave devices using crystals mainly use ST-cut and X-axis Rayleigh waveform surface waves with good temperature characteristics.

この表面波を用いたフイルタ、発振器、共振器
等は数百MHZ帯域までは比較的容易に実現し得
るが、周波数がGHZ帯域に近づくと波長が短く
なるので、交又指形トランスジユーサ電極の電極
指巾は1μ以下になり、光の波長に近くなる為、
従来の光学的露光法ではパターンの実現が困難で
あつた。
Filters, oscillators, resonators, etc. that use this surface wave can be realized relatively easily up to several hundred MHZ band, but as the frequency approaches the GHZ band, the wavelength becomes shorter, so interdigital transducer electrodes are used. Since the electrode finger width is less than 1μ, which is close to the wavelength of light,
It has been difficult to realize patterns using conventional optical exposure methods.

この問題に対処する為、オーバートンモードを
使用する、あるいは電子ビーム露光法による等が
提案されている。しかしながら前者の場合は挿入
損失が大きくなるなど特性の劣化が問題となり、
又後者は設備が非常に高価であり、経済性の面で
問題が残る。
In order to deal with this problem, it has been proposed to use the Overton mode or to use an electron beam exposure method. However, in the former case, deterioration of characteristics such as increased insertion loss becomes a problem.
Moreover, the equipment of the latter is very expensive, and there remains a problem in terms of economic efficiency.

一方最近surface−skimmingbulkwaveと呼ば
れる圧電板の表面近くを伝搬するバルク波を用い
たデバイスが報告されている。この報告によると
このバルク波の位相速度は従来のSTカツト、X
軸伝搬の表面波に比較して約1.6倍の速度を有し
ており、温度特性も比較的良好であることから高
周波用デバイスとして適しているものと考えられ
る。
On the other hand, recently a device using bulk waves propagating near the surface of a piezoelectric plate called surface-skimming bulkwave has been reported. According to this report, the phase velocity of this bulk wave is
It has a speed approximately 1.6 times that of an axially propagating surface wave, and has relatively good temperature characteristics, so it is considered suitable as a high-frequency device.

しかしながらこの波は質量負荷のない伝搬路上
を伝搬するバルク波に関するものであり、波が伝
搬するに従がい、表面上での変位は減衰し、損失
が大きくなるという欠点が存在する。又交又指電
極部の電極膜厚による質量負荷の影響に関しても
何ら記載されていない。
However, this wave relates to a bulk wave propagating on a propagation path with no mass load, and as the wave propagates, the displacement on the surface is attenuated and losses increase. Furthermore, there is no description whatsoever regarding the influence of mass load due to the electrode film thickness of the interdigitated finger electrode portions.

本発明は上記欠点に鑑みてなされたものであ
り、その目的は位相速度が大きく、周波数温度特
性も良好であり、かつ質量負荷により変位を充分
表面に集中させ、損失の少ない弾性表面波デバイ
スを提供することにある。
The present invention was made in view of the above-mentioned drawbacks, and its purpose is to provide a surface acoustic wave device with a large phase velocity, good frequency-temperature characteristics, sufficient concentration of displacement on the surface by mass loading, and low loss. It is about providing.

上記目的を達成する為の本発明はIRE標準によ
り(YXI)Θで表わされる水晶回転Y板において
回転後のZ′軸の方向にアルミニウム電極よりなる
交又指形トランスジユーサを水晶基板面に構成
し、該トランスジユーサの電極膜厚をho、電極
指巾をa、電極指間の間げきをb、該トランスジ
ユーサにより励振されるX軸方向に主変位をもつ
弾性表面波の波長をλとする時、 x=a/a+b・ho/λ で表わされるXと、切断方位Θが Θ=(28333X2−11.667X+36.083) (度) で関係づけられていることを特徴とし、更に隣り
合う交又指形トランスジユーサ間の伝搬路上にア
ルミニウム電極を付着し、該アルミニウム電極の
質量負荷により変位を表面に集中させることを特
徴とする。
To achieve the above object, the present invention is based on the IRE standard, in which an interdigital transducer made of aluminum electrodes is attached to the surface of the crystal substrate in the direction of the Z' axis after rotation in a rotating crystal Y plate represented by (YXI)Θ. The electrode film thickness of the transducer is ho, the electrode finger width is a, the gap between the electrode fingers is b, and the wavelength of the surface acoustic wave excited by the transducer and having a principal displacement in the X-axis direction. is characterized by the relationship between X expressed by x=a/a+b・ho/λ and the cutting direction Θ as follows: Θ=(28333X 2 −11.667X+36.083) (degrees), Furthermore, an aluminum electrode is attached on the propagation path between adjacent interdigital transducers, and the displacement is concentrated on the surface by the mass load of the aluminum electrode.

以下本発明について詳細に説明する。 The present invention will be explained in detail below.

まず本発明の概略を第1図を用いて説明する。 First, the outline of the present invention will be explained using FIG. 1.

本発明においては図の点線で示されるYカツト
板をX軸に関してθ度回転した角度で切断した回
転Yカツト板を用いる。これを実線で示す。
In the present invention, a rotary Y-cut plate is used, which is obtained by cutting the Y-cut plate shown by the dotted line in the figure at an angle of θ degrees with respect to the X-axis. This is shown as a solid line.

この様に切断した回転Yカツト板のZ′軸の方向
に交又指形トランスジユーサTを形成する。
A cross-finger type transducer T is formed in the direction of the Z' axis of the rotary Y-cut plate cut in this way.

トランスジユーサTはアルミニウムで形成す
る。第2図によりZ軸方向に伝搬する表面波を用
いる理由について説明する。
Transducer T is made of aluminum. The reason for using a surface wave propagating in the Z-axis direction will be explained with reference to FIG.

第2図に示すように座表系xj(j=1,2,
3)をとり、xjに対応して変位uj(j=1,2,
3)、をとる。又電位4のx1(X軸)方向の一様
性を考慮し、x3(Z′軸)方向に伝搬する波につい
て運動方程式、電荷保存則を解いた結果、水晶回
転Y板の場合変位u1は変位u2,u3と結合せず、
かつ圧電的に励振される変位はu1のみでu2,u3
は圧電的に励振されないことが判明した。この結
果従来のSTカツト、X軸伝搬の表面波でみられ
るようなスプリアスは存在せず、単一モードの特
性をもつことがわかつた。尚図において1は電極
膜、2は水晶基板である。又境界条件であるが、
交又指電極部では等価的に h′=a/a+b・ho の膜厚をもつ電極が全面に付着していると近似で
き、x2=0で水晶基板2と、電極膜1の変位、
応力が夫々連続性しており、電位が零となる。又
x2=+h′で電極膜1の応力が零として考えればよ
い。
As shown in Figure 2, the coordinate system xj (j=1, 2,
3), and the displacement uj (j=1, 2,
3) Take. Also, considering the uniformity of the potential 4 in the x1 (X-axis) direction, we solved the equation of motion and the law of conservation of charge for waves propagating in the x3 (Z'-axis) direction, and found that in the case of a rotating crystal Y plate, the displacement u1 is not combined with displacements u2 and u3,
And the piezoelectrically excited displacement is only u1, u2, u3
was found to be not piezoelectrically excited. As a result, it was found that there was no spurious as seen in the conventional ST cut and X-axis propagation surface waves, and that it had single mode characteristics. In the figure, 1 is an electrode film, and 2 is a crystal substrate. Also, as a boundary condition,
In the interdigitated electrode part, it can be approximated that an electrode with a film thickness of h'=a/a+b・ho is attached to the entire surface, and when x2=0, the displacement of the crystal substrate 2 and the electrode film 1,
The stress is continuous and the potential becomes zero. or
It may be considered that the stress in the electrode film 1 is zero at x2=+h'.

以上をもとに本発明の構成を以下説明する。本
発明の一例である36度7分回転Y板において、ア
ルミニウム電極を使用した場合の(1)式のh′を使用
波長λで規準化した値Xと、変位|U1|の水晶
基板2の深さ方向(x2方向)への分布をx2=0
を基準として第3図に示す。図では表面からの深
さをλで規準化している。図において、曲線X1
はX=0.5X10-2の場合、曲線x2はx=1.010-2
曲線x3はX=2.010-2の場合を示す。
Based on the above, the configuration of the present invention will be explained below. In a Y-plate rotated by 36 degrees and 7 minutes, which is an example of the present invention, the value The distribution in the depth direction (x2 direction) is x2 = 0
Fig. 3 shows this as a reference. In the figure, the depth from the surface is normalized by λ. In the figure, curve X1
If X=0.5X10 -2 , the curve x2 is x=1.010 -2 ,
Curve x3 shows the case where X=2.010 -2 .

一例として、使用周波数を800MHZ(λ=6.4
μ)とした場合、交又指電極の膜厚ho=1400Å
(b/a=1)でXの値は1×10-2となり深さ方向に対 し、5λ程度で相対変位は1/20以下となり、通常の 電極膜厚でも充分変位が表面に集中し、通常の表
面波になつていることがわかる。次に第3図に示
した切断方位において変位を表面に集中させる為
の電極による質量負荷の周波数温度特性に及ぼす
影響を第4図に示す。図において横軸は温度
(℃)縦軸は周波数変化率△f/foを示す。foは
中心周波数である。又曲線x11はX=0.5×10-2
曲線x22はX=1.010-2、曲線X33はX=1.5×10-2
曲線X44はX=2.0の場合である。
As an example, the frequency used is 800MHZ (λ = 6.4
μ), the film thickness of the interdigitated electrodes ho=1400Å
(b/ a =1), the value of It can be seen that it becomes a normal surface wave. Next, FIG. 4 shows the influence of the mass load on the frequency-temperature characteristics of the electrode for concentrating displacement on the surface in the cutting direction shown in FIG. 3. In the figure, the horizontal axis shows temperature (° C.) and the vertical axis shows frequency change rate Δf/fo. fo is the center frequency. Also, the curve x11 is X=0.5×10 -2 ,
Curve x22 is X=1.010 -2 , curve X33 is X=1.5×10 -2
Curve X44 is for X=2.0.

図から明らかなように、質量負荷の温度特性に
及ぼす影響は大きく、特に通信機器等に使用する
場合は、質量負荷の影響を考慮した最適な切断方
位の選定が必要となる。この関係を求めたのが第
5図であり、室温25℃で零温度係数となる切断方
位Θをアルミニウム電極による質量負荷Xの関係
を示している。このXとΘの関係は近似的にΘ=
2833X2−11667+36.083 …(1) で示される。第5図(I式)に従つてΘ、Xを選
択することにより良好な周波数温度特性を有する
弾性表面波デバイスが得られる。
As is clear from the figure, the influence of the mass load on the temperature characteristics is large, and especially when used in communication equipment, etc., it is necessary to select the optimal cutting direction in consideration of the influence of the mass load. This relationship was determined in FIG. 5, which shows the relationship between the cutting direction Θ, which has a zero temperature coefficient at a room temperature of 25° C., and the mass load X caused by the aluminum electrode. The relationship between X and Θ is approximately Θ=
It is shown as 2833X 2 −11667+36.083…(1). By selecting Θ and X according to FIG. 5 (Equation I), a surface acoustic wave device having good frequency-temperature characteristics can be obtained.

又この切断方位において従来のSTカツトX軸
伝搬の表面波より、1.6倍も位相速度が大きい
為、周波数的に1.6倍まで高周波が可能となる。
Also, in this cutting direction, the phase velocity is 1.6 times higher than that of the conventional ST cut X-axis propagation surface wave, so it is possible to generate a frequency up to 1.6 times higher.

さらに本発明のもう一つの特徴は伝搬路上に第
1回の様にアルミニウム電極3を付着し、その質
量負荷の影響により変位を表面に充分集中させ、
損失が少なく、温度特性が良好でかつ長遅延時間
特性をもつ弾性表面波デバイスが提供できる。
Furthermore, another feature of the present invention is that the aluminum electrode 3 is attached on the propagation path as in the first case, and the displacement is sufficiently concentrated on the surface due to the influence of the mass load.
A surface acoustic wave device with low loss, good temperature characteristics, and long delay time characteristics can be provided.

以上本発明の利点を要約すると 従来のSTカツト、X軸伝搬の表面波で実現
し得る周波数帯域の約1.6倍まで高周波が可能
となる。
To summarize the advantages of the present invention as described above, it is possible to achieve high frequencies up to approximately 1.6 times the frequency band that can be achieved with conventional ST cut and X-axis propagation surface waves.

従来のSTカツトX軸伝搬の表面波と同程度
の良好な周波数温度特性が得られ、かつ電極の
質量負荷の影響も考慮した最適な切断方位の選
定が可能となる。
It is possible to obtain frequency-temperature characteristics as good as those of conventional ST cut X-axis propagation surface waves, and to select the optimum cutting direction while taking into account the influence of the mass load on the electrode.

変位u2,u3が圧電的に励振されないため、
スプリアスのない弾性表面波デバイスが得られ
る。
Since displacements u2 and u3 are not piezoelectrically excited,
A surface acoustic wave device without spurious components can be obtained.

伝搬路上にアルミニウム電極を付着させるこ
とにより、伝搬路上における変位を表面に集中
させて表面波とし、損失が少なく、温度特性が
良好で、かつ長時間遅延特性をもつ弾性表面波
デバイスが得られる。
By attaching aluminum electrodes to the propagation path, the displacement on the propagation path is concentrated on the surface to form a surface wave, and a surface acoustic wave device with low loss, good temperature characteristics, and long delay characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概略を説明するための図、第
2図は水晶回転Y板、Z軸伝搬の座標系を示す図
であり、1は電極膜、2は水晶板を示す。第3図
は本発明の一例である39度7分回転Y板における
アルミニウム電極による質量負荷の深さ方向への
変位分布の変化を示す図、第4図は第3図におけ
る切断方位での質量負荷の周波数温度特性に及ぼ
す影響を示す図、第5図は本発明によるアルミニ
ウム電極の質量負荷を考慮した最適な切断方位を
示す図である。
FIG. 1 is a diagram for explaining the outline of the present invention, and FIG. 2 is a diagram showing a coordinate system of a rotating Y plate of crystal and Z-axis propagation, where 1 is an electrode film and 2 is a crystal plate. Figure 3 is a diagram showing changes in the displacement distribution in the depth direction of the mass load due to the aluminum electrode on a Y plate rotated by 39 degrees and 7 minutes, which is an example of the present invention, and Figure 4 shows the mass in the cutting direction in Figure 3. FIG. 5 is a diagram showing the influence of load on frequency-temperature characteristics, and is a diagram showing the optimum cutting direction in consideration of the mass load of the aluminum electrode according to the present invention.

Claims (1)

【特許請求の範囲】 1 IRE標準により(YXI)Θで表わされる水晶
回転Y板において、回転後のZ′軸の方向にアルミ
ニウム電極よりなる送信用及び受信用の交又指形
トランスジユーサを水晶基板面に構成し、該交又
指形トランスジユーサの電極膜厚さho、電極指
幅をa、電極指間の間げきをb、該トランスジユ
ーサにより励振されるX軸方向に主変位をもつ弾
性表面波の波長をλとする時、 X=a/a+b・ho/λ で表わされるXと、切断方位Θが Θ=(28333X2−11667X+36083) (度) で関係付けられることを特徴とした弾性表面波デ
バイス。 2 IRE標準により(YXI)Θで表わされる水晶
回転Y板において、回転後のZ′軸の方向にアルミ
ニウム電極よりなる送信用及び受信用の交又指形
トランスジユーサを水晶基板面に構成し、該交又
指形トランスジユーサ間の伝搬上にアルミニウム
電極を付着し、該アルミニウム電極の質量負荷に
より変位を表面に集中させ、該交又指形トランス
ジユーサの電極膜厚さho、電極指幅をa、電極
指間の間げきをb、該トランスジユーサにより励
振されるX軸方向に主変位をもつ弾性表面波の波
長をλとする時、 X=a/a+b・ho/λ で表わされるとXと、切断方位Θが Θ=(28333X2−11.667X+36.083) (度) で関係付けられることを特徴とした弾性表面波デ
バイス。
[Claims] 1. In a crystal rotating Y plate represented by (YXI)Θ according to the IRE standard, interdigital transducers for transmitting and receiving made of aluminum electrodes are arranged in the direction of the Z' axis after rotation. The interdigital transducer is configured on the surface of a crystal substrate, has an electrode film thickness ho, an electrode finger width a, a gap between the electrode fingers b, and is mainly excited in the X-axis direction by the transducer. When the wavelength of a surface acoustic wave with displacement is λ, it is understood that X expressed as Featured surface acoustic wave device. 2 In a crystal rotating Y plate represented by (YXI)Θ according to the IRE standard, an interdigitated transducer for transmitting and receiving made of aluminum electrodes is configured on the surface of the crystal substrate in the direction of the Z' axis after rotation. , an aluminum electrode is attached on the propagation between the interdigital transducers, the displacement is concentrated on the surface by the mass load of the aluminum electrode, the electrode film thickness ho of the interdigital transducer, the electrode When the finger width is a, the gap between the electrode fingers is b, and the wavelength of the surface acoustic wave with the principal displacement in the X-axis direction excited by the transducer is λ, then X=a/a+b・ho/λ A surface acoustic wave device characterized in that X and the cutting direction Θ are related by Θ = (28333X 2 −11.667X + 36.083) (degrees).
JP1259579A 1979-02-06 1979-02-06 Elastic surface wave device Granted JPS55105425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259579A JPS55105425A (en) 1979-02-06 1979-02-06 Elastic surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259579A JPS55105425A (en) 1979-02-06 1979-02-06 Elastic surface wave device

Publications (2)

Publication Number Publication Date
JPS55105425A JPS55105425A (en) 1980-08-13
JPS6145891B2 true JPS6145891B2 (en) 1986-10-11

Family

ID=11809695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259579A Granted JPS55105425A (en) 1979-02-06 1979-02-06 Elastic surface wave device

Country Status (1)

Country Link
JP (1) JPS55105425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054751Y2 (en) * 1987-09-07 1993-02-05

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339350B2 (en) * 1997-02-20 2002-10-28 株式会社村田製作所 Surface acoustic wave device
JP3301399B2 (en) * 1998-02-16 2002-07-15 株式会社村田製作所 Surface acoustic wave device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A THEORETICAL ANALYSIS OF SURFACE SKIMMING BULK WAVES=1978 *
THEORETICAL EXAMINATION OF SURFACE SKIMMING BULK WAVES=1978 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054751Y2 (en) * 1987-09-07 1993-02-05

Also Published As

Publication number Publication date
JPS55105425A (en) 1980-08-13

Similar Documents

Publication Publication Date Title
US6933810B2 (en) Surface acoustic wave device with lithium tantalate on a sapphire substrate and filter using the same
EP0034351B1 (en) Surface acoustic wave device
JP2007028664A (en) Surface acoustic wave element chip and surface acoustic wave device
JPH08288788A (en) Surface acoustic wave element
US3990023A (en) Elastic surface wave device
JP2620085B2 (en) 2-port SAW resonator
JP2024001367A (en) Converter structure for generation source suppression in saw filter device
JPS6145891B2 (en)
US5714830A (en) Free edge reflective-type surface acoustic wave device
Tanaka et al. IDT-based acoustic wave devices using ultrathin lithium niobate and lithium tantalate
US4254388A (en) Frequency selector apparatus
JP2002076835A (en) Surface acoustic wave element
JP2516817B2 (en) LiTaO substrate 3 having a polarization inversion layer and device using the same
JPH1022765A (en) Surface acoustic wave resonator and resonator type filter
JPS6231860B2 (en)
US4707631A (en) Isotropic acoustic wave substrate
JPH0746079A (en) Highly stable surface acoustic wave element
JPH09232906A (en) Surface acoustic wave filter
JPS5930332B2 (en) surface acoustic wave device
Goto et al. Study of the LT/Quartz Bonded SAW Substrate for high performance filter solutions
US5781083A (en) Surface wave resonator having a plurality of resonance frequencies
JP2615020B2 (en) Ultrasonic transducer and surface wave device
JPS6145892B2 (en)
JPH08316779A (en) Surface acoustic wave element
JP3597483B2 (en) Surface acoustic wave device