JP2615020B2 - Ultrasonic transducer and surface wave device - Google Patents

Ultrasonic transducer and surface wave device

Info

Publication number
JP2615020B2
JP2615020B2 JP20550686A JP20550686A JP2615020B2 JP 2615020 B2 JP2615020 B2 JP 2615020B2 JP 20550686 A JP20550686 A JP 20550686A JP 20550686 A JP20550686 A JP 20550686A JP 2615020 B2 JP2615020 B2 JP 2615020B2
Authority
JP
Japan
Prior art keywords
substrate
domain
inverted region
linbo
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20550686A
Other languages
Japanese (ja)
Other versions
JPH01157582A (en
Inventor
洋 清水
僖良 中村
晴康 安藤
Original Assignee
清水 郁子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水 郁子 filed Critical 清水 郁子
Priority to JP20550686A priority Critical patent/JP2615020B2/en
Publication of JPH01157582A publication Critical patent/JPH01157582A/en
Application granted granted Critical
Publication of JP2615020B2 publication Critical patent/JP2615020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単結晶圧電基板の表層部に部分的分極反転
領域を形成してなる表面波デバイス及び超音波トランス
ジューサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a surface acoustic wave device and an ultrasonic transducer in which a partially domain-inverted region is formed in a surface layer of a single crystal piezoelectric substrate.

(従来技術) 従来より、LiTaO3基板表面に適当な導体薄膜にてイン
タディジタルトランスジューサ(以下IDTと称する)電
極を所定のピッチで付着形成するとともに、基板表層部
に基板の自発分極と逆の部分的分極反転領域を形成して
なる超音波トランスジューサ及び表面波デバイスが知ら
れている。
(Prior art) Conventionally, an interdigital transducer (hereinafter referred to as IDT) electrode is formed on a surface of a LiTaO 3 substrate with a suitable conductive thin film at a predetermined pitch, and a portion opposite to the spontaneous polarization of the substrate is formed on the surface layer of the substrate. Transducers and surface acoustic wave devices formed with a magnetic domain inversion region are known.

しかし、従来の超音波トランスジューサ及び表面波デ
バイスは、比較的電気機械結合係数が小さいLiTaO3を基
板材料として用いているためエネルギ変換効率が低いと
いう欠点があった。
However, conventional ultrasonic transducers and surface acoustic wave devices have a drawback that energy conversion efficiency is low because LiTaO 3 having a relatively small electromechanical coupling coefficient is used as a substrate material.

また、従来の表面波デバイスは、昨今の電子機器の高
周波化に対処するためにはIDT電極のピッチを小さくす
る必要があり、製造上極めて困難であるのみならず電極
指間隙が狭くなるに従い微細な金属片の存在によっても
短絡が発生するという欠点があった。
In addition, the conventional surface acoustic wave device requires the pitch of the IDT electrode to be reduced in order to cope with the recent increase in the frequency of electronic devices, which is extremely difficult not only in manufacturing but also as the electrode finger gap becomes narrower. There is a drawback that a short circuit occurs even by the presence of a large metal piece.

(発明の目的) 本発明は上述した如き従来のLiTaO3基板を用いたエネ
ルギ変換効率の低い超音波トランスジューサ及び表面波
デバイスに代わる高効率の超音波トランスジューサ及び
表面波デバイスを提供することを目的とする。
(Object of the Invention) It is an object of the present invention to provide a high-efficiency ultrasonic transducer and a surface acoustic wave device which replace the ultrasonic transducer and the surface acoustic wave device having a low energy conversion efficiency using the conventional LiTaO 3 substrate as described above. I do.

(発明の概要) 上述の目的を達成する為,本発明に係る超音波トラン
スジューサは、LiNbO3基板の+C表面に部分的にTi薄膜
を付着した後空気或いは不活性ガスのガス雰囲気中にお
いて前記基板のキュリー点より低く1030℃以上の温度で
熱処理することにより前記基板のTi薄膜付着領域直下に
Tiを拡散させて前記基板の自発分極と逆極の分極反転領
域を形成するとともに、当該分極反転領域上にIDT電極
を配置しこれに交番電極を印加することによって基板厚
み方向に超音波を励起するようにしたものである。次
に、本発明に係る表面波デバイスは、LiNbO3基板の+C
表面に部分的にTi薄膜を付着した後空気或いは不活性ガ
スのガス雰囲気中において前記基板のキュリー点より低
く1030℃以上の温度で熱処理することにより前記基板の
Ti薄膜付着領域直下にTiを拡散させて前記基板の自発分
極と逆極の分極反転領域を形成するとともに、当該分極
反転領域をIDT電極の両側或いは2つのIDT電極の間に配
置したものである。
(Summary of the Invention) In order to achieve the above object, an ultrasonic transducer according to the present invention comprises a TiN thin film partially adhered to a + C surface of a LiNbO 3 substrate, and then the substrate is placed in a gas atmosphere of air or an inert gas. Heat treatment at a temperature lower than the Curie point of 1030 ° C.
The Ti is diffused to form a domain-inverted region having a polarity opposite to the spontaneous polarization of the substrate, and an IDT electrode is arranged on the domain-inverted region and an alternating electrode is applied thereto to excite ultrasonic waves in the substrate thickness direction. It is something to do. Next, the surface acoustic wave device according to the present invention is a LiNbO 3 substrate + C
After the Ti thin film is partially adhered to the surface, the substrate is subjected to a heat treatment at a temperature lower than the Curie point of the substrate and at a temperature of 1030 ° C. or higher in a gas atmosphere of air or an inert gas, thereby
Ti is diffused immediately below the Ti thin film attachment region to form a domain-inverted region having a polarity opposite to the spontaneous polarization of the substrate, and the domain-inverted region is disposed on both sides of the IDT electrode or between two IDT electrodes. .

また、本発明に係る別の表面波デバイスは、LiNbO3
板の+C面側表層部に部分的分極反転領域を形成し、該
領域の一部或いは全部において基板の表裏に一様電極を
付し、該基板の表裏の一様電極間に交番電界を印加する
ことによってIDT電極を使用することなしに表面波を励
起するようにしたものである。
In another surface acoustic wave device according to the present invention, a partially domain-inverted region is formed in a + C plane side surface layer portion of a LiNbO 3 substrate, and a uniform electrode is attached to the front and back surfaces of the substrate in part or all of the region. By applying an alternating electric field between the uniform electrodes on the front and back of the substrate, surface waves can be excited without using an IDT electrode.

また、本発明に係るさらに別の表面波デバイスは、Li
NbO3基板の+C面側表層部に部分的分極反転領域を形成
し、該領域の一部において基板の表裏に一様電極を付
し、且つ前記部分的分極反転領域の一部を反射器として
用い、該基板の表裏の一様電極間に交番電界を印加する
ことによってIDT電極を使用することなしに表面波を励
起するようにしたものである。
Further, still another surface acoustic wave device according to the present invention includes Li
A partially domain-inverted region is formed on the + C face side surface portion of the NbO 3 substrate, uniform electrodes are provided on the front and back of the substrate in a part of the region, and a part of the partial domain-inverted region is used as a reflector. A surface wave is excited without using an IDT electrode by applying an alternating electric field between the uniform electrodes on the front and back of the substrate.

(実施例) 以下、本発明の実施例について詳細に説明する。な
お、ここでは本発明に係る超音波トランスジューサ及び
表面波デバイスの主要な構成要素である部分的分極反転
領域を有するLiNbO3基板の製造方法、及びそのLiNbO3
板の応用例である光変調デバイス等についても併せて説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail. Here, a method of manufacturing a LiNbO 3 substrate having a partially domain-inverted region which is a main component of the ultrasonic transducer and the surface acoustic wave device according to the present invention, and an optical modulation device which is an application example of the LiNbO 3 substrate Will also be described.

(I)部分的分極反転領域を有するLiNbO3基板の製造方
法 C軸が板面に垂直なLiNbO3z板の+C面に所定の間隔
を設けてTiをグレーティング状に厚さ1,000Å程度蒸着
しこれを空気或いは水蒸気(Liの外部拡散を防ぐことを
目的とする)を含むArガス中で5乃至10時間放置熱処理
する。この際の熱処理温度はLiNbO3のキュリー点温度
(約1,150℃)より若干低い1,030℃程度に保持する。
(I) Manufacturing method of LiNbO 3 substrate having partially domain-inverted regions Ti is deposited in a grating shape to a thickness of about 1,000 mm at a predetermined interval on the + C surface of a LiNbO 3 z plate having a C axis perpendicular to the plate surface. This is subjected to a heat treatment for 5 to 10 hours in an Ar gas containing air or water vapor (for the purpose of preventing external diffusion of Li). The heat treatment temperature at this time is maintained at about 1,030 ° C., which is slightly lower than the Curie point temperature of LiNbO 3 (about 1,150 ° C.).

斯くすることによって第1図(a)に示す如くTi蒸着
膜の直下に自発分極とは逆極の分極反転領域がグレーテ
ィング状に形成されその厚みは概ね12乃至15μmを越え
ることがない。
As a result, as shown in FIG. 1A, a domain-inverted region having a polarity opposite to that of spontaneous polarization is formed immediately below the Ti vapor-deposited film in a grating shape, and its thickness does not generally exceed 12 to 15 μm.

又,C軸が板面法線から54°傾いた36°回転Y板につい
て同様の操作を施したところ,熱処理温度が1,030℃で
は分極反転領域は生じないがこれを1,050℃とすると分
極反転領域の形成されることが判明した。
When the same operation was performed on a 36-degree rotated Y plate whose C axis was inclined 54 ° from the plate surface normal, no domain-inverted region occurred at a heat treatment temperature of 1,030 ° C. Was formed.

尚,上述した如き分極反転領域の出現は前記第1図
(a)の如く互に分離した分域列を生ずる場合と第1図
(b)に示す如く相隣接した分極反転領域が連結し分域
境界が正弦波状となる場合とがある。その原因は目下の
ところ不明であるがTi拡散の状態によるものと思われ
る。
It should be noted that the appearance of the domain-inverted regions as described above occurs when the domain lines are separated from each other as shown in FIG. 1 (a) and when the domain-inverted regions adjacent to each other are connected as shown in FIG. 1 (b). In some cases, the area boundary becomes sinusoidal. The cause is unknown at present, but it seems to be due to the state of Ti diffusion.

(II)部分的分極反転領域を有するLiNbO3基板の応用
例,上記(I)に述べた如き方法によって部分的分極反
転領域の形成されたLiNbO3基板は次に示す如きデバイス
への応用が可能である。
(II) partially polarizing applications of LiNbO 3 substrate having an inversion region, the LiNbO 3 substrate having the partial domain inversion regions by methods such as described in (I) is can be applied to such following devices It is.

(a)表面励振超音波トランスジューサ 第2図(a)及び(b)は部分的分極反転領域を有す
るLiNbO3基板を本発明に係る超音波トランスジューサと
して利用する場合の実施例を示す断面図である。
(A) Surface-excited ultrasonic transducer FIGS. 2A and 2B are cross-sectional views showing an embodiment in which a LiNbO 3 substrate having a partially domain-inverted region is used as the ultrasonic transducer according to the present invention. .

即ち,同図(a)に示す如く所定の間隔を設けて形成
したグレーティング状部分的分極反転領域を有するLiNb
O3Z板表面上の分域境界をまたぐ形にAl等でIDT電極を
付しこれにSAW共振子と同様に交番電界を印加すれば横
波のバルク波が発生する。
That is, LiNb having a grating-like partially domain-inverted region formed at a predetermined interval as shown in FIG.
If an IDT electrode is made of Al or the like over the domain boundary on the surface of the O 3 Z plate and an alternating electric field is applied to the IDT electrode similarly to the SAW resonator, a transverse bulk wave is generated.

又,同図(b)に示す如くLiNbO3回転Y板の分極反転
領域及び非反転領域に交互にIDT電極を設けて励振すれ
ば縦波が発生しこれらはいずれも超音波として放射され
従来のLiTaO3によるそれよりも効率のよいことは両者の
電気機械結合係数の差異からも明らかである。
If IDT electrodes are alternately provided in the domain-inverted region and the non-inverted region of the LiNbO 3 rotating Y plate and excited as shown in FIG. 3B, longitudinal waves are generated, and both of them are radiated as ultrasonic waves. The fact that LiTaO 3 is more efficient than that is apparent from the difference in the electromechanical coupling coefficient between the two.

(b)光偏向或は光変調デバイスへの応用 従来の光偏向或は光変調デバイスは例えばLiNbO3結晶
に超音波トランスジューサを貼着し前記LiNbO3結晶中を
伝搬する超音波と光との相互作用に基づくブラック回折
を利用するものがあるが,このようなデバイスは超音波
トランスジューサとLiNbO3結晶との接着が困難であるこ
と,高周波化が困難であること等の欠陥があった。
(B) the mutual light deflection or conventional light deflection or light modulating device application to an optical modulation device and the ultrasonic waves and light propagating example LiNbO 3 crystal adhered ultrasonic transducer in the LiNbO 3 crystal Some devices use black diffraction based on the action, but such devices have defects such as difficulty in bonding the ultrasonic transducer to the LiNbO 3 crystal and difficulty in increasing the frequency.

この種の光デバイスを本発明に係る部分的分極反転領
域を有するLiNbO3基板を用いれば第3図に示す如く部分
的分極反転領域形成面にIDT電極を,又その対向面に吸
音材を付着するのみで簡単に光偏向或は光変調デバイス
が得られること多言を要しないであろう。
If an optical device of this type uses a LiNbO 3 substrate having a partially domain-inverted region according to the present invention, an IDT electrode is attached to the surface where the partially domain-inverted region is formed as shown in FIG. It will not be necessary to say that a light deflection or light modulation device can be easily obtained simply by doing.

(c)SAW共振子用反射器への応用 グレーティング状の分極反転領域は弾性表面波(SA
W)を反射することは明らかであるからSAW共振子等の反
射器として利用しうる。殊に分域列がLiNbO3結晶表面近
傍で連続している前記第1図(b)の如き基板を用いれ
ばSAWの反射が連続的な変化となるから従来の導体グレ
ーティングを用いる反射器にられる如く反射波が他のバ
ルク波に変換されロスとなることが少ない故Qの高いSA
Wデバイスを得ることが可能である。
(C) Application to reflectors for SAW resonators
Since it is clear that W) is reflected, it can be used as a reflector such as a SAW resonator. In particular, if a substrate as shown in FIG. 1 (b), in which the domain lines are continuous in the vicinity of the LiNbO 3 crystal surface, is used, the reflection of the SAW changes continuously, so that a reflector using a conventional conductor grating can be used. As the reflected wave is less likely to be converted into another bulk wave and become a loss as described above, a high Q SA
It is possible to get a W device.

第4図にその断面図を示す。尚,部分的分極反転領域
形成部の表面上にIDT電極を付すことも可能であり,例
えば概ね第5図(a)又は(b)に示す如くすれば内部
反射型一方向性SAWトランスジューサが得られる。
FIG. 4 shows a cross-sectional view thereof. An IDT electrode can be provided on the surface of the partial domain-inverted region forming portion. For example, an internal reflection type unidirectional SAW transducer can be obtained as shown in FIG. 5 (a) or (b). Can be

この場合SAWの反射は専ら分極反転領域によって支配
されるとはいうもののIDT電極の影響をもうけるので分
極反転領域とIDT電極との相互位置関係は従来のIDT電極
の段差による一方向性トランスジューサの電極構造の如
く単純ではなく実験によって決定する必要がある。
In this case, although the reflection of the SAW is mainly controlled by the domain-inverted region, the influence of the IDT electrode is exerted, so that the mutual positional relationship between the domain-inverted region and the IDT electrode is determined by the step of the conventional IDT electrode. It is not as simple as the structure and must be determined by experiment.

(d)IDT励振電極を必要としない本発明の表面波デバ
イス 前述した如く従来のSAWデバイスはIDT励振電極のピッ
チによって周波数が決定するものであるから昨今の電子
機器の高周波化に対処する為にはIDT電極ピッチを小さ
くする必要があり製造上極めて困難であるのみならず電
極指間隙が狭くなるに従い微細な金属片の存在によって
も短絡の発生することが少なくなかった。
(D) The surface acoustic wave device of the present invention which does not require an IDT excitation electrode As described above, in the conventional SAW device, the frequency is determined by the pitch of the IDT excitation electrode. It is necessary to reduce the pitch of the IDT electrodes, which is extremely difficult in manufacturing. In addition, as the electrode finger gap becomes narrower, short-circuiting often occurs due to the presence of fine metal pieces.

このような問題は部分的分極反転領域を有するLiNbO3
基板を用い,例えば第6図(a)に示す如く基板中央の
表裏に部分一様電極を設けこれに交番電界を印加し,前
記一様電極の両側の分極反転列を反射器として利用すれ
ば完全に解決する。即ち,分極反転領域は前記第1図
(b)に示す如く分離が不完全であっても差しつかえな
いので該領域を形成する為の蒸着Tiストリップに互に接
触する部分が多少存在しても特性上差したる影響は存在
しないからである。
Such a problem is caused by LiNbO 3 having a partially domain-inverted region.
Using a substrate, for example, as shown in FIG. 6 (a), a partially uniform electrode is provided on the front and back of the center of the substrate, an alternating electric field is applied thereto, and the domain-inverted rows on both sides of the uniform electrode are used as reflectors. Completely solved. That is, as shown in FIG. 1 (b), the domain-inverted region may be incomplete even if the separation is incomplete. This is because there is no difference in characteristics.

更に蒸着Tiストリップは通常のIDT電極指の2倍のピ
ッチとすれば足りるからデバイスの高周波化は製造上一
層容易である。
Further, it is sufficient that the pitch of the vapor-deposited Ti strip is twice as large as that of a normal IDT electrode finger.

以上1ポートのSAWデバイス(共振子)について説明
したがこれは同図(b)に示す如く完全々面電極を有す
るものに,或は同図(c)又は(d)に示す如く2ポー
トデバイスとすることも可能である。
The one-port SAW device (resonator) has been described above. The one-port SAW device (resonator) has a completely planar electrode as shown in FIG. 3B, or a two-port device as shown in FIG. 3C or FIG. It is also possible to use

(発明の効果) 本発明によれば以下の如き優れた効果を奏することが
できる。
(Effects of the Invention) According to the present invention, the following excellent effects can be obtained.

(1)特許請求の範囲第1項記載の超音波トランスジュ
ーサ及び特許請求の範囲第2項〜第4項記載の表面波デ
バイスは、LiTaO3より電気機械結合係数の大なるLiNbO3
を基板材料として用いているためエネルギ変換効率が高
い。
(1) claims ultrasonic transducer and claims the surface wave device in the range the second term to the fourth claim of the range preceding claim in becomes large electromechanical coupling coefficient than LiTaO 3 LiNbO 3
Is used as a substrate material, so that the energy conversion efficiency is high.

(2)特許請求の範囲第2項記載の表面波デバイスは、
分極反転領域をIDT電極の両側或いは2つのIDT電極の間
に配置したことにより、分極反転領域を反射器として用
いてエネルギ変換効率をより高めることができる。
(2) The surface acoustic wave device according to claim 2 is:
By arranging the domain-inverted region on both sides of the IDT electrode or between the two IDT electrodes, the energy conversion efficiency can be further improved by using the domain-inverted region as a reflector.

(3)特許請求の範囲第3項及び第4項記載の表面波デ
バイスは、LiNbO3基板の表裏の一様電極間に交番電界を
印加することによってIDT電極を使用することなしに表
面波を励起することができるので、高周波化のための製
造が容易である。
(3) The surface acoustic wave device according to claims 3 and 4, wherein the surface acoustic wave is applied without using the IDT electrode by applying an alternating electric field between the uniform electrodes on the front and back of the LiNbO 3 substrate. Since it can be excited, manufacturing for high frequency is easy.

(4)特許請求の範囲第4項記載の表面波デバイスは、
部分的分極反転領域の一部を反射器として用いるのでエ
ネルギ変換効率をより高めることができる。
(4) The surface acoustic wave device according to claim 4 is:
Since a part of the partially domain-inverted region is used as a reflector, the energy conversion efficiency can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)及び(b)は夫々本発明の超音波トランス
ジューサ及び表面波デバイスの主要な構成要素である部
分的分極反転領域を有するLiNbO3基板の異った構造を示
す図,第2図(a)及び(b)は夫々部分的分極反転領
域を有するLiNbO3基板を用いた異った超音波トランスジ
ューサの構造を示す図,第3図はこれを光偏向器に適用
した例を説明する構成図,第4図はこれをSAW共振子の
反射器に適用した例を示す構成図,第5図(a)及び
(b)はこれを夫々異った内部反射型一方向性SAWトラ
ンスジューサに適用した例を示す構成図,第6図(a)
乃至(d)は本発明に係る表面波デバイスの実施例を示
す構成図である。
FIGS. 1 (a) and 1 (b) show different structures of a LiNbO 3 substrate having a partially domain-inverted region which is a main component of the ultrasonic transducer and the surface acoustic wave device of the present invention, respectively. Figure (a) and (b) illustrate an example of application shows the structure of the ultrasonic transducer has different Tsu using LiNbO 3 substrates each having a partial domain inversion regions, FIG. 3 is the same to the optical deflector FIG. 4 is a block diagram showing an example in which this is applied to a reflector of a SAW resonator, and FIGS. 5 (a) and 5 (b) show different internal reflection type unidirectional SAW transducers. FIG. 6 (a) is a block diagram showing an example of application to the present invention.
(D) is a configuration diagram showing an embodiment of the surface acoustic wave device according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−42968(JP,A) 特開 昭58−21211(JP,A) 特公 昭54−18385(JP,B2) 特公 昭58−32527(JP,B2) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-58-42968 (JP, A) JP-A-58-21211 (JP, A) JP-B-54-18385 (JP, B2) JP-B-58-212 32527 (JP, B2)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LiNbO3基板の+C表面に部分的にTi薄膜を
付着した後空気或いは不活性ガスのガス雰囲気中におい
て前記基板のキュリー点より低く1030℃以上の温度で熱
処理することにより前記基板のTi薄膜付着領域直下にTi
を拡散させて前記基板の自発分極と逆極の分極反転領域
を形成するとともに、当該分極反転領域上にIDT電極を
配置しこれに交番電極を印加することによって基板厚み
方向に超音波を励起するようにしたことを特徴とする超
音波トランスジューサ。
The present invention relates to a method for manufacturing a semiconductor device, comprising: depositing a Ti thin film partially on the + C surface of a LiNbO 3 substrate; and performing heat treatment at a temperature lower than the Curie point of the substrate and at least 1030 ° C. in a gas atmosphere of air or an inert gas. Just below the Ti thin film deposition area
Is diffused to form a domain-inverted region having a polarity opposite to the spontaneous polarization of the substrate, and an IDT electrode is arranged on the domain-inverted region, and an alternating electrode is applied thereto to excite ultrasonic waves in the substrate thickness direction. An ultrasonic transducer characterized by the above.
【請求項2】LiNbO3基板の+C表面に部分的にTi薄膜を
付着した後空気或いは不活性ガスのガス雰囲気中におい
て前記基板のキュリー点より低く1030℃以上の温度で熱
処理することにより前記基板のTi薄膜付着領域直下にTi
を拡散させて前記基板の自発分極と逆極の分極反転領域
を形成するとともに、当該分極反転領域をIDT電極の両
側或いは2つのIDT電極の間に配置したことを特徴とす
る表面波デバイス。
2. The method according to claim 1, further comprising: depositing a Ti thin film partially on the + C surface of the LiNbO 3 substrate; and performing heat treatment at a temperature lower than the Curie point of the substrate and at least 1030 ° C. in a gas atmosphere of air or an inert gas. Just below the Ti thin film deposition area
A surface-inverted region having a domain-inverted region having a polarity opposite to the spontaneous polarization of the substrate, and the domain-inverted region is disposed on both sides of the IDT electrode or between two IDT electrodes.
【請求項3】LiNbO3基板の+C面側表層部に部分的分極
反転領域を形成し、該領域の一部或いは全部において基
板の表裏に一様電極を付し、該基板の表裏の一様電極間
に交番電界を印加することによってIDT電極を使用する
ことなしに表面波を励起するようにしたことを特徴とす
る表面波デバイス。
3. A partially domain-inverted region is formed in a surface layer portion on the + C face side of a LiNbO 3 substrate, and a uniform electrode is provided on the front and back surfaces of the substrate in part or all of the region. A surface wave device characterized in that a surface wave is excited without using an IDT electrode by applying an alternating electric field between the electrodes.
【請求項4】LiNbO3基板の+C面側表層部に部分的分極
反転領域を形成し、該領域の一部において基板の表裏に
一様電極を付し、且つ前記部分的分極反転領域の一部を
反射器として用い、該基板の表裏の一様電極間に交番電
界を印加することによってIDT電極を使用することなし
に表面波を励起するようにしたことを特徴とする表面波
デバイス。
4. A partially domain-inverted region is formed in a surface layer portion on the + C plane side of a LiNbO 3 substrate, a uniform electrode is provided on the front and back of the substrate in a part of the region, and a partial domain-inverted region is formed. A surface wave device characterized in that a surface wave is excited without using an IDT electrode by using a portion as a reflector and applying an alternating electric field between uniform electrodes on the front and back of the substrate.
JP20550686A 1986-09-01 1986-09-01 Ultrasonic transducer and surface wave device Expired - Fee Related JP2615020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20550686A JP2615020B2 (en) 1986-09-01 1986-09-01 Ultrasonic transducer and surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20550686A JP2615020B2 (en) 1986-09-01 1986-09-01 Ultrasonic transducer and surface wave device

Publications (2)

Publication Number Publication Date
JPH01157582A JPH01157582A (en) 1989-06-20
JP2615020B2 true JP2615020B2 (en) 1997-05-28

Family

ID=16507988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20550686A Expired - Fee Related JP2615020B2 (en) 1986-09-01 1986-09-01 Ultrasonic transducer and surface wave device

Country Status (1)

Country Link
JP (1) JP2615020B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260219A (en) * 1988-08-25 1990-02-28 Fujitsu Ltd Manufacture of piezoelectric vibrator
JP3853252B2 (en) * 2002-05-16 2006-12-06 富士通メディアデバイス株式会社 Surface acoustic wave device
KR100788289B1 (en) * 2006-06-26 2007-12-27 한국과학기술원 Method for annealing ferroelectric crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1075647A (en) * 1977-06-20 1980-04-15 Joseph L. Abbott Collapsible container structure and method of making same
JPS5821211A (en) * 1981-07-31 1983-02-08 Canon Inc Thin film lens of integrated optical structure
JPS5842968A (en) * 1981-09-07 1983-03-12 Hitachi Ltd Ultrasonic probe
JPS59158699A (en) * 1983-02-28 1984-09-08 Shimadzu Corp Ultrasonic wave probe

Also Published As

Publication number Publication date
JPH01157582A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
JPH1155070A (en) Surface acoustic wave element and its producing method
JPH01129517A (en) Manufacture of surface wave resonance element
JPH07263998A (en) End face reflecting surface wave resonator
JP2615020B2 (en) Ultrasonic transducer and surface wave device
JP2565346B2 (en) LiNbO Lower 3 / LiTaO Lower 3 Single Crystal Piezoelectric Substrate Having Polarization Reversal Region and Manufacturing Method Thereof
JP2000278087A (en) Surface acoustic wave device
JPS6231860B2 (en)
JP2002141768A (en) Surface acoustic wave element
JPH1197973A (en) Surface wave device
TWI751407B (en) Transducer structure for source suppression in saw filter devices
JP3203796B2 (en) Multi-mode surface acoustic wave filter
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
JPH01103310A (en) Surface acoustic wave element
JP3329115B2 (en) Surface wave device
JPS6367809A (en) Surface acoustic wave resonator
JPH09130192A (en) Surface wave device
JPH0583084A (en) Surface acoustic wave filter
JPS62168411A (en) Surface acoustic wave resonator
JPH0567937A (en) Surface acoustic wave element
JPS6346605B2 (en)
JPS6192021A (en) Elastic surface wave element
JPH03247109A (en) Electrode structure of duplex mode surface acoustic wave filter
JPH054848B2 (en)
JP3395298B2 (en) Surface wave device
JP2002223143A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees