JPS5842968A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS5842968A
JPS5842968A JP56140608A JP14060881A JPS5842968A JP S5842968 A JPS5842968 A JP S5842968A JP 56140608 A JP56140608 A JP 56140608A JP 14060881 A JP14060881 A JP 14060881A JP S5842968 A JPS5842968 A JP S5842968A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
fingers
ceramic plate
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56140608A
Other languages
Japanese (ja)
Other versions
JPH0342560B2 (en
Inventor
Hiroyuki Takeuchi
裕之 竹内
Etsuji Yamamoto
山本 悦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56140608A priority Critical patent/JPS5842968A/en
Publication of JPS5842968A publication Critical patent/JPS5842968A/en
Publication of JPH0342560B2 publication Critical patent/JPH0342560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To form a high-frequency electron scanning type ultrasonic probe of a united ceramic plate, by providing plural couples of cross finger electrodes on a ferrodielectric ceramics plate which has a small coefficiency of electromechanical coupling in a direction parallel to the plate surface. CONSTITUTION:On a ceramics plate of PbTlO3 which contains Sm and Mn while a coefficient of electromechanical coupling regarding lateral oscillation is nearly disregarded, adjacent electrode fingers 5 and 6,- made of a cross finger electrode element 11 as a negative electrode, etc., and cross finger electrode elements 12a, 12b- as positive electrodes, etc., are arranged in plural cross finger electrode couples A, B-. In this constitution, the respective electrode couples A, B- serve as independent ultrasonic wave generating sources. This simple constitution which uses the adequately-thick, one-body ceramic plate without arranging numbers of oscillating elements using independent thin striplike ceramics plates realizes an array of high-frequency electron scanning type ultrasonic probes.

Description

【発明の詳細な説明】 本発明は、超音波診断装置などに用いる電子走査型超音
波探触子に関する。従来、この種の超音波探触子には、
一様に厚み方向に分極処理をしたジルコン・チタン酸鉛
(PZT)系セラミックス板を短冊状の細い素片に切断
して表面と裏面に電極を取付け、各素片の厚み振動によ
り超音波を発生させている。しかし、最近では超音波診
断および計測技術がより高周波へと進んでおり、これに
必要な短冊加工技術は限界に近付いている。すなわち、
高周波の超音波を発生させるには上記素片の厚みを薄く
すると共に幅を狭くしなければならず、この点から周波
数は5 MHzが限界となっている。このため周波数は
同じでも各素片の幅を広くできるチタン酸鉛(PbTi
O3)系セラミックスを用いて、高周波化の要求に対処
しようという動きがある。しかし、これとても10〜1
5 MHzが限界と云われており、さらに周波数の高い
領域では新しい技術を開発しなければならない。本発明
(もこのような要請に応じてなされたものでやる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic scanning ultrasound probe used in ultrasound diagnostic equipment and the like. Conventionally, this type of ultrasonic probe has
A zircon-lead titanate (PZT) ceramic plate that has been uniformly polarized in the thickness direction is cut into thin strips, electrodes are attached to the front and back sides, and ultrasonic waves are generated by the thickness vibration of each piece. It is occurring. However, recently, ultrasonic diagnosis and measurement technology has advanced to higher frequencies, and the strip processing technology required for this is approaching its limit. That is,
In order to generate high-frequency ultrasonic waves, it is necessary to reduce the thickness and width of the elemental piece, and from this point of view, the frequency is limited to 5 MHz. For this reason, lead titanate (PbTi) allows the width of each element to be widened even though the frequency is the same.
There is a movement to use O3) type ceramics to meet the demands for higher frequencies. However, this is very 10-1
5 MHz is said to be the limit, and new technology must be developed for even higher frequency ranges. The present invention was developed in response to such demands.

従来、高周波の超音波を発生させる手段として、第1図
に示すよう鑑二、分極処理を施してない強誘電体セラミ
ックス板(X21下セラミツクス板と略記する)1の表
面に交叉指電極(interdigitaleleCt
rode ) (< L/型電極またはすだれ状電極と
も称されている)2,3を設け、これを用いて分極処理
を施し、かつ上記電極2,3を電気−超音波相互の変換
用電極と・する′ことが知られている。
Conventionally, as a means for generating high-frequency ultrasonic waves, as shown in FIG.
rode) (also referred to as L/type electrodes or interdigital electrodes) 2 and 3 are used to perform polarization treatment, and the electrodes 2 and 3 are used as electrodes for mutual conversion between electricity and ultrasonic waves.・It is known that

この電極構造の場合は第2図鑑−示すように、セラミッ
クス板1の表面付近が矢印4で示すように交互に逆方向
に分極されるため、交叉指電極2,3を介してパルス電
圧5を印加すると、各電極指力・ら同一位相で矢印6区
二示すように板面ζ;垂直方向に超音波が放射される。
In the case of this electrode structure, as shown in the second illustrated book, the vicinity of the surface of the ceramic plate 1 is alternately polarized in opposite directions as shown by the arrows 4, so the pulse voltage 5 is applied via the interdigitated electrodes 2 and 3. When applied, ultrasonic waves are emitted in the direction perpendicular to the plate surface ζ, as shown by arrows 6 and 2, with the same phase from each electrode finger force.

゛ この超音波発生用変換器は非共振型のため周波数応答の
帯域が極めて広く、非常に幅の狭い超音波パルスを発生
させることができる。したがって超音波撮像システムに
利用した場合、分解能の高′1J1装置が得られ、しか
も数10〜100MH2の周波数の高い超音波を容易に
発生できる特徴がある。
``Since this ultrasonic generation transducer is a non-resonant type, the frequency response band is extremely wide, and it is possible to generate ultrasonic pulses with an extremely narrow width. Therefore, when used in an ultrasonic imaging system, a high-resolution '1J1 device can be obtained, and moreover, it has the feature of easily generating ultrasonic waves with a high frequency of several tens to 100 MH2.

しかし、第1図に示した電極構造では1個の超音波変換
器が得られるのみで、いわゆるアレイ状構成とすること
ができず、従来の多数の短冊状素片を用いた探触子のよ
うに、超音波ビームを電気的に走査することができない
However, with the electrode structure shown in Figure 1, only one ultrasonic transducer can be obtained, and a so-called array configuration cannot be achieved. As such, the ultrasound beam cannot be electrically scanned.

本発明は第1図の交叉指電極2,3を用いた超音波探触
子において、一方の電極、例えば交叉指電極2を分割し
て他方の交叉指電極3と共に複数の電極対を構成し、超
音波ビームの電子走査を可能にしたもので′、以下に本
発明を実施例を参照して詳細に説明する。    ・ 
    ・第3図は本発明による電極構造の実施例を示
し、前記第1図1二1する分極未処理のセラミックス板
1上に設けた交叉指電極3に対応する交叉指電極11と
、同じく第1図の交叉指電極2の、あたかも電極指を所
定数(第3図の場合は電極指■と■の2本)ずつに分割
した形状の交叉指電極素子12a、12b・・・12n
とにより、破線で区分して示すよ、う鑑二n組の電極対
A、B・・・Nを構成し、1例として共通側の電極11
を負極性、分割側の電極12a 、12b・・・12n
をそれぞれ正極性とすると共に、さら(:隣接する電極
対では同一極性(第3図の場合は1例として負極性)の
電極、指が隣り合うように配置する。
The present invention is an ultrasonic probe using the interdigitated finger electrodes 2 and 3 shown in FIG. The present invention will be described in detail below with reference to embodiments.・
・FIG. 3 shows an embodiment of the electrode structure according to the present invention. The interdigital electrode elements 12a, 12b, . . . , 12n of the interdigital electrode 2 in Fig. 1 are shaped as if the electrode fingers were divided into a predetermined number (in Fig. 3, two electrode fingers ■ and ■).
As shown by broken lines, two n pairs of electrodes A, B...N are formed, and as an example, the electrode 11 on the common side
negative polarity, dividing side electrodes 12a, 12b...12n
are each of positive polarity, and electrodes and fingers of the same polarity (negative polarity in the case of FIG. 3 as an example) in adjacent pairs of electrodes are arranged so as to be adjacent to each other.

すなわち、例えば交叉指電極素子12aの電極−・指■
、■と、交叉指電極11の電極指■、■および■とによ
り電極対人を構成し、かつ上記電極対人は隣りの電極対
Bと互いに同一極性の電極指■とOを介して接するよう
に配置する。
That is, for example, the electrode of the interdigital electrode element 12a - finger ■
, ■, and the electrode fingers ■, ■, and ■ of the interdigital electrode 11 constitute an electrode pair, and the electrode pair is in contact with the adjacent electrode pair B through the electrode fingers ■ and O of the same polarity. Deploy.

換言すれば本発明の電極は、正または負極性の第1の交
叉指電極と、これにそれぞれ相対しかつこれと異なる極
性の複数の交叉指電極素子よりなる第2の交叉指電極と
より構成され、上記各交叉指電極素子は上記第1の交叉
指電極の電極指間に入り込んだそれぞれ所定数の電極指
を有し上記第1の交叉指電極と共に各独立した複数の電
極対を構成し、か一つ上記各電極対は互いに同一極性の
電極指を介してそれぞれ次の電極対と接するようにする
。かくして、電極対A、B・・・Nはそれぞれ独立の超
音波発生源用電極となる。
In other words, the electrode of the present invention is composed of a first interdigitated electrode having a positive or negative polarity, and a second interdigital electrode consisting of a plurality of interdigitated electrode elements each facing the first interdigital electrode and having a different polarity from the first interdigital electrode. Each of the interdigitated electrode elements has a predetermined number of electrode fingers inserted between the electrode fingers of the first interdigital electrode, and together with the first interdigital electrode constitute a plurality of independent electrode pairs. , or each pair of electrodes is brought into contact with the next pair of electrodes through electrode fingers of the same polarity. In this way, the electrode pairs A, B...N each serve as independent ultrasonic wave generation source electrodes.

このように構成された電極を用いて分極処理を行なうと
、セラミックス臀1の表面付近は第4図に示すように分
極され、電極対の境界を示す破線の両側の同一極性の電
極指の間は分極処理されず圧電的に不活性な領域になる
。よって、このような交叉指電極に超音波発生用の電圧
を印加した場合、破線ではさまれた各電極対下のセラミ
ックス板に、板面に垂直方向の振動の間に機械的な結合
がなければ、各電極対は互いに全く独立したストリップ
状の超音波発生源となる。すなわち、第3図の電極構造
の超音波探触子は複数の超音波発生源を並置した点にお
いて、独立した短冊状の振動素子を多数並べた従来の電
子走査型超音波探触子と等価であり、超音波ビームの電
子走査を行なうことができる。
When polarization treatment is performed using the electrodes configured in this way, the vicinity of the surface of the ceramic buttocks 1 is polarized as shown in FIG. is not polarized and becomes a piezoelectrically inactive region. Therefore, when a voltage for generating ultrasonic waves is applied to such interdigitated electrodes, there must be mechanical coupling between the vibrations perpendicular to the plate surface on the ceramic plate below each pair of electrodes sandwiched by the broken line. For example, each electrode pair serves as a strip-shaped ultrasonic generation source that is completely independent of each other. In other words, the ultrasonic probe with the electrode structure shown in Figure 3 is equivalent to a conventional electronic scanning ultrasonic probe in which a large number of independent strip-shaped vibrating elements are arranged in parallel in that multiple ultrasonic generation sources are arranged side by side. This allows electronic scanning of ultrasonic beams.

一般に、各電極対下のセラミックス板の振動の・間には
機械的結合が存在するが、チタン酸鉛(Pb Ti 0
3 )系セラミックス板は横方向の振動に関する電気機
械結合が小−さく、特に主として縦方向の振動のみが励
振される場合には、この横方向の結合は非常に小さい。
Generally, there is a mechanical coupling between the vibrations of the ceramic plate under each electrode pair, but lead titanate (Pb Ti 0
3) The electromechanical coupling with respect to lateral vibrations is small in the ceramic plate, and especially when only longitudinal vibrations are excited, this lateral coupling is very small.

次に、本発明の構造の電極を上記Pb Ti 03系セ
ラミツク板に設けて行なった実測結果を示す。
Next, the results of actual measurements were shown in which electrodes having the structure of the present invention were provided on the Pb Ti 03 ceramic plate.

横方向の振動(二関する電気−機械結合係数がほとんど
無視できるサマリウム(8m )とマンガン(Mr+)
とを含んだPb Ti 03  系セラミックスを通常
のセラミック技術で作成し、長さ30×幅13鵬の角板
を切り出し両面を研磨する。かくして得られたセラミッ
クス板の表面に、メタルマスクを通して第3図に示した
形状の電極を、電極材料に金(Au )を用いて蒸着す
る。なお電極指の幅は120μm1 電極指間の距離は
80pm、  電極対↑       − このようにして超音波発生源を構成したのち、15 o
”Cに保ったシリコン油中で、各電極12a。
Lateral vibration (samarium (8 m) and manganese (Mr+), where the electro-mechanical coupling coefficient is almost negligible)
A Pb Ti 03 -based ceramic containing Pb Ti 03 is prepared using ordinary ceramic technology, and a square plate with a length of 30 mm and a width of 13 mm is cut out and both sides are polished. On the surface of the ceramic plate thus obtained, an electrode having the shape shown in FIG. 3 is vapor-deposited using gold (Au) as the electrode material through a metal mask. Note that the width of the electrode fingers is 120 μm1, the distance between the electrode fingers is 80 pm, and the electrode pair ↑ - After configuring the ultrasonic source in this way, 15 o
``Each electrode 12a in silicone oil maintained at C.

12b・・・12nと共通側電極11との間にDC56
0Vの電圧を約10分間印加して分極処理を行ない、さ
らに洗浄したのち電極にそれぞれリード線を取付け、各
電極対の超音波変換特性を測定した。
DC56 between 12b...12n and the common side electrode 11
A voltage of 0 V was applied for about 10 minutes to perform polarization treatment, and after cleaning, lead wires were attached to each electrode, and the ultrasonic conversion characteristics of each electrode pair were measured.

・このようにして実測した超−波変換周疲数i性を第5
図に示す。この場合、中心周波数は約30■hで、3d
B低下の比帯域は約100%であり、極めて広いことが
わかる。次に、水中工矩形波電圧を印加して超音波を放
射させ、反射体からのエコーを観測した場合の受信波形
の一例を第6図に示す。同図ζ二明らかなように、非常
に短いパルス波形が得られている。これらの特性は各電
極対ともほぼ同様であり、各電極対がそれぞれ独立の超
音波発生源として動作していることがわかる。
・The ultra-wave conversion frequency i characteristic actually measured in this way is
As shown in the figure. In this case, the center frequency is approximately 30■h, and 3d
It can be seen that the specific band of B reduction is approximately 100%, which is extremely wide. Next, an example of a received waveform when an underwater rectangular wave voltage is applied to emit an ultrasonic wave and an echo from a reflector is observed is shown in FIG. As is clear from the figure, a very short pulse waveform is obtained. These characteristics are almost the same for each electrode pair, and it can be seen that each electrode pair operates as an independent ultrasonic wave generation source.

このように、第3図の構造の電極をセラミックス板上に
設け、かつセラミックス板として横方向の電気−機械結
合係数の小さなものを用いることにより、高周波品電子
走査型超音波探触子を実現することができる。□なお上
記実施例では、各電極の電極指数mは任意とすることが
でき、第7図、第8図(二それぞれm=1.m=、3と
した実施例を示す。この電極指数mが小さい場合は電極
対の出力も小さいが、電極対の幅が狭いため分解能は大
きい。反対にmが大となるほど電極対の出力は大きいが
電極対の幅が広くなって分解能は低下する。
In this way, a high-frequency electronic scanning ultrasonic probe was realized by providing electrodes with the structure shown in Figure 3 on a ceramic plate and using a ceramic plate with a small lateral electro-mechanical coupling coefficient. can do. □In the above embodiment, the electrode index m of each electrode can be set arbitrarily, and FIGS. 7 and 8 (2) show examples in which m=1. When m is small, the output of the electrode pair is also small, but the resolution is high because the width of the electrode pair is narrow.On the other hand, as m becomes larger, the output of the electrode pair is large, but the width of the electrode pair becomes wider, and the resolution decreases.

上記第3図の実施例では電極対の出力と分解能とを考慮
し、m=2としたものである。
In the embodiment shown in FIG. 3, m is set to 2 in consideration of the output and resolution of the electrode pair.

また、上記実施例ではいずれも共通側の電極指(例えば
第3図では電極指■と■)が隣接した場合を示したが、
分割した側の電極指が隣接するように構成しても門し支
えない。なお当然のことながら、電極の極性は第3図は
一例を示したに過ぎず、これとは反対に共通側電極を正
極とし分割側電極を負極とすることもでき、また共通側
の交叉指電極は必ずしも一体のままとせず各電極対ごと
に分割し、各電極対を電気的に全く独立した構成として
も差し支えない。
Furthermore, in the above embodiments, the electrode fingers on the common side (for example, electrode fingers ■ and ■ in FIG. 3) are adjacent to each other.
Even if the electrode fingers on the divided side are configured to be adjacent to each other, they will not support each other. Of course, FIG. 3 shows only one example of the polarity of the electrodes; on the other hand, the common side electrode can be the positive electrode and the divided side electrode can be the negative electrode, or The electrodes do not necessarily remain in one piece, but may be divided into pairs of electrodes, and each pair of electrodes may be configured to be electrically completely independent.

さら(−前記第4図に示したように、隣接電極対間の同
一極性の電極指下のセラミックスは不活性領域であるた
め、第9図に示すように上記同一極性の隣り合う電極指
を一体化して、第3図の電極指■と■を第9図の電極指
■′のように一体にすることができる。このようにした
場合、一体化された電極指下のセラミックス板には第4
図の場合の破線に沿ってほとんど分極されない圧電的に
不活性な領域が生じ・同極性の電極−指を竺接して設け
た場合と同様な効果が得られる。ただし、第9図の一体
化した電極指■′の幅りは、他の電極指■〜■の幅dの
2倍より広くする必要がある。すなわち”、D=29+
a、(ただしa>O)としたとき、aが圧電的に不活性
な領域の幅となり、従来の短冊状振動素子を並べた探触
子における振動素子間のギャップ幅に対応するものとな
る。もし、Dが2dより小さい゛と、圧電的に不活性な
領域がなくなり本発明の目的が果せないおそれがある。
Furthermore, (-As shown in FIG. 4 above, since the ceramics under the electrode fingers of the same polarity between adjacent pairs of electrodes are inactive regions, as shown in FIG. 9, the ceramics under the electrode fingers of the same polarity are By integrating, the electrode fingers ■ and ■ in Fig. 3 can be integrated as shown in the electrode fingers ■' in Fig. 9. In this case, the ceramic plate under the integrated electrode fingers has a Fourth
A piezoelectrically inactive region that is hardly polarized is generated along the broken line in the figure, and the same effect as when electrodes and fingers of the same polarity are provided in vertical contact is obtained. However, the width of the integrated electrode finger ■' in FIG. 9 needs to be wider than twice the width d of the other electrode fingers ■ to ■. That is, “D=29+
a, (where a>O), then a is the width of the piezoelectrically inactive region, which corresponds to the gap width between the vibrating elements in a conventional probe with strip-shaped vibrating elements arranged side by side. . If D is smaller than 2d, there will be no piezoelectrically inactive region, and the object of the present invention may not be achieved.

以上説明したように、本、発明によ、るときはセラミッ
クス板の表面付近の振動を用いるため、従来のように、
セラミックス板を薄くし、かつ短冊状に分割する等の必
要がなく、セラミックス板は適宜厚さの一体のままで交
叉指電極による複数の電極対を設け、超音波ビームの電
子走査を行なうこLができる。
As explained above, according to the present invention, since vibration near the surface of the ceramic plate is used, unlike the conventional method,
There is no need to make the ceramic plate thinner or divide it into strips, and the ceramic plate can be kept in one piece with an appropriate thickness, and a plurality of electrode pairs using intersecting finger electrodes can be provided to perform electronic scanning of the ultrasonic beam. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は交叉指電極を用いた従来の超音波探角子の電極
構造を示す斜視図、第2図は超音波振腫発生の原理を説
明するための断面図、第3図は走音波探触子の本発明に
よる電極構造の実施例をjす説明・図、第4図は第3図
の電極を用いて分極実理を行なったときセラミックス板
に生じる分極4分布を示す説明図、第5図は本発明の超
音波探角子の電極対の超音波振動の周波数特性図、第6
Gは電極対に矩形波電圧を入力したときに得られ2エコ
ーの波形図、第7図ないし第9図は超音波中動子の本発
明による電極構造のそれぞれ他の実力例を示す説明図で
ある。 l・・・強誘電体セラミックス板、11・・・交叉指1
極、12.a、12b・・・12’n・・・交叉指電極
素子、A、B・・・N・・・電極対。 才 I 沼 駄 塾 〉 ) 受 5            才 3 図! → 常 7 ω    才 3 日 ¥ ? 図 牙 ! @ f (MH>) ンi   乙   団
Fig. 1 is a perspective view showing the electrode structure of a conventional ultrasonic probe using interdigital electrodes, Fig. 2 is a cross-sectional view to explain the principle of ultrasonic tremor generation, and Fig. 3 is a cross-sectional view of a scanning probe using cross-finger electrodes. Fig. 4 is an explanatory diagram showing an example of the electrode structure of the contactor according to the present invention; Figure 5 is a frequency characteristic diagram of ultrasonic vibration of the electrode pair of the ultrasonic probe of the present invention.
G is a waveform diagram of two echoes obtained when a rectangular wave voltage is input to the electrode pair, and FIGS. 7 to 9 are explanatory diagrams showing other practical examples of the electrode structure according to the present invention of the ultrasonic core. It is. l... Ferroelectric ceramic plate, 11... Crossed fingers 1
Extreme, 12. a, 12b...12'n...cross-finger electrode element, A, B...N...electrode pair. Sai I Nuda Juku > ) Uke 5 years old 3 Figure! → Always 7 ω years old 3 days ¥? Zuga! @ f (MH>)

Claims (1)

【特許請求の範囲】 1、 分極処理を施してない強誘電体セラミックス板上
に設けた第1と第2の交叉指電極を介して分極処理を施
し、上記第1と第2の交叉指電極を電気−超音波相互の
変換用電極とする超音波探触子において、上記第2の交
叉指電極は、上記第1の交叉指電極の電極指間6二人り
込んだ電極指をそれぞれ所定数有しかつ上記第1の交叉
指電極とは異なる極性の複数の交叉指電極素子より構成
され、上記交叉指電極素子は上記第1の交叉指電極と共
に各独立した複数の電極対を構成し、さらに隣接する上
記電極対は両電極対の隣り合う電極指が同一極性である
ことを特徴とする超音波探触子。 2、前記強誘電体セラミックス板は板面に平行方向の電
気−機械結合係数の小さい材料よりなることを特徴とす
る特許請求の範囲第1項記載の超音波探触子。 3、前記隣り合う同一極性の電極指を一体化し該一体化
された電極指の幅を他の電極指の幅の2倍より大きくし
たことを特徴とする特許請求の範囲第1項または第2項
記載の超音波探触子。
[Claims] 1. Polarization is performed through first and second interdigitated electrodes provided on a ferroelectric ceramic plate that has not been subjected to polarization treatment, and the first and second interdigitated electrodes are In the ultrasonic probe which uses as an electrode for mutual electric-ultrasonic conversion, the second interdigitated electrode has 6 two electrode fingers inserted between the electrode fingers of the first interdigitated electrode, respectively. It is composed of a plurality of interdigitated electrode elements having a number of different polarities and different polarity from the first interdigital electrode, and the interdigital electrode elements constitute a plurality of independent electrode pairs together with the first interdigital electrode. Further, in the adjacent electrode pairs, adjacent electrode fingers of both electrode pairs have the same polarity. 2. The ultrasonic probe according to claim 1, wherein the ferroelectric ceramic plate is made of a material having a small electro-mechanical coupling coefficient in a direction parallel to the plate surface. 3. The adjacent electrode fingers of the same polarity are integrated, and the width of the integrated electrode finger is made larger than twice the width of other electrode fingers. Ultrasonic probe as described in section.
JP56140608A 1981-09-07 1981-09-07 Ultrasonic probe Granted JPS5842968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140608A JPS5842968A (en) 1981-09-07 1981-09-07 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140608A JPS5842968A (en) 1981-09-07 1981-09-07 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS5842968A true JPS5842968A (en) 1983-03-12
JPH0342560B2 JPH0342560B2 (en) 1991-06-27

Family

ID=15272658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140608A Granted JPS5842968A (en) 1981-09-07 1981-09-07 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS5842968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210090U (en) * 1985-06-30 1987-01-21
JPH01157582A (en) * 1986-09-01 1989-06-20 Hiroshi Shimizu Linbo3 substrate with partial reverse polarization region, and manufacture and application of the same
JP2016225750A (en) * 2015-05-28 2016-12-28 セイコーエプソン株式会社 Piezoelectric device, probe, electronic apparatus and ultrasonic image device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210090U (en) * 1985-06-30 1987-01-21
JPH0334317Y2 (en) * 1985-06-30 1991-07-19
JPH01157582A (en) * 1986-09-01 1989-06-20 Hiroshi Shimizu Linbo3 substrate with partial reverse polarization region, and manufacture and application of the same
JP2016225750A (en) * 2015-05-28 2016-12-28 セイコーエプソン株式会社 Piezoelectric device, probe, electronic apparatus and ultrasonic image device

Also Published As

Publication number Publication date
JPH0342560B2 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
US6225728B1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
US20030051323A1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
US4117074A (en) Monolithic mosaic piezoelectric transducer utilizing trapped energy modes
US7382082B2 (en) Piezoelectric transducer with gas matrix
JPS5822915B2 (en) ultrasonic transducer
US7876027B2 (en) Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer
JPS5842968A (en) Ultrasonic probe
JPH05145369A (en) Surface wave device
JPS6261170B2 (en)
JPS6133517B2 (en)
JPH03270599A (en) Composite piezoelectric body
JP2633549B2 (en) Ultrasonic probe
JPH03247324A (en) Ultrasonic photographing method and apparatus
JPH07154897A (en) Wide band ultrasonic wave converter and manufacture thereof
SU590662A1 (en) Piezoelectric transducer
SU1357833A1 (en) Ultrasonic piezoelectric transducer
JP3838158B2 (en) Vertically coupled multimode piezoelectric filter
JPH06154208A (en) Composite piezo-electric body
JPH11318893A (en) Ultrasonic probe
CN117665828A (en) Transducer and imaging system
SU1392495A1 (en) Ultrasonic piezoelectric transducer
JPS6148300A (en) Manufacture of piezoelectric vibrator for ultrasonic probe
SU1530983A1 (en) Wide-band piezoelectric transducer
JPH03155841A (en) Ultrasonic image pickup device
CN118341660A (en) Method and system for a multi-frequency piezoelectric composite transducer array