JPH01103310A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH01103310A
JPH01103310A JP26253487A JP26253487A JPH01103310A JP H01103310 A JPH01103310 A JP H01103310A JP 26253487 A JP26253487 A JP 26253487A JP 26253487 A JP26253487 A JP 26253487A JP H01103310 A JPH01103310 A JP H01103310A
Authority
JP
Japan
Prior art keywords
diamond
film layer
acoustic wave
surface acoustic
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26253487A
Other languages
Japanese (ja)
Inventor
Hideaki Nakahata
英章 中幡
Takahiro Imai
貴浩 今井
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26253487A priority Critical patent/JPH01103310A/en
Publication of JPH01103310A publication Critical patent/JPH01103310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To obtain a surface acoustic wave element used at an ultrahigh frequency band by laminating a diamond-like carbon film layer, a piezoelectric layer and an electrode on a substrate and forming the diamond like layer by the gas phase synthesis method. CONSTITUTION:The surface acoustic wave element is constituted by the substrate 1, the diamond-like carbon film layer, the piezoelectric layer 3 and the short-circuit use electrode 5. The diamond-like carbon is made of a gas such as a hydrocarbon as the raw material and synthesized on various substrates such as glass, Si or metal by the gas phase. The gas phase synthesis method of the diamond-like carbon is implemented by any of (1) the raw material gas is excited by heating an electron radiation material, (2) the gas is stimulated plasma and (3) the gas is decomposed and stimulated by light. A proper diamond-like carbon film layer is obtained by any synthesis method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高周波フィルタなどに用いられる表面弾性波素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a surface acoustic wave element used in high frequency filters and the like.

〈従来の技術〉 表面弾性波素子は、固体表面を伝播する表面弾性波を利
用した固体高周波素子である。表面弾性波素子は、小型
で、温度に対して安定であり、寿命が長く、位相特性が
良い等の特長がある。また、電子や光などとの相互作用
が比較的容易に行えるという主成分もある。表面弾性波
素子の一例である表面弾性波フィルタは堅くからテレビ
の中間周波数フィルタとして応用されている。
<Prior Art> A surface acoustic wave device is a solid state high frequency device that utilizes surface acoustic waves propagating on a solid surface. Surface acoustic wave elements have features such as being small, stable with respect to temperature, long life, and good phase characteristics. There are also main components that can interact with electrons, light, etc. relatively easily. A surface acoustic wave filter, which is an example of a surface acoustic wave element, is used as an intermediate frequency filter for televisions because of its stiffness.

表面弾性波素子は、従来、L r N b OaやLi
Ta0a等の圧電体単結晶上に櫛型電極を形成すること
によって製造されていたが、近年では、ZnO等の圧電
体薄膜をガラス等の基板の上にスパッタ等の技術で成膜
したしのが用いられるようになっている。ところか、ガ
ラス上に成膜したZnO等の圧電体薄膜は、通常配向性
のある多結晶質であり、散乱による損失が多く、100
MHz以上の高周波帯で使用するには適していなかった
Conventionally, surface acoustic wave elements are made of L r N b Oa or Li
It was manufactured by forming a comb-shaped electrode on a piezoelectric single crystal such as Ta0a, but in recent years, piezoelectric thin films such as ZnO have been formed on a substrate such as glass using techniques such as sputtering. is now used. However, piezoelectric thin films such as ZnO formed on glass are usually polycrystalline with orientation, and have a large loss due to scattering.
It was not suitable for use in high frequency bands of MHz or higher.

そこで、サファイア基板の上にZ−no等の圧電体単結
晶薄膜を成長させたものが作製されるようになってきて
いる。
Therefore, devices in which a piezoelectric single crystal thin film such as Z-no is grown on a sapphire substrate are being manufactured.

ところで、表面弾性波素子においては、固体表面を伝播
する弾性波の音速と櫛型電極の電極間距離により使用周
波数が決定される。電極間距離が小さく、音速が大きい
程、高周波数域で使用できる。そこで、高周波化を目的
として、サファイアより安価でガラスより音速の大きい
多結晶アルミナの上にZnO等の圧電性C軸配向膜を成
長させたものら試みられているが、満足な結果は得られ
ていない。また、電極間距離は、微細加工技術の制約か
ら、1.2μ屑が限界であり、しかもこのような微細な
加工工程は複雑で、歩留りが悪かった。
Incidentally, in a surface acoustic wave element, the frequency used is determined by the sound speed of an acoustic wave propagating on a solid surface and the distance between the comb-shaped electrodes. The smaller the distance between the electrodes and the higher the sound speed, the higher the frequency range can be used. Therefore, with the aim of increasing the frequency, attempts have been made to grow piezoelectric C-axis oriented films such as ZnO on polycrystalline alumina, which is cheaper than sapphire and has a higher sound velocity than glass, but no satisfactory results have been obtained. Not yet. In addition, the distance between the electrodes is limited to 1.2μ chips due to limitations in microfabrication technology, and such microfabrication processes are complicated, resulting in poor yields.

1.2μmの幅で電極を形成した場合に、サファイアの
ような比較的音速の大きい基板上に圧電体層を形成して
も、IGHzが高周波帯の限界であった。更に高い周波
数の極高周波帯を有する表面弾性波素子が要望されてい
るのである。
When an electrode is formed with a width of 1.2 μm, even if a piezoelectric layer is formed on a substrate such as sapphire, which has a relatively high sound velocity, IGHz is the limit of the high frequency band. There is a demand for a surface acoustic wave element having an extremely high frequency band of even higher frequencies.

〈発明が解決しようとする問題点〉 本発明の目的は、極高周波帯で使用できる表面弾性波素
子を提供することにある。
<Problems to be Solved by the Invention> An object of the present invention is to provide a surface acoustic wave element that can be used in an extremely high frequency band.

く問題点を解決するための手段〉 本発明の目的は、基板上にダイヤモンド状炭素膜層と圧
電体膜層と電極を積層して成る表面弾性波素子によって
達成される。
Means for Solving the Problems> The objects of the present invention are achieved by a surface acoustic wave device comprising a diamond-like carbon film layer, a piezoelectric film layer, and an electrode laminated on a substrate.

ダイヤモンド状炭素は、微量の水素を含有する非晶質構
造の炭素であり、ダイヤモンドに類似の結合様式をもち
、絶縁体である。その硬度はダイヤモンドの約半分ぐら
いで、密度も!、6〜1゜99/cII+3とダイヤモ
ンドの約半分であるので、ダイヤモンド状炭素は、諸物
質中で最も大きい音速を有する媒質の1つであるダイヤ
モンドに匹敵する大きな音速を有する。各種物質中にお
ける音速を第1表に示す。
Diamond-like carbon is carbon with an amorphous structure that contains a small amount of hydrogen, has a bonding pattern similar to diamond, and is an insulator. Its hardness is about half that of diamond, and it's also denser! , 6-1°99/cII+3, which is about half that of diamond, so diamond-like carbon has a high sound speed comparable to diamond, which is one of the media with the highest sound speed among various materials. Table 1 shows the speed of sound in various materials.

第  l  表 ダイヤモンド状炭素膜層の厚さは、通常、0.5μ次以
上である。
Table 1 The thickness of the diamond-like carbon film layer is usually 0.5 μm or more.

圧電体膜層は、無機物質、例えばZnO1A12N。The piezoelectric film layer is an inorganic material, for example, ZnO1A12N.

Pb(Zr、Ti)0+、(P b、 L a)(Z 
r、 T i)03、LiTa0.、LtNb03、S
iO2、Ta2O5、Nb5Os、Be01L 1 !
 B 40 ?、K N b Os、Z n S 5Z
nSes及びCdSなどの化合物から選択された少なく
とも1種の化合物を主成分とすることが好ましい。圧電
体膜層の厚さは、通常、0.5μm以上である。
Pb (Zr, Ti)0+, (P b, La) (Z
r, T i)03, LiTa0. ,LtNb03,S
iO2, Ta2O5, Nb5Os, Be01L 1!
B40? , K N b Os, Z n S 5Z
It is preferable that the main component is at least one compound selected from compounds such as nSes and CdS. The thickness of the piezoelectric film layer is usually 0.5 μm or more.

電極は、通常、櫛型電極である。表面(界面)短絡用電
極を併用してもよい。
The electrodes are typically comb-shaped electrodes. A surface (interface) shorting electrode may also be used.

基板を構成する物質は、表面弾性波素子の基板として使
用されるいずれの物質であってもよく、例えば、ガラス
、Si又は金属などである。
The material constituting the substrate may be any material used as a substrate of a surface acoustic wave device, such as glass, Si, or metal.

基板、ダイヤモンド状炭素膜層及び圧電体膜層に対する
電極の位置関係は、どのようなものであってもよいが、
電気機械結合係数が大きく電極が外部にさらされずに傷
付かないという点から、圧電体膜層/櫛型電極/ダイヤ
モンド状炭素膜層/基板の構造が特に望ましい。また、
櫛型電極/圧電体膜層/ダイヤモンド状炭素膜層/基板
の構造も望ましい。このような構造の表面弾性波素子は
、従来のものに比べて、表面波伝播速度が大きく、より
高周波領域で使用することができる。
The positional relationship of the electrodes with respect to the substrate, the diamond-like carbon film layer, and the piezoelectric film layer may be any, but
A structure of piezoelectric film layer/comb-shaped electrode/diamond-like carbon film layer/substrate is particularly desirable because the electromechanical coupling coefficient is large and the electrode is not exposed to the outside and is not damaged. Also,
A structure of comb-shaped electrode/piezoelectric film layer/diamond-like carbon film layer/substrate is also desirable. A surface acoustic wave element having such a structure has a higher surface wave propagation speed than a conventional one, and can be used in a higher frequency range.

ダイヤモンド状炭素は、炭化水素等のガスを原料として
、ガラス、Si又は金属など各種基板上に気相で合成す
ることができる。ダイヤモンド状炭素の気相合成法とし
ては、1)ffi子放耐放射材熱して原料ガスを活性化
する、2)プラズマによりガスを励起する、3)光によ
りガスを分解励起する、4)イオン衝撃により成長させ
る、等の方法が挙げられるが、いずれの合成法によって
も適したダイヤモンド状炭素膜層を得ることができる。
Diamond-like carbon can be synthesized in a vapor phase on various substrates such as glass, Si, or metal using a gas such as a hydrocarbon as a raw material. The gas phase synthesis method for diamond-like carbon includes: 1) activating the raw material gas by heating the radiation-resistant material, 2) exciting the gas with plasma, 3) decomposing and exciting the gas with light, and 4) using ions. Examples include methods such as growth by impact, but a suitable diamond-like carbon film layer can be obtained by any synthesis method.

ダイヤモンド状炭素は、大面積の均一な膜形成が可能で
あり、サファイアなどに比べてコストの点でも優れてい
る。
Diamond-like carbon allows for the formation of a uniform film over a large area, and is also superior in terms of cost compared to sapphire and the like.

一般に層構造の弾性表面波素子を形成する場合、圧電体
膜層の下地層の表面平坦性が悪いならば、圧電体膜層の
結晶性が悪くなり、大きな電気機械結合係数が得られず
、圧電体膜層の表面平坦性ら悪くなる。従って、表面波
の伝播損失の増大、及び櫛型電極の断線や短絡などの不
都合が生じる。
Generally, when forming a layered surface acoustic wave element, if the surface flatness of the underlying layer of the piezoelectric film layer is poor, the crystallinity of the piezoelectric film layer will be poor and a large electromechanical coupling coefficient will not be obtained. The surface flatness of the piezoelectric film layer also deteriorates. Therefore, problems such as an increase in surface wave propagation loss and disconnection or short circuit of the comb-shaped electrodes occur.

しかし、ダイヤモンド状炭素膜層を使用する場合、圧電
体膜層を形成するダイヤモンド状炭素膜層の表面は極め
て平坦であるため、上述のような不都合は生じず、ダイ
ヤモンド状炭素膜層の形成後の表面研磨などは必要ない
However, when using a diamond-like carbon film layer, the surface of the diamond-like carbon film layer that forms the piezoelectric film layer is extremely flat, so the above-mentioned disadvantages do not occur, and after the formation of the diamond-like carbon film layer, No surface polishing is required.

ZnO1A&N、Pb(Zr、Ti)O+等の無機圧電
体の多結晶膜は、スパッタ法やCVD法などの気相合成
法を用いることによって、ダイヤモンド状炭素膜上に成
長させることができる。得られた圧電体膜は、大きな電
気機械結合係数を与えるように充分な結晶配向性を有し
ており、かつ表面が平坦である。ダイヤモンド状炭素膜
上に電極を形成した場合でも、さらにその上に同様に圧
電体膜を成長させることができる。
A polycrystalline film of an inorganic piezoelectric material such as ZnO1A&N or Pb(Zr,Ti)O+ can be grown on a diamond-like carbon film by using a vapor phase synthesis method such as a sputtering method or a CVD method. The obtained piezoelectric film has sufficient crystal orientation to provide a large electromechanical coupling coefficient and has a flat surface. Even when an electrode is formed on a diamond-like carbon film, a piezoelectric film can be further grown thereon in the same manner.

第1図(a)〜(h)は、本発明の代表的な表面弾性波
素子の断面構造を示す。これら表面弾性波素子は、基板
1、ダイヤモンド状炭素膜層2、圧電体膜層3、櫛型電
極4及び要すれば表面(界面)短絡用電極5を有する。
FIGS. 1(a) to (h) show cross-sectional structures of typical surface acoustic wave elements of the present invention. These surface acoustic wave elements have a substrate 1, a diamond-like carbon film layer 2, a piezoelectric film layer 3, a comb-shaped electrode 4, and, if necessary, a surface (interface) shorting electrode 5.

これら以外にも、基板1とダイヤモンド状炭素膜層2の
界面に櫛型電極4を設けた構造も考えられるが、櫛型電
極4により直接に圧電体膜層3を励起できないので電気
機械結合係数が小さくなり好ましくない。
In addition to these, a structure in which a comb-shaped electrode 4 is provided at the interface between the substrate 1 and the diamond-like carbon film layer 2 is also conceivable, but since the piezoelectric film layer 3 cannot be directly excited by the comb-shaped electrode 4, the electromechanical coupling coefficient is becomes small, which is not desirable.

〈発明の効果〉 本発明によれば、極高周波域において使用できる小型で
大量生産の容易な表面弾性波素子を提供することができ
る。
<Effects of the Invention> According to the present invention, it is possible to provide a small surface acoustic wave element that can be used in an extremely high frequency range and is easy to mass produce.

本発明の表面弾性波素子の例としては、フィルタに加え
て、遅延線、信号処理素子、コンボルバなどが挙げられ
る。
Examples of the surface acoustic wave element of the present invention include, in addition to filters, delay lines, signal processing elements, convolvers, and the like.

〈実施例〉 以下に、実施例及び比較例を示す。<Example> Examples and comparative examples are shown below.

実施例及び比較例 ガラス基板(10+ym X 10ats x 0.5
zx)上に、ダイヤモンド状炭素膜、ZnOC軸配向圧
電体膜及びAC電極を積層し、第1図(b)に示す表面
波フィルタを作成した(実施例)。また、比較として、
ダイヤモンド状炭素膜を積層しない第2図の構造の表面
波フィルタも作成した(比較例)。
Examples and Comparative Examples Glass substrate (10+ym x 10ats x 0.5
A diamond-like carbon film, a ZnOC axis-oriented piezoelectric film, and an AC electrode were laminated on top of the surface acoustic wave filter shown in FIG. 1(b) (Example). Also, for comparison,
A surface acoustic wave filter with the structure shown in Fig. 2 without laminating a diamond-like carbon film was also created (comparative example).

比較例において、基板材料としてサファイア及び多結晶
アルミナをそれぞれ使用した。
In the comparative example, sapphire and polycrystalline alumina were used as substrate materials, respectively.

ZnO膜は、ZnO多結晶体をArと0.の混合ガスで
スパッタすることによって、0.9〜18μ肩の間で1
0種類の厚さで形成した。ダイヤモンド状炭素膜は、C
H,を原料とするプラズマCVD法によってガラス基板
上に15μ次の厚さで形成した。櫛型電極の電極間距離
は3μれ電極周期は12μ肩)であった。
The ZnO film is made of polycrystalline ZnO with Ar and 0. By sputtering with a mixed gas of
It was formed with 0 different thicknesses. The diamond-like carbon film is C
The film was formed on a glass substrate to a thickness of 15 μm by plasma CVD using H, as a raw material. The interelectrode distance of the comb-shaped electrodes was 3μ, and the electrode period was 12μ.

本発明のZnO圧電体膜層/ダイヤモンド状炭素膜層/
ガラス基板の構造のフィルタにおいては、ZnOの膜厚
が2.4μ麓の時に1次モード基本波の中心周波数が1
.27GHzの高周波フィルタを実現できた。
ZnO piezoelectric film layer of the present invention/diamond-like carbon film layer/
In a filter with a glass substrate structure, when the ZnO film thickness is 2.4 μm, the center frequency of the first mode fundamental wave is 1.
.. We were able to realize a 27GHz high frequency filter.

これに対して、ZnO圧電体膜層/サファイア基板又は
ZnO圧電体膜層/アルミナ基板の構造のフィルタにお
いては、ZnO圧電体の膜厚がそれぞれ1.8μl又は
3.iμ肩である場合に、それぞれ610MHz又は2
90MHzの最高共振周波数(1次モード基本波)が得
られた。
On the other hand, in a filter having a structure of ZnO piezoelectric film layer/sapphire substrate or ZnO piezoelectric film layer/alumina substrate, the film thickness of the ZnO piezoelectric material is 1.8 μl or 3.0 μl, respectively. iμ shoulder, respectively 610MHz or 2
A highest resonant frequency (first mode fundamental wave) of 90 MHz was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の表面弾性波素子の断面構造を示す図
、 第2図は、本発明に含まれない表面弾性波素子の断面構
造を示す図である。 !・・・基板、 2・・・ダイヤモンド状炭素膜層、 3・・・圧電体膜層、 4・・・櫛型電極、 5・・・短絡用電極。 特許出願人住友電気工業株式会社 代 理 人 弁理士前出 葆 ほか1名; 1 g
FIG. 1 is a diagram showing a cross-sectional structure of a surface acoustic wave device of the present invention, and FIG. 2 is a diagram showing a cross-sectional structure of a surface acoustic wave device not included in the present invention. ! ...Substrate, 2.. Diamond-like carbon film layer, 3.. Piezoelectric film layer, 4.. Comb-shaped electrode, 5.. Short circuit electrode. Patent applicant Sumitomo Electric Industries Co., Ltd. Agent: Patent attorney Maeda Ao and one other person; 1 g

Claims (7)

【特許請求の範囲】[Claims] 1.基板上にダイヤモンド状炭素膜層と圧電体膜層と電
極を積層して成る表面弾性波素子。
1. A surface acoustic wave device consisting of a diamond-like carbon film layer, a piezoelectric film layer, and an electrode stacked on a substrate.
2.ダイヤモンド状炭素膜層が気相合成法により形成さ
れた薄膜である特許請求の範囲第1項記載の表面弾性波
素子。
2. The surface acoustic wave device according to claim 1, wherein the diamond-like carbon film layer is a thin film formed by a vapor phase synthesis method.
3.圧電体膜層が、ZnO、AlN、Pb(Zr,Ti
)O_3、(Pb,La)(Zr,Ti)O_3、Li
TaO_3、LiNbO_3、SiO_2、Ta_2O
_5、Nb_2O_5、BeO、Li_2B_4O_7
、ZnS、ZnSe及びCdSから成る群から選択され
た少なくとも1種の化合物を主成分とする特許請求の範
囲第1項又は第2項記載の表面弾性波素子。
3. The piezoelectric film layer is made of ZnO, AlN, Pb (Zr, Ti
) O_3, (Pb, La) (Zr, Ti) O_3, Li
TaO_3, LiNbO_3, SiO_2, Ta_2O
_5, Nb_2O_5, BeO, Li_2B_4O_7
, ZnS, ZnSe, and CdS as a main component.
4.電極が櫛型電極であり、圧電体膜層/櫛型電極/ダ
イヤモンド状炭素膜層/基板の構造を有する特許請求の
範囲第1〜3項のいずれかに記載の表面弾性波素子。
4. 4. The surface acoustic wave device according to claim 1, wherein the electrode is a comb-shaped electrode and has a structure of piezoelectric film layer/comb-shaped electrode/diamond-like carbon film layer/substrate.
5.基板とダイヤモンド状炭素膜層の間、及び圧電体層
の表層のいずれか一方あるいは両方において短絡用電極
を備えた特許請求の範囲第4項記載の表面弾性波素子。
5. 5. The surface acoustic wave device according to claim 4, further comprising a short-circuiting electrode between the substrate and the diamond-like carbon film layer and/or on the surface layer of the piezoelectric layer.
6.電極が櫛型電極であり、櫛型電極/圧電体層/ダイ
ヤモンド状炭素膜層/基板の構造を有する特許請求の範
囲第1〜3項のいずれかに記載の表面弾性波素子。
6. 4. The surface acoustic wave device according to claim 1, wherein the electrode is a comb-shaped electrode and has a structure of comb-shaped electrode/piezoelectric layer/diamond-like carbon film layer/substrate.
7.基板とダイヤモンド状炭素膜層の間、及びダイヤモ
ンド状炭素膜層と圧電体膜層の間のいずれか一方あるい
は両方において短絡用電極を備えた特許請求の範囲第6
項記載の表面弾性波素子。
7. Claim 6: A short-circuiting electrode is provided between the substrate and the diamond-like carbon film layer, and between the diamond-like carbon film layer and the piezoelectric film layer, or both.
The surface acoustic wave device described in Section 1.
JP26253487A 1987-10-16 1987-10-16 Surface acoustic wave element Pending JPH01103310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26253487A JPH01103310A (en) 1987-10-16 1987-10-16 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26253487A JPH01103310A (en) 1987-10-16 1987-10-16 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH01103310A true JPH01103310A (en) 1989-04-20

Family

ID=17377136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26253487A Pending JPH01103310A (en) 1987-10-16 1987-10-16 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH01103310A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2221404A (en) * 1988-08-04 1990-02-07 Ion Tech Ltd Filter for proteinaceous materials
US5446329A (en) * 1992-09-14 1995-08-29 Sumitomo Electric Industries, Ltd. Surface acoustic wave element
JP2003017967A (en) * 2001-06-29 2003-01-17 Toshiba Corp Surface acoustic wave element and its manufacturing method
US6995634B2 (en) 2003-01-29 2006-02-07 Seiko Epson Corporation Surface-acoustic-wave component adapted to electronic circuit and device, and manufacturing method therefor
US7005947B2 (en) 2003-03-26 2006-02-28 Seiko Epson Corporation Surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic instrument
JP2009239983A (en) * 2009-07-24 2009-10-15 Seiko Epson Corp Method of manufacturing surface acoustic wave device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123225A (en) * 1979-03-15 1980-09-22 Nec Corp Elastic surface wave element
JPS5631213A (en) * 1979-08-24 1981-03-30 Matsushita Electric Ind Co Ltd Surface elastic wave element
JPS57111220A (en) * 1980-08-21 1982-07-10 Nat Res Dev Carbon layer coating method
JPS5879807A (en) * 1981-10-21 1983-05-13 ゼネラル・エレクトリック・カンパニイ Amorphous carbonaceous thin-film
JPS5993348A (en) * 1982-11-19 1984-05-29 住友電気工業株式会社 Base material coated with diamond or diamond-shaped film
JPS5993869A (en) * 1982-11-19 1984-05-30 Sumitomo Electric Ind Ltd Structure coated with hard layer containing diamond
JPS59143499A (en) * 1983-02-03 1984-08-17 Sumitomo Electric Ind Ltd Speaker diaphragm
JPS6234172A (en) * 1985-08-08 1987-02-14 Ricoh Co Ltd Forming method for photosensitive drum in dry copying machine
JPS62136568A (en) * 1985-12-07 1987-06-19 Sumitomo Electric Ind Ltd Hard carbon coating method
JPS62149872A (en) * 1985-12-21 1987-07-03 Sumitomo Electric Ind Ltd Coating method with hard carbon film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123225A (en) * 1979-03-15 1980-09-22 Nec Corp Elastic surface wave element
JPS5631213A (en) * 1979-08-24 1981-03-30 Matsushita Electric Ind Co Ltd Surface elastic wave element
JPS57111220A (en) * 1980-08-21 1982-07-10 Nat Res Dev Carbon layer coating method
JPS5879807A (en) * 1981-10-21 1983-05-13 ゼネラル・エレクトリック・カンパニイ Amorphous carbonaceous thin-film
JPS5993348A (en) * 1982-11-19 1984-05-29 住友電気工業株式会社 Base material coated with diamond or diamond-shaped film
JPS5993869A (en) * 1982-11-19 1984-05-30 Sumitomo Electric Ind Ltd Structure coated with hard layer containing diamond
JPS59143499A (en) * 1983-02-03 1984-08-17 Sumitomo Electric Ind Ltd Speaker diaphragm
JPS6234172A (en) * 1985-08-08 1987-02-14 Ricoh Co Ltd Forming method for photosensitive drum in dry copying machine
JPS62136568A (en) * 1985-12-07 1987-06-19 Sumitomo Electric Ind Ltd Hard carbon coating method
JPS62149872A (en) * 1985-12-21 1987-07-03 Sumitomo Electric Ind Ltd Coating method with hard carbon film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2221404A (en) * 1988-08-04 1990-02-07 Ion Tech Ltd Filter for proteinaceous materials
US4986914A (en) * 1988-08-04 1991-01-22 Ion Tech Limited Filter for protinaceous materials
US5446329A (en) * 1992-09-14 1995-08-29 Sumitomo Electric Industries, Ltd. Surface acoustic wave element
JP2003017967A (en) * 2001-06-29 2003-01-17 Toshiba Corp Surface acoustic wave element and its manufacturing method
US6995634B2 (en) 2003-01-29 2006-02-07 Seiko Epson Corporation Surface-acoustic-wave component adapted to electronic circuit and device, and manufacturing method therefor
US7005947B2 (en) 2003-03-26 2006-02-28 Seiko Epson Corporation Surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic instrument
JP2009239983A (en) * 2009-07-24 2009-10-15 Seiko Epson Corp Method of manufacturing surface acoustic wave device

Similar Documents

Publication Publication Date Title
US4952832A (en) Surface acoustic wave device
JP3435789B2 (en) Surface acoustic wave device
Kadota et al. High-frequency lamb wave device composed of MEMS structure using LiNbO 3 thin film and air gap
US5446330A (en) Surface acoustic wave device having a lamination structure
JP3205976B2 (en) Surface acoustic wave device
US20070028433A1 (en) SAW Filter Device and Method Employing Normal Temperature Bonding for Producing Desirable Filter Production and Performance Characteristics
JPH04358410A (en) Surface acoustic wave element and production thereof
JPH0148694B2 (en)
JP2005150915A (en) Elastic boundary wave device and manufacturing method thereof
JPH10507599A (en) Diamond surface acoustic wave device and its manufacturing method
US5320865A (en) Method of manufacturing a surface acoustic wave device
CN102057570A (en) HBAR resonator stable at high temperatures
US5838089A (en) Acoustic wave devices on diamond with an interlayer
JPS6016010A (en) Piezoelectric thin film composite oscillator
US4501987A (en) Surface acoustic wave transducer using a split-finger electrode on a multi-layered substrate
Tomar et al. Temperature stability of ZnO thin film SAW device on fused quartz
US5402029A (en) Surface acoustic wave device using highly oriented diamond film
JPH01103310A (en) Surface acoustic wave element
JPS58153412A (en) Piezo-electric thin film composite vibrator
US5463901A (en) Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack
US4236095A (en) Surface acoustic wave device comprising piezoelectric substrate having zinc oxide layer on α-alumina layer
JP3079509B2 (en) Thin film laminated crystal and manufacturing method thereof
JP3493315B2 (en) Piezoelectric resonator
JP2003273691A (en) Surface acoustic wave device
JP2615020B2 (en) Ultrasonic transducer and surface wave device