JPS6144463A - Emitter short-circuit structure of thyristor - Google Patents

Emitter short-circuit structure of thyristor

Info

Publication number
JPS6144463A
JPS6144463A JP16625984A JP16625984A JPS6144463A JP S6144463 A JPS6144463 A JP S6144463A JP 16625984 A JP16625984 A JP 16625984A JP 16625984 A JP16625984 A JP 16625984A JP S6144463 A JPS6144463 A JP S6144463A
Authority
JP
Japan
Prior art keywords
layer
short
emitter
circuit
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16625984A
Other languages
Japanese (ja)
Inventor
Naohiro Shimizu
尚博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP16625984A priority Critical patent/JPS6144463A/en
Publication of JPS6144463A publication Critical patent/JPS6144463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • H01L29/7392Gated diode structures with PN junction gate, e.g. field controlled thyristors (FCTh), static induction thyristors (SITh)

Abstract

PURPOSE:To allow sufficient emitter short-circuit by a method wherein a short- circuit layer is buried in lattice form in the N<-> region in the neighborhood of a P-emitter layer, and the end is provided with a short-circuit hole layer which is connected to the anode. CONSTITUTION:An N<+> layer 1 of lattice form is buried in the NB<-> layer 2'' in the neighborhood of a PE 1'' by the epitaxial method, and the end of the N<+> layer 11 is provided with an N<+> layer 8''; then, one end 12 of the layer 11 is connected to the anode 5. When negative bias is impressed on a gate electrode 7, holes h' of the layer 2'' are rapidly led out of P<+> layer 3, and a depletion layer (a) is formed around the channel region. This construction enables electrons e' leaking out of an NS<-> 2 during channel-off to be easily led out by the elimination of the influence of the diffusion potential Vd between NS and PE because the emitter short-circuit part has been provided in the NB<-> layer, and the extinction time of element is reduced. Besides, the ON-voltage between the NB layer 2'' and the buried N<+> layer decreases, and the lead-out of carriers to the anode 5 is facilitated at the time of extinction, resulting in further reduction in extinction time.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は高周波制御に用いられ、スイッチング性能が高
速なサイリスタ、すなわち自己消弧形サイリスタの高速
化技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a technology for increasing the speed of a thyristor that is used for high frequency control and has high switching performance, that is, a self-extinguishing thyristor.

〈従来の技術〉 静電誘導サイリスタ(以下SIサイリスクという)やゲ
ートターンオフサイリスタなどのいわゆる自己消弧形サ
イリスタの高速化に関する技術は、次に示すようなもの
がある。すなわち、 (1)シリコンなどの半導体基板にp形の層やn形の層
の濃度、深さを適切に形成せしめる方法0(2)半導体
基板に”tr y P(+ F@などの重金属を拡散し
、同基板内の少数キャリアライフタイムを低減する方法
<Prior Art> The following technologies are available for increasing the speed of so-called self-extinguishing thyristors such as electrostatic induction thyristors (hereinafter referred to as SI thyristors) and gate turn-off thyristors. In other words, (1) A method of forming p-type and n-type layers with appropriate concentration and depth on a semiconductor substrate such as silicon (2) A method of forming a heavy metal such as "tryP(+F@) on a semiconductor substrate" A method to diffuse and reduce the minority carrier lifetime within the same substrate.

(3)  半導体基板内に形成されているエミッタ層(
p形またはn形)の横をζ、エミッタ層のp形に対して
n形、エミッタ層のn形に対してp形の異種拡散層が基
板内に並列配置され、これらによってエミッタ短絡構造
を形成せしめる方法。
(3) Emitter layer (
Different types of diffusion layers are arranged in parallel in the substrate, ζ beside the p-type or n-type of the emitter layer, n-type for the p-type of the emitter layer, and p-type for the n-type of the emitter layer. How to make it form.

ここに、エミッタ短絡構造を形成せしめない前述の(1
)右よび(2)の方法において、半導体基板の両面全面
にエミッタ層を設けた半導体素子は、エミッタ層から注
入される正孔、あるいは電子が半導体基板の両面全面よ
り素子内部へ注入できるので、層方向電流を流した際に
発生するオン電圧は低い。
Here, the above-mentioned (1
) In the method (2) above, in a semiconductor device in which emitter layers are provided on both surfaces of the semiconductor substrate, holes or electrons injected from the emitter layer can be injected into the device from the entire surfaces of both surfaces of the semiconductor substrate. The on-voltage generated when a layer-direction current is applied is low.

従りて、素子で発生する熱が低いので壊れにくいという
長所がある。しかし、p形のエミッタ層と異った隣り合
わせのn形の層より流れ込むキャリア、すなわちp形の
エミッタ層(以下28層という)に関しては電子、n形
のエミッタ層(以下n8層という)に関しては正孔が、
スイッチングによってサイリスタをターンオフさせた場
合、例えばpB層においてはn形の高抵抗領域(以下n
mmという)から流れ込む電子が消滅し難いなどのこと
がある。
Therefore, since the heat generated by the element is low, it has the advantage of being less likely to break. However, carriers flowing from an adjacent n-type layer different from the p-type emitter layer, that is, electrons for the p-type emitter layer (hereinafter referred to as the 28th layer), and electrons for the n-type emitter layer (hereinafter referred to as the n8 layer) The hole is
When a thyristor is turned off by switching, for example, an n-type high resistance region (hereinafter n
In some cases, it is difficult for electrons flowing from a hole (referred to as mm) to disappear.

このことは、電子がnmFJ中を流れていてI)1層に
向りても、拡散電位があるために28層中に入り難い。
This means that even if electrons flow through the nmFJ and head towards layer I) 1, it is difficult for them to enter layer 28 due to the diffusion potential.

従りて、ターンオフ時間が長くなる。Therefore, the turn-off time becomes longer.

よって、サイリスタのスイッチング性能向上のためには
、前記した(3)項のエミッタ短絡構造が提案されてい
る。
Therefore, in order to improve the switching performance of a thyristor, the emitter short-circuit structure described in item (3) above has been proposed.

この(3)項について例えばpmffiに関して説明す
、ると、2層眉の横にn層、つまりn1層と同じタイプ
の層を形成すれば、ターンオフ時にPI層に流れ込みに
くい電子はn層を容易に通過してアノード電極に流れ込
む。このことによって、ターンオフ時間は短縮される。
To explain this item (3) with respect to pmffi, for example, if an n layer, that is, the same type of layer as the n1 layer, is formed next to the second layer, electrons that are difficult to flow into the PI layer at turn-off can easily pass through the n layer. and flows into the anode electrode. This reduces the turn-off time.

しかし、半導体基板内に形成されている28層とn t
mまたはn層層は、隣り合わせの2分割されたちのlこ
なるため、hf6からの111層へ向ってのキャリア注
入が減少し、オン電圧が増大することがある。
However, the 28 layers formed in the semiconductor substrate and n t
Since the m or n layer is divided into two adjacent layers, carrier injection from hf6 toward the 111 layer decreases, and the on-state voltage may increase.

すなわち、スイッチング性能を向上させるためには、エ
ミッタ短絡密度を上げることが有効である反面、オン電
圧は増大し、電力損失が増す。これらの自己消弧形サイ
リスタの様子を8Iサイリスタを例にとり第4図、第5
図に基づいて説明する。
That is, in order to improve switching performance, it is effective to increase the emitter short circuit density, but on the other hand, the on-voltage increases and power loss increases. The state of these self-arc-extinguishing thyristors is shown in Figures 4 and 5, taking the 8I thyristor as an example.
This will be explained based on the diagram.

第4図(a) 、 (b)は従来の81サイリスタのエ
ミッタ短絡構造のない一例を示す断面模式図で、(a)
図はオン状態、(b)図はオフ状態を示し、第5図(a
) 、 (b)態を示す。
Figures 4(a) and 4(b) are schematic cross-sectional views showing an example of a conventional 81 thyristor without an emitter short-circuit structure;
The figure shows the on state, the figure (b) shows the off state, and the figure 5 (a) shows the off state.
), (b) indicates the state.

tlc4図、第5 図ICオイテ、1 、1’1ipx
N、2 。
tlc4 figure, figure 5 IC oil, 1, 1'1ipx
N, 2.

2′はn1層、2′はn層、3はp形のゲート/?!(
以下り層ゲートという)、4はn3層、5はアノード電
極、6はカソード電極、7はゲート電極、8は短絡孔の
n層層、h 、 h’は正孔、e 、 e’は電子、a
は空乏層である。
2' is the n1 layer, 2' is the n layer, and 3 is the p-type gate/? ! (
4 is the n3 layer, 5 is the anode electrode, 6 is the cathode electrode, 7 is the gate electrode, 8 is the n-layer layer of the shorting hole, h and h' are holes, and e and e' are electrons. ,a
is a depletion layer.

Sエサイリスタは、ゲート電極7にバイアスをかけない
状態でオン、ゲート電極7に負バイアスをかける状態で
オフとなるノーマリオン形素子と、ゲート電極7にバイ
アスをかけない状態でオフ、ゲート電極7に正バイアス
をかける状態でオンとなるノーマリオフ形素子がある。
The S Esthyristor is a normally-on type element that is turned on when no bias is applied to the gate electrode 7 and turned off when a negative bias is applied to the gate electrode 7, and is turned off when no bias is applied to the gate electrode 7. There is a normally-off type element that is turned on when a positive bias is applied to 7.

以下のものは、ノーマリオン形素子を例にとって説明す
る。
The following will be explained using a normally-on type element as an example.

すなわち、第4図に示すノーマリオン形素子において、
n1層2′とn1i2の境界部には、一層ゲート3がゲ
ート部として埋め込まれている。p+層ゲート3に囲ま
れたnmfi2の部分をチャンネルと称し、負荷電流は
主としてこのチャンネル部を流れる。11層2′の上部
には、 n1層4が重ねられて、その上面にカソード電
極6が設けられている。
That is, in the normally-on type element shown in FIG.
A gate 3 is buried as a gate portion at the boundary between the n1 layer 2' and n1i2. The portion of nmfi2 surrounded by the p+ layer gate 3 is called a channel, and the load current mainly flows through this channel portion. An n1 layer 4 is superposed on top of the 11 layer 2', and a cathode electrode 6 is provided on the top surface of the n1 layer 4.

n1層の下部には、pg層1が設けられ、その下面にア
ノード電極5が設けられている。更に、り層ゲート3の
露出面にはゲート電極7が設けられている。
A pg layer 1 is provided below the n1 layer, and an anode electrode 5 is provided on the lower surface thereof. Furthermore, a gate electrode 7 is provided on the exposed surface of the layered gate 3.

かくして、第4図(a)に示したごとく、アノード電極
5側を正極、カソード電極6側を負極として電圧を印加
すると、Sエサイリスタはオン状態となり、キャリアと
しての正孔りはpxffilからチャンネルを経て1層
2′に流れ、電子eはnx層4からnB!fa2に流れ
る。
Thus, as shown in FIG. 4(a), when a voltage is applied with the anode electrode 5 side as the positive electrode and the cathode electrode 6 side as the negative electrode, the S ethyristor is turned on, and the holes as carriers are transferred from pxffil to the channel. The electron e flows from nx layer 4 to nB! Flows to fa2.

次に、第4図(b)に示したごとく、ゲート電極7に負
バイアスをかけると、Sエサイリスタはオフ状態となる
。つまり、 nl1層2に有する正孔h′がp+層3か
ら外部へ急激に引き出され、これが引き金となりてチャ
ンネル領域周辺にキャリアブールの空乏層aが形成され
る。そのために、キャリアの移動を防げる電位が発生し
、キャリアの移動は停止し、素子はrsfaQ中の小数
キャリア、すなわち正孔h′の消滅待ちとなりてオフ状
態となる。
Next, as shown in FIG. 4(b), when a negative bias is applied to the gate electrode 7, the S ethyristor is turned off. That is, the holes h' in the nl1 layer 2 are rapidly drawn out from the p+ layer 3, which triggers the formation of a carrier boule depletion layer a around the channel region. Therefore, a potential that prevents the movement of carriers is generated, the movement of carriers is stopped, and the element waits for the disappearance of minority carriers in rsfaQ, that is, holes h', and enters an OFF state.

一方、チャンネル間をオフ途中に漏れて流れるnM2’
の電子e′は、nBn層とh層1との間に生じる拡散電
位vdの影響で容易に外部へ引き出されな明 い。このために、素子のターンオフ別間が長くなる0 この改良策として第5図(a) 、 (b)において説
明する。第5図において、n+層8はp+J1’の脇で
この21層1′と並列に設けられ、また11層2′の領
域にも達している。そして、11+層8の下面にはpx
層1′と共lζ接するアノード電極5が設けられている
On the other hand, nM2' flowing between channels while off
The electrons e' are not easily drawn out due to the influence of the diffusion potential vd generated between the nBn layer and the h layer 1. For this reason, the turn-off interval of the element becomes longer. This improvement measure will be explained in FIGS. 5(a) and 5(b). In FIG. 5, the n+ layer 8 is provided beside the p+J1' in parallel with the 21 layers 1', and also extends into the region of the 11 layers 2'. And on the bottom surface of 11+ layer 8, px
An anode electrode 5 is provided which is in contact with the layer 1'.

かくして、111層2″とn+層8との間に発生する電
位はn+層8を設けたことにより小さくなり、キャリア
が自由に移動可能となる。そのため、第5図(b)に示
すようにターンオフ時にキャリアのアノード電極5への
引き出しが容易となり、ターンオフ時間は第4図で示し
たものよりか短縮できる。更にI’mJi!1’の短絡
密度をあければ、pm層1′からのキャリア注入も減少
するので、一層、ターンオフ時間を短縮することができ
る。
Thus, the potential generated between the 111 layer 2'' and the n+ layer 8 is reduced by providing the n+ layer 8, and carriers can move freely. Therefore, as shown in FIG. 5(b), During turn-off, carriers can be drawn out easily to the anode electrode 5, and the turn-off time can be much shorter than that shown in Fig. 4. Furthermore, if the short-circuit density of I'mJi! Since the injection is also reduced, the turn-off time can be further reduced.

次に、これらの模式図のものを従来の一例を取り上げ、
図面iこ基づいて説明する。
Next, we will take up a conventional example of these schematic diagrams.
The explanation will be based on the drawings.

第6図(a) 、 (b) 、 (C)は第4図による
従来のものの一例を示し、(a)図はカソード側外観図
、(b)図はエミッタ側状態図、(C)図は(81図の
A−A線矢視断面図、第7図(a) 、 (b)はg5
図による従来のものの一例を示し、(a)図はアノード
電極を除くエミッタ側から見た状態図、(b)図は(a
)図のB−B線矢視図である。
6(a), (b), and (C) show an example of the conventional one according to FIG. 4, where (a) is an external view of the cathode side, (b) is a state diagram of the emitter side, and (C) is a diagram of the state of the emitter side. (A sectional view taken along the line A-A in Figure 81, Figures 7 (a) and (b) are g5
An example of the conventional one is shown in the figure, (a) figure is a state diagram seen from the emitter side excluding the anode electrode, (b) figure is (a)
) is a view taken along line B-B in the figure.

図中、第3図と同符号のものは同じ機能を有するため、
その説明を省略する。
In the figure, items with the same symbols as in Figure 3 have the same functions, so
The explanation will be omitted.

第6図(a) 、 (b) 、 (C)において、nm
 NI2とn WI2’の境界部には、(C)図に示す
ように格子状にp+Ff&ゲート3が埋め込まれており
、このp+層アゲート3囲まれたn1層2の部分をチャ
ンネルと称し、負荷電流は主としてこのチャネル部を流
れる。n層2′の上部にはn1層4が重ねられて、その
上面にカソード電極6が設けられている。
In Figure 6 (a), (b), and (C), nm
At the boundary between NI2 and nWI2', p+Ff&gates 3 are embedded in a grid pattern as shown in figure (C), and the part of the n1 layer 2 surrounded by the p+ layer agate 3 is called a channel, and the load Current mainly flows through this channel portion. An n1 layer 4 is superposed on top of the n layer 2', and a cathode electrode 6 is provided on the upper surface thereof.

n1層2の下部には28層1が設けられ、その下部にア
ノード電極5が設けられている。更に、n層2′とn藁
屑4の周辺部は取り除かれ、格子状のp+層アゲート3
周辺部が露出せしめられており、この露出面にゲート電
極7が設けられている。このように構成された多数の区
画が単一の半導体基板内に配設されて、Sエサイリスタ
を形成している。
28 layers 1 are provided below the n1 layer 2, and an anode electrode 5 is provided below the 28 layers 1. Furthermore, the peripheral portions of the n-layer 2' and the n-straw waste 4 are removed, and a lattice-shaped p+ layer agate 3 is formed.
The peripheral portion is exposed, and a gate electrode 7 is provided on this exposed surface. A large number of sections configured in this manner are arranged within a single semiconductor substrate to form an S ethyristor.

ここで、(b)図において点線で囲まれた部分はカソー
ド電極6側の形状を示している。
Here, the part surrounded by the dotted line in FIG. 3(b) shows the shape of the cathode electrode 6 side.

また、第7図(a) 、 (b)において第6図と異る
ところは、短絡孔としての2層8,8′が設けられてい
る。
The difference between FIGS. 7(a) and 7(b) from FIG. 6 is that two layers 8 and 8' are provided as short-circuit holes.

本例においては、(b)図に示すとと<pg層1′の層
内に、等しいピッチの平行線からなる縞状のn形紙抵抗
領域が配設され、アノード電極5近傍のn3層2″とア
ノード電極5とを短絡するごとく2層8゜8′が設けら
れている。ここで1層8′は2層8の端部に接続されて
いる。また、本例ζこおける素子はチャンネル間隔1が
6μm、n+層幅mが10μm、基板径10皿φ、オン
電流30Aのものを示している。
In this example, as shown in FIG. Two layers 8° 8' are provided to short-circuit the anode electrode 5 and the anode electrode 5. Here, the first layer 8' is connected to the end of the second layer 8. shows a channel interval 1 of 6 μm, an n+ layer width m of 10 μm, a substrate diameter of 10 plates φ, and an on-current of 30 A.

このようにして、n形紙抵抗領域の幅とピッ°チを必要
に応じて定めれば、Sエサイリスタを構成する多数の区
画の配置には無関係に、アノード電極5近傍のn1層2
′とアノード電極5との間の単位面積当りの短絡抵抗を
、適当な値で且つ均一に設定することができる。
In this way, if the width and pitch of the n-shaped paper resistance region are determined as necessary, the n1 layer 2 near the anode electrode 5 can be
The short-circuit resistance per unit area between ' and the anode electrode 5 can be set to an appropriate value and uniformly.

〈従来技術の問題点〉 しかしながら、前述したごとくターンオフ時間は短縮さ
れるがオン電圧が増大し、このために電力損失が増す結
果となる。
<Problems with Prior Art> However, as described above, although the turn-off time is shortened, the on-voltage increases, resulting in an increase in power loss.

〈発明の目的および構成〉 本発明は上述の問題点を解消し、オン電圧を低く抑え、
ターンオフ時間を短縮してスイッチング性能を向上させ
るサイリスタのエミッタ短絡構造を提供することにある
<Objects and configuration of the invention> The present invention solves the above-mentioned problems, suppresses the on-voltage to a low level, and
An object of the present invention is to provide a thyristor emitter short-circuit structure that shortens turn-off time and improves switching performance.

すなわち、本装置は、エミッタ構成領域を極力減らさな
いようにすると共に、キャリアはき出しが円滑に行われ
て十分エミッタ短絡が満され、電流の流れがよくなるよ
うにエミッタ短絡部を、主電流の流れが少ない91層近
傍のn1層中に埋め込み、その端部に短絡孔の層を設け
、この短絡孔をアノード電極に接続するものから構成さ
れている。以下本発明にかかるものをSIサイリスタを
例にとり第1図、第2図に基づいて説明する。
In other words, in this device, the emitter configuration area is not reduced as much as possible, and the emitter short-circuit part is connected to the main current flow so that the carrier expulsion is performed smoothly, the emitter short-circuit is sufficiently filled, and the current flow is improved. It is embedded in the n1 layer near the 91st layer, which has a small number of layers, and has a layer of short circuit holes at the end thereof, and connects the short circuit holes to the anode electrode. The present invention will be described below with reference to FIGS. 1 and 2, taking an SI thyristor as an example.

〈発明の実施例〉 第1図(a) l (b)は本発明にかかる81サイリ
スタのエミッタ短絡構造の一例を示す断面模式図で、(
a)図はオン状態、(b)図はオフ状態を示し、第2図
(a)。
<Embodiments of the Invention> FIGS. 1(a) and 1(b) are schematic cross-sectional views showing an example of an emitter short-circuit structure of an 81 thyristor according to the present invention.
Fig. 2(a) shows the on state, Fig. 2(b) shows the off state.

(b)はその一実施例を示し、(a)図はアノード電極
を除くエミッタ側から見た状態図、(b)図は(a)図
のC−C線矢視断面図であり、図中、第4図と同符号の
ものは同じ機能を有するため、ここではその説明を割愛
する。
(b) shows one example of this, (a) is a state diagram seen from the emitter side excluding the anode electrode, (b) is a cross-sectional view taken along line C-C in (a), and Components with the same reference numerals as those in FIG. 4 have the same functions, so their explanation will be omitted here.

第1図(a) 、 (b)および第2図(a) 、 (
b)icおイテ、p。
Figure 1 (a), (b) and Figure 2 (a), (
b) IC Oite, p.

層1′近傍のnmff12″中には、エピタキシャル成
長により埋込み形成された埋込み短絡層、例えば埋込み
n+層11が格子状に設けられている。そして、埋込み
1層11をアノード電極5に短絡させるための短絡孔の
層、例えば一層8′が埋込み一層11端部に設けられ、
この埋込み1層11の一端部12はアノード電極5に接
続されている。
In the nmff 12'' near the layer 1', a buried shorting layer formed by epitaxial growth, for example, a buried n+ layer 11, is provided in a lattice shape. A layer of shunt holes, for example layer 8', is provided at the end of buried layer 11;
One end portion 12 of this buried first layer 11 is connected to the anode electrode 5.

すなわち、h層1#の横には21層1“とn1層グに接
し、且つ埋込み一層11と並列配設された1層8′が設
けられ、このn+層8′はそれぞれの1層11の端部に
接続され、h層1#およびn”NJa’の下面にアノー
ド電極5が設けられている。
That is, next to the h layer 1#, a layer 8' is provided which is in contact with the 21 layer 1" and the n1 layer 1" and is arranged in parallel with the buried layer 11, and this n+ layer 8' is connected to each layer 11. An anode electrode 5 is provided on the lower surface of the h layer 1# and n''NJa'.

かくして第1図(a)に示すごとく、アノード電極5@
を正極、カソード電毬6側を負極きして電圧を印加する
と、Sエサイリスタはオン状態となり、キャリアとして
の正孔りはpmms’からチャンネルを経てnM2’に
流れ、電子eはn1層4からn1層2“に流れる。
Thus, as shown in FIG. 1(a), the anode electrode 5@
When a voltage is applied with the positive electrode and the cathode ball 6 side as the negative electrode, the S ethyristor turns on, and holes as carriers flow from PMMS' to nM2' through the channel, and electrons e pass through the n1 layer 4. Flows from the n1 layer 2'' to the n1 layer 2''.

次に、第1図(b)に示すごとく、ゲート電極7に負バ
イアスをかけると、 SIサイリスタはオフの状態とな
る。つまり、n1層2″に有する正孔h′がp”fE3
から外部へ急激に引き出され、これが引き金となりてチ
ャンネル領域周辺にキャリアブールの空乏Jia+が形
成される。このことが原因で、第4図(b)で説明した
ごと(8Iサイリスタはオフ状態となる。
Next, as shown in FIG. 1(b), when a negative bias is applied to the gate electrode 7, the SI thyristor is turned off. In other words, the hole h' in the n1 layer 2'' is p''fE3
This causes a carrier boule depletion Jia+ to be formed around the channel region. Due to this, the 8I thyristor is turned off as explained in FIG. 4(b).

ここIζ、本発明においては、エミッタ短絡部をp1層
l#の近傍でn1層2#中に設けたので、第4図で説明
したごとく、チャンネル間をオフ途中に、漏れて流れて
くる1層2′の電子e′はn1層とpmIWjとの間に
生じる拡散電位■4の影響がなくなりて容易に外部へ引
き出され、素子のターンオフ時間が短かくなる。
Here, Iζ, in the present invention, since the emitter short circuit is provided in the n1 layer 2# in the vicinity of the p1 layer l#, as explained in FIG. The electrons e' in the layer 2' are not affected by the diffusion potential 4 generated between the n1 layer and pmIWj and are easily drawn out, thereby shortening the turn-off time of the device.

また、第5図iこ示したごきく、21層1′にnj/?
5sを設けていたためにi)m/i41’からのキャリ
ア注入が減少してオン電圧が増大していたものを、px
層にn+暦を設けなくなったので、オン電圧は低くなる
Also, as shown in Figure 5, nj/?
5s, the carrier injection from i) m/i41' was reduced and the on-voltage increased, but px
Since the layer is no longer provided with an n+ calendar, the on-voltage becomes lower.

すなわち、111層2″と埋込みn+層11との間に発
生する従来のものより一層オン電圧が小さくなり、キャ
リアが自由に移動可能となる。この結果、ターンオフ時
にキャリアのアノード電極5への引き出しが容易となり
、ターンオフ時間が一1短縮される。
In other words, the on-voltage generated between the 111 layer 2'' and the buried n+ layer 11 is lower than that of the conventional one, and carriers can move freely.As a result, carriers are drawn out to the anode electrode 5 at turn-off. The turn-off time is reduced by 11 times.

次に、従来のものと本発明のものとを比較したエミッタ
短絡率Xに対するオン電圧VTM 、ターンオフタイム
tgxの特性を第3図に示す。
Next, FIG. 3 shows the characteristics of the on-voltage VTM and turn-off time tgx with respect to the emitter short circuit rate X, comparing the conventional one and the one of the present invention.

すなわち、エミッタ短絡率Xは で宍わされる。そして、このエミッタ短絡率Xに基づ〈
従来のものと本発明によるものとのオン電圧VTM +
ターンオフタイム石の特性は実験データから次に示す結
果となった。なおこのときのオン電流ITMは100人
の場合を示す。また点Qは本発明によるオン電圧VTM
 、ターンオフタイムtB特性を示す。
That is, the emitter short circuit rate X is reduced. Based on this emitter short circuit rate X,
On-voltage VTM + of the conventional one and the one according to the present invention
The characteristics of the turn-off time stone were determined from experimental data as shown below. Note that the on-current ITM at this time is based on the case of 100 people. In addition, point Q is the on-voltage VTM according to the present invention.
, shows the turn-off time tB characteristic.

かくして、この値をグラフに示したものが第3図である
。つまりこれらの値から、本発明によるものは、従来の
もののようにオン[lEVτMが低はシ ればターンオフタイムtルが長かったり、オン電圧VT
Mが高ければターンオフタイムtBが短かかりたすして
好ましいものではなかったものを、両方共低く且つ短か
い佇性を得ることができた。
FIG. 3 shows this value in a graph. In other words, from these values, it can be seen that the device according to the present invention has a longer turn-off time and a lower turn-off time t if the on [lEVτM is lower than the conventional one
If M was high, the turn-off time tB would be short, which was not very desirable, but we were able to obtain a low and short appearance in both cases.

〈発明の効果〉 以上説明したように本発明によれば、エミッタ短絡部を
2g層近傍で且つnyrm中に設け、このエミッタ短絡
部をアノード電極に接続したことによって、オン電圧が
低下したばかりかターンオフ時間およびターンオン時間
も短かくなった。
<Effects of the Invention> As explained above, according to the present invention, by providing the emitter short circuit in the vicinity of the 2g layer and in the nyrm, and connecting this emitter short circuit to the anode electrode, not only the on-voltage is reduced, but also the on-voltage is reduced. Turn-off and turn-on times are also shorter.

よって、本発明にかかる自己消弧形のサイリスタのエミ
ッタ短絡構造は高速スイッチング性能を有するので、S
エサイリスタおよびゲートターンオフサイリスタなどに
適用でき、実用上、非常に有用性の高いものである。
Therefore, since the emitter short-circuit structure of the self-extinguishing thyristor according to the present invention has high-speed switching performance, S
It can be applied to esthyristors, gate turn-off thyristors, etc., and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は本発明にかかるサイリスタ
の短絡構造の一例を示す断面模式図で、(a)図はオン
状態、(b)はオフ状態を示し、第2図(a) 、 (
b)はその一実施例を示し、(a)図はエミッタ側から
見た状態。 (b)図は(a)図のC−C線矢視断面図、第3図は8
Iサイリスタの特性図、第4図(a) 、 (b)は従
来のもののエミッタ短絡構造のない一例を示す断面模式
図で、(a)図はオン状態、(b)図はオフ状態を示し
、第5図(a) 、 (b)はエミッタ短絡構造を有す
る断面模式図で、(a)図はオン状態、(b)図はオフ
状態を示し、第6図(a) 、 (b) 、 (C)は
第4図による従来のものの一例を示し、(a)図はカソ
ード側外観図、(b)図はエミッタ側状態図、(C)は
(81図のA−A線矢視断面図、第7図(a) 、 (
b)は第5図による従来のものの一例を示し、(a)図
はエミッタ側から見た状態図、(b)図は(a)図のB
−B線矢視断面図である。 1 、1’ 、 11z、、、、、、pm層、2 、2
’・・−flB層、5 =−・アノード電極、8.8’
・・・n+層、11・・・・埋込み1層。
FIGS. 1(a) and 1(b) are schematic cross-sectional views showing an example of a short-circuit structure of a thyristor according to the present invention, in which FIG. 1(a) shows an on state, FIG. 1(b) shows an off state, and FIG. ), (
Figure b) shows an example of this, and figure (a) shows the state seen from the emitter side. (b) Figure is a sectional view taken along the line C-C in Figure (a), and Figure 3 is 8
Characteristic diagrams of I thyristors, Figures 4 (a) and 4 (b) are cross-sectional schematic diagrams showing an example of a conventional type without an emitter short-circuit structure, where (a) shows the on state and (b) the off state. , FIGS. 5(a) and 5(b) are schematic cross-sectional views having an emitter short circuit structure, where FIG. 5(a) shows the on state, FIG. 5(b) shows the off state, and FIGS. 6(a) and (b). , (C) shows an example of the conventional one shown in FIG. Cross-sectional view, Fig. 7(a), (
b) shows an example of the conventional one shown in Fig. 5, (a) is a state diagram seen from the emitter side, and (b) is a state diagram of B in Fig. (a).
- It is a sectional view taken along the line B. 1 , 1' , 11z, , , pm layer, 2 , 2
'...-flB layer, 5 =--anode electrode, 8.8'
...n+ layer, 11...buried 1 layer.

Claims (1)

【特許請求の範囲】[Claims] pまたはnゲート3端子自己消弧形サイリスタのエミッ
タ短絡構造において、p形のエミッタ層近傍のn形の高
抵抗領域中に、エピタキシャル成長により埋込み形成さ
れた埋込み短絡層を格子状に設け、該埋込み短絡層をそ
れぞれ短絡させるために埋込み短絡層の端部に短絡孔の
層を設け、該短絡孔の層をアノード電極に接続すること
を特徴とするサイリスタのエミッタ短絡構造。
In the emitter short-circuit structure of a p- or n-gate three-terminal self-extinguishing thyristor, a buried short layer formed by epitaxial growth is provided in a lattice shape in an n-type high resistance region near the p-type emitter layer, and 1. An emitter short-circuit structure for a thyristor, characterized in that a layer of short-circuit holes is provided at an end of a buried short-circuit layer in order to short-circuit the short-circuit layers, respectively, and the layer of short-circuit holes is connected to an anode electrode.
JP16625984A 1984-08-08 1984-08-08 Emitter short-circuit structure of thyristor Pending JPS6144463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16625984A JPS6144463A (en) 1984-08-08 1984-08-08 Emitter short-circuit structure of thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16625984A JPS6144463A (en) 1984-08-08 1984-08-08 Emitter short-circuit structure of thyristor

Publications (1)

Publication Number Publication Date
JPS6144463A true JPS6144463A (en) 1986-03-04

Family

ID=15828060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16625984A Pending JPS6144463A (en) 1984-08-08 1984-08-08 Emitter short-circuit structure of thyristor

Country Status (1)

Country Link
JP (1) JPS6144463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218067A (en) * 1988-02-26 1989-08-31 Mitsubishi Electric Corp Bipolar-type semiconductor switching device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494287A (en) * 1978-01-09 1979-07-25 Handotai Kenkyu Shinkokai Electrostatic induction semiconductor
JPS5650564A (en) * 1979-10-01 1981-05-07 Semiconductor Res Found Insulated gate type static induction thyristor
JPS57172765A (en) * 1981-04-17 1982-10-23 Semiconductor Res Found Electrostatic induction thyristor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494287A (en) * 1978-01-09 1979-07-25 Handotai Kenkyu Shinkokai Electrostatic induction semiconductor
JPS5650564A (en) * 1979-10-01 1981-05-07 Semiconductor Res Found Insulated gate type static induction thyristor
JPS57172765A (en) * 1981-04-17 1982-10-23 Semiconductor Res Found Electrostatic induction thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218067A (en) * 1988-02-26 1989-08-31 Mitsubishi Electric Corp Bipolar-type semiconductor switching device

Similar Documents

Publication Publication Date Title
US4799090A (en) Tunnel injection controlling type semiconductor device controlled by static induction effect
JP2663679B2 (en) Conductivity modulation type MOSFET
JPS6011815B2 (en) thyristor
JPS6074677A (en) Composite type thyristor
JPH0621342A (en) Power integrated circuit
JPS6144463A (en) Emitter short-circuit structure of thyristor
JPH0888357A (en) Lateral igbt
JPS6124832B2 (en)
JPS62198160A (en) Insulated gate field effect transistor
JPS6153877B2 (en)
JPS5933988B2 (en) Electrostatic induction thyristor
JPH07193232A (en) Conductivity modulation type transistor
US5005065A (en) High current gate turn-off thyristor
JPS639386B2 (en)
JPH04233281A (en) Semiconductor device
JP2604175B2 (en) High-speed switching thyristor
JPS59150474A (en) Semiconductor device
JPH025016B2 (en)
JP2002528897A (en) Semiconductor switch with finely distributed control structure evenly distributed
JPH05145064A (en) Gate turn-off thyristor
JPS59197171A (en) Gate turnoff thyristor
JPH05347406A (en) Anode hetero-junction structure semiconductor device
JPS61189667A (en) Emitter short-circuit structure of semiconductor device
JP3149483B2 (en) Planar type semiconductor rectifier
JPH02224274A (en) Conductivity modulation type mos fet