JPS6143274Y2 - - Google Patents

Info

Publication number
JPS6143274Y2
JPS6143274Y2 JP632281U JP632281U JPS6143274Y2 JP S6143274 Y2 JPS6143274 Y2 JP S6143274Y2 JP 632281 U JP632281 U JP 632281U JP 632281 U JP632281 U JP 632281U JP S6143274 Y2 JPS6143274 Y2 JP S6143274Y2
Authority
JP
Japan
Prior art keywords
circuit
frequency
signal
time measurement
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP632281U
Other languages
Japanese (ja)
Other versions
JPS56119597U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP632281U priority Critical patent/JPS6143274Y2/ja
Publication of JPS56119597U publication Critical patent/JPS56119597U/ja
Application granted granted Critical
Publication of JPS6143274Y2 publication Critical patent/JPS6143274Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electric Clocks (AREA)

Description

【考案の詳細な説明】 本考案は電気的な操作手段により合わせ込むこ
とを可能にした電子時計の計時単位信号の周波数
調整に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to frequency adjustment of a timekeeping unit signal of an electronic timepiece, which can be adjusted by electrical operating means.

従来、電子時計の電子回路を構成するのに個別
部品を用いて行うことは公知であり、すでに広く
実施されている。また近年ICの発達にともない
個別部品よりなる回路ブロツクのIC化が行なわ
れるようになり、電子時計をICと個別部品とで
構成することも行なわれているが、回路をすべて
ICのみで構成しようとすると部品のいくつかは
IC化が不可能になり、かつ周波数の合わせ込み
が困難であつた。
2. Description of the Related Art Conventionally, it has been known to use individual parts to construct an electronic circuit of an electronic timepiece, and this has already been widely practiced. In addition, with the recent development of ICs, circuit blocks consisting of individual parts have become integrated into ICs, and although electronic watches are also constructed from ICs and individual parts,
If you try to configure it with only ICs, some of the parts will be
It became impossible to use an IC, and it was difficult to match the frequency.

従来水晶時計の水晶発振周波数は、カスケード
接続されたバイナリカウンタの分周数で計時装置
への計時単位時間を除した時間を周期とする周波
数に定められていた。水晶の発振周波数の合わせ
込みは、f/Q(f:水晶の注目したモードの共
振周波数、Q:共振の鋭さ)までを発振回路で行
ない、それ以上は水晶振動子の機械的な調整加工
で行なわれた。
Conventionally, the crystal oscillation frequency of a crystal clock has been determined to be a frequency whose period is the time unit time measured by the timekeeping device divided by the frequency division number of the cascade-connected binary counter. The oscillation frequency of the crystal is tuned by an oscillation circuit up to f/Q (f: resonance frequency of the focused mode of the crystal, Q: sharpness of resonance), and beyond that it is done by mechanical adjustment of the crystal resonator. It was done.

このような時代背景として分周器が体積的にも
電力的にも時計の内部で大きな割合を占め、これ
をできる限り小さな割合に押さえるという基本的
な考え方が支配していた。
Against this backdrop, the prevailing basic idea was that the divider took up a large proportion of the inside of a clock, both in terms of volume and power, and that this proportion should be kept as small as possible.

近年電気回路のIC化が実現化することにより
設計方針が従来の水晶時計とは大巾に変えられる
に至つた。すなわち、電気部品の低コスト、低電
力化、小体積化を背景として時計としての低コス
ト、低電力化、小体積化を実現するためにできる
限りの負荷を電気回路に負わせようとするもので
ある。この観点から見ると水晶振動子の周波数合
わせ込みのための工程を回路側で処理した方が有
利である。すなわち、安定な時計の計時単位の周
期さえ作れば、本来水晶振動子の周波数そのもの
の細かな合わせ込みは不必要で、これにより水晶
加工時の合せ込みコストに対し電気的な合わせ込
みコストが低いものになり、合わせ込みは電気的
に行なう方が良いことになる。すなわち電気的な
合わせ込みは自動化がきわめて容易で且つ合わせ
込む為の水晶特性変化もなく合わせ込み後の周波
数もきわめて安定である。
In recent years, with the advent of integrated circuits (ICs), the design policy for clocks has changed dramatically from that of traditional crystal watches. In other words, against the backdrop of lower cost, lower power consumption, and smaller volume of electrical components, we aim to place as much load on electrical circuits as possible in order to realize lower cost, lower power consumption, and smaller volume of watches. It is. From this point of view, it is more advantageous to process the process for frequency tuning of the crystal resonator on the circuit side. In other words, as long as the cycle of a stable clock timekeeping unit is created, there is no need to fine-tune the frequency of the crystal oscillator itself, and as a result, the cost of electrical tuning is lower than the cost of tuning during crystal processing. Therefore, it is better to perform the adjustment electrically. In other words, electrical tuning is extremely easy to automate, and there is no change in crystal characteristics for tuning, and the frequency after tuning is also extremely stable.

本考案の目的は、集積回路技術を応用して従来
の機械的な操作手段による計時単信の信号の周波
数の合せ込みを電気的な操作手段により合わせ込
むことを可能とする周波数調整回路を持つた電子
時計を得ることにある。
The purpose of the present invention is to provide a frequency adjustment circuit that uses integrated circuit technology to enable the frequency of a timekeeping simplex signal to be adjusted by electrical operation means instead of the conventional mechanical operation means. The objective is to obtain an electronic clock.

以下図面に基づき本考案の実施例を説明する。 Embodiments of the present invention will be described below based on the drawings.

1は水晶振動子、音叉、音片、天府等の時間基
準振動子、2は該時間基準振動子の振動を持続さ
せるための発振回路、3は該発振回路の時間基準
信号を分周する分周回路、4は該分周回路からの
出力を時計信号にするための計時回路、5は該計
時回路からの信号を表示装置8の点灯すべきセグ
メントに連なる駆動回路6に加えるための表示論
理回路、7は外部操作機構9により前記各回路に
必要な信号を与え制御する制御回路、10は電
源、11はモノリシツクIC化した回路部であ
る。
1 is a time reference oscillator such as a crystal oscillator, a tuning fork, a tone piece, a Tianfu, etc., 2 is an oscillation circuit for sustaining the vibration of the time reference oscillator, and 3 is a component for dividing the frequency of the time reference signal of the oscillation circuit. 4 is a clock circuit for converting the output from the frequency dividing circuit into a clock signal; 5 is a display logic for applying the signal from the clock circuit to the drive circuit 6 connected to the segment to be lit on the display device 8; 7 is a control circuit for controlling each of the circuits by giving necessary signals to them by means of an external operating mechanism 9; 10 is a power source; and 11 is a circuit section formed into a monolithic IC.

次に作用について説明する。 Next, the effect will be explained.

第2図は本考案に利用したモノリシツクIC化
した回路部11の一部である発振回路と分周回路
及び制御回路部の一実施例で、発振回路2のカツ
プリングコンデンサCC及び高抵抗RN、バイアス
抵抗RBの両端もTC化されているため空気中にさ
らすことがなくなり耐湿性が向上し、周波数の安
定もよくなる。また回路をモノリシツクIC化し
た後でも周波数の合わせ込みが可能とするように
分周回路3からの出力信号21とメモリー機能を
もつたスイツチ回路を有する外部操作部22の操
作信号23を制御回路7に入れ、該制御回路によ
つて制御された周波数制御信号24を排他論理和
回路からなる周波数加算用のゲート回路25に入
れ、該周波数制御加算ゲート回路では本来必要と
する周波数(実際には計時の最小時間単位を周期
とする周波数又はその整数倍の周波数である)と
の不足分の周波数に相当する周波数の信号をつく
り出すように構成してある。すなわち、制御回路
7は周波数加算ゲート回路25で本来必要な周波
数が得られるような周波数制御信号24を送り込
む回路である。周波数加算ゲート回路25は発振
回路2の出力信号20と周波数制御信号24の排
他的論理和を出力する。もし周波数制御信号24
の信号レベルが変化しない時には周波数加算ゲー
ト回路25の出力は発振回路の出力信号20と同
じ周波数となる。周波数制御信号24の信号レベ
ルが1から0へ、又は、0から1へ変化する毎に
周波数加算ゲート回路25の出力は信号レベルが
反転する。
Figure 2 shows an example of the oscillation circuit, frequency divider circuit, and control circuit that are part of the monolithic IC circuit 11 used in the present invention, including the coupling capacitor C C and high resistance R of the oscillation circuit 2. Since both ends of N and bias resistor R B are also TC, they are not exposed to the air, improving moisture resistance and improving frequency stability. In addition, in order to enable frequency matching even after converting the circuit into a monolithic IC, the output signal 21 from the frequency dividing circuit 3 and the operation signal 23 of the external operation section 22 having a switch circuit with a memory function are transferred to the control circuit 7. The frequency control signal 24 controlled by the control circuit is input to a frequency addition gate circuit 25 consisting of an exclusive OR circuit. (or a frequency that is an integer multiple thereof). That is, the control circuit 7 is a circuit that sends a frequency control signal 24 that allows the frequency addition gate circuit 25 to obtain the originally required frequency. The frequency addition gate circuit 25 outputs the exclusive OR of the output signal 20 of the oscillation circuit 2 and the frequency control signal 24. If frequency control signal 24
When the signal level does not change, the output of the frequency addition gate circuit 25 has the same frequency as the output signal 20 of the oscillation circuit. Every time the signal level of the frequency control signal 24 changes from 1 to 0 or from 0 to 1, the signal level of the output of the frequency addition gate circuit 25 is inverted.

したがつて周波数加算ゲート回路25の出力の
信号反転の回数は発振回路2の出力信号20の反
転回数に周波数制御信号24の反転回数を加えた
ものになる。周波数加算ゲート回路25の2つの
入力が同時に反転することは確率的にほとんど起
らないし、回路の遅延時間を考慮して設計すれば
同時に反転しないようにできる。このようにして
周波数加算ゲート回路25は発振回路2の出力信
号20と周波数制御信号24を加算する。なお、
図面では周波数加算ゲート回路25は発振回路2
の直後に設けてあるが、分周回路間に設けてもよ
い。
Therefore, the number of signal inversions of the output of the frequency addition gate circuit 25 is the sum of the number of inversions of the output signal 20 of the oscillation circuit 2 and the number of inversions of the frequency control signal 24. It is highly unlikely that the two inputs of the frequency addition gate circuit 25 are inverted at the same time, and it is possible to prevent them from being inverted at the same time if the circuit is designed in consideration of the delay time. In this manner, the frequency addition gate circuit 25 adds the output signal 20 of the oscillation circuit 2 and the frequency control signal 24. In addition,
In the drawing, the frequency addition gate circuit 25 is the oscillation circuit 2.
Although it is provided immediately after the frequency dividing circuit, it may also be provided between the frequency dividing circuits.

したがつて外部操作部22の端子に操作信号を
加えることにより、あらかじめ設定した分周比で
周波数を合せ込みすることができる。該周波数加
算ゲートの出力に更にインバータを付加して信号
の反転を行つても周波数は変らない。第3図は外
部操作部22のスイツチ回路をモノリシツクIC
化した一実施例で、第3図b又はcのような回路
構成にすると、接点部31の接点数を減ずること
ができ、しかも抵抗rもIC化されている為外気
に触れていないので湿度の影響も受けにくい。第
3図bのD−タイプのフリツプフロツプ33の端
子φには第3図aに示すパルスBを印加し、端子
Dには第3図aに示すパルス巾τで周期Tなるパ
ルスAを印加し、τ/T〓1/nとすると等価的
に、抵抗rはnrとなる。すなわち、時計回路にお
いてスイツチの接点数を減らすために入力端子を
抵抗rを介して電源の正または負側に接続する。
この場合抵抗rをIC化したが、単に抵抗を用い
るだけでは抵抗rにおける消費電力が大になり、
抵抗値を大にすると耐湿性や耐雑音性が劣化する
のでその対策として抵抗rに電圧を印加する時間
を非常に短くし(Aパルス)、連続電圧印加の場
合の1/1000に近い低消費電力でしかも低い入力イ
ンピーダンスとすることができる。第3図cは第
3図bと同様のスイツチ回路の他の実施例であ
る。
Therefore, by applying an operation signal to the terminal of the external operation section 22, the frequency can be tuned at a preset frequency division ratio. Even if an inverter is further added to the output of the frequency addition gate to invert the signal, the frequency does not change. Figure 3 shows the switch circuit of the external operation unit 22 using a monolithic IC.
In this embodiment, if the circuit configuration is as shown in FIG. 3b or c, the number of contacts in the contact section 31 can be reduced, and since the resistor r is also integrated circuit, it is not exposed to the outside air, so humidity can be reduced. It is also less affected by A pulse B shown in FIG. 3a is applied to the terminal φ of the D-type flip-flop 33 shown in FIG. 3b, and a pulse A having a pulse width τ and a period T shown in FIG. 3a is applied to the terminal D. , τ/T〓1/n, equivalently, the resistance r becomes nr. That is, in order to reduce the number of switch contacts in a timepiece circuit, the input terminal is connected to the positive or negative side of the power supply via a resistor r.
In this case, the resistor r was made into an IC, but simply using a resistor would consume a lot of power in the resistor r.
If the resistance value is increased, the moisture resistance and noise resistance deteriorate, so as a countermeasure, the time for applying voltage to the resistor r is made very short (A pulse), resulting in low power consumption that is close to 1/1000 of that of continuous voltage application. It is possible to achieve low power and low input impedance. FIG. 3c shows another embodiment of a switch circuit similar to FIG. 3b.

以上の如く発振回路、分周回路、入力回路等に
工夫を施し、コンプリメンタリMOS回路(C−
MOS)を使用して論理回路を形成して周波数調
整を行うので外部操作用のコンデンサや抵抗も不
必要となる。
As mentioned above, we have devised the oscillation circuit, frequency divider circuit, input circuit, etc. to create a complementary MOS circuit (C-
Since frequency adjustment is performed by forming a logic circuit using MOS (MOS), there is no need for capacitors or resistors for external operation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の電子時計の一実施例を示し、第
1図は時計システムのブロツク線図、第2図はモ
ノリシツクIC化した回路中の一部で発振回路及
び分周回路部の結線図、第3図は外部操作部スイ
ツチ回路をモノリシツクIC化した一実施例を示
す回路図である。 1……時間基準振動子、2……発振回路、3…
…分周回路、7……制御回路、21……分周回路
からの出力信号、8……表示装置、22……外部
操作部、23……外部操作部の操作信号、24…
…周波数制御信号、25……周波数加算ゲート回
路。
The drawings show one embodiment of the electronic timepiece of the present invention, and FIG. 1 is a block diagram of the timepiece system, and FIG. 2 is a wiring diagram of the oscillation circuit and frequency division circuit, which is part of a monolithic IC circuit. FIG. 3 is a circuit diagram showing an embodiment in which the external operation section switch circuit is formed into a monolithic IC. 1... Time reference oscillator, 2... Oscillation circuit, 3...
...Frequency dividing circuit, 7... Control circuit, 21... Output signal from the frequency dividing circuit, 8... Display device, 22... External operating section, 23... Operation signal of external operating section, 24...
...Frequency control signal, 25...Frequency addition gate circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 時間基準振動子の振動を持続させるための発振
回路、該発振回路の出力端に接続され計時単位信
号を発生せしめる分周回路、該分周回路に接続さ
れ該計時単位信号を計数する計時回路、該計時回
路に保持せられる時刻情報を表示する表示機構、
外部操作部、電気エネルギー源とからなる電子時
計に於いて、前記分周回路と前記外部操作部に接
続した周波数制御信号を発生する制御回路と、前
記発振回路と前記計時回路の間に排他論理和回路
から成る周波数加算ゲート回路を設け、前記外部
操作部の操作信号と前記分周回路からの出力信号
により前記制御回路を制御して周波数制御信号を
作成し、該周波数制御信号を前記周波数加算ゲー
ト回路に印加して周波数を調整することを特徴と
する電子時計。
an oscillation circuit for sustaining the vibration of a time reference oscillator, a frequency dividing circuit connected to the output end of the oscillation circuit and generating a time measurement unit signal, a time measurement circuit connected to the frequency division circuit and counting the time measurement unit signal; a display mechanism that displays time information held in the time measurement circuit;
In an electronic timepiece comprising an external operating section and an electrical energy source, an exclusive logic circuit is provided between the frequency dividing circuit and a control circuit that generates a frequency control signal connected to the external operating section, the oscillation circuit and the timekeeping circuit. A frequency addition gate circuit consisting of a sum circuit is provided, and the control circuit is controlled by the operation signal of the external operation unit and the output signal from the frequency dividing circuit to create a frequency control signal, and the frequency control signal is added to the frequency addition gate circuit. An electronic clock characterized by adjusting the frequency by applying voltage to a gate circuit.
JP632281U 1981-01-20 1981-01-20 Expired JPS6143274Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP632281U JPS6143274Y2 (en) 1981-01-20 1981-01-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP632281U JPS6143274Y2 (en) 1981-01-20 1981-01-20

Publications (2)

Publication Number Publication Date
JPS56119597U JPS56119597U (en) 1981-09-11
JPS6143274Y2 true JPS6143274Y2 (en) 1986-12-06

Family

ID=29602990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP632281U Expired JPS6143274Y2 (en) 1981-01-20 1981-01-20

Country Status (1)

Country Link
JP (1) JPS6143274Y2 (en)

Also Published As

Publication number Publication date
JPS56119597U (en) 1981-09-11

Similar Documents

Publication Publication Date Title
US5767747A (en) Electronic low power clock circuit and method
JPH0496505A (en) Cr oscillator
US4864255A (en) Oscillator capable of quickly supplying a stable oscillation signal
US4344046A (en) Signal generator including high and low frequency oscillators
US4196404A (en) Crystal oscillator having low power consumption
US4148184A (en) Electronic timepiece utilizing main oscillator circuit and secondary oscillator circuit
US5606293A (en) Clock generator for microcomputer having reduced start-up time
JPS6143274Y2 (en)
JP3288830B2 (en) Oscillation integrated circuit
US4142161A (en) Crystal oscillator
ES410071A1 (en) Integrated circuit for electronic timepieces
JP3235006B2 (en) Oscillation integrated circuit
JP2590617B2 (en) Voltage controlled piezoelectric oscillator
JPH0575343A (en) Clock signal output circuit
JPH0426221A (en) Oscillation circuit
JP4149634B2 (en) Frequency divider circuit
JP2712746B2 (en) Oscillation circuit
SU309657A1 (en) Crystal-stabilized pulse generator
JP2003017942A (en) Piezoelectric oscillator employing noninverting amplifier
JPS6024432B2 (en) Electronic clock frequency adjustment device
JP2579191B2 (en) Oscillation circuit
JPH06260836A (en) Oscillator
JPS6124957Y2 (en)
JPS6227565B2 (en)
JPH03155205A (en) Oscillator circuit