JPS6227565B2 - - Google Patents

Info

Publication number
JPS6227565B2
JPS6227565B2 JP3126977A JP3126977A JPS6227565B2 JP S6227565 B2 JPS6227565 B2 JP S6227565B2 JP 3126977 A JP3126977 A JP 3126977A JP 3126977 A JP3126977 A JP 3126977A JP S6227565 B2 JPS6227565 B2 JP S6227565B2
Authority
JP
Japan
Prior art keywords
transistor
resistor
oscillation
output
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3126977A
Other languages
Japanese (ja)
Other versions
JPS53116763A (en
Inventor
Toshio Oora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3126977A priority Critical patent/JPS53116763A/en
Publication of JPS53116763A publication Critical patent/JPS53116763A/en
Publication of JPS6227565B2 publication Critical patent/JPS6227565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/364Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device the amplifier comprising field effect transistors

Description

【発明の詳細な説明】 本発明は水晶発振子を有する帰還回路と相補型
の電界効果トランジスタ(IGFETと称す。)と抵
抗で構成される水晶発振回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal oscillation circuit comprising a feedback circuit having a crystal oscillator, a complementary field effect transistor (referred to as IGFET), and a resistor.

従来、相補型IGFETで構成される電子腕時計
用LSI(大規模集積回路)には第1図に示すよう
な水晶発振回路や、第2図に示すような水晶発振
回路がある。第1図及び第2図において1は増幅
回路、2は帰還回路で増幅回路の増幅率α、帰還
回路の減衰率をβとすると発振が持続されるため
にはαβ≧1であることが必要であり、増幅回路
の移相量は180度、帰還回路の移相量は所望の360
度の移相を与えるよう180度の移相量を有してい
る。Q1はPチヤンネル型IGFET、Q2はNチヤン
ネル型IGFETでQ1とQ2で移相を反転するインバ
ータを形成している。トランジスタと直列に接続
された抵抗は周波数安定用抵抗、CDは温度補償
用コンデンサー、CGは周波数調整用コンデンサ
ー、QZは水晶発振子であり、抵抗R1、コンデン
サCD,CG及び振動子QZで180度の移相量をもつ
帰還回路2を形成している。Rfは帰還抵抗でイ
ンバータの直流バイアスレベルを入力電圧と出力
電圧が等しくなるように設定する。この直流バイ
アスレベルは供給電源電圧の1/2すなわちVSS/2に なりインバーター特性の高利得領域に位置する。
Conventionally, LSIs (Large Scale Integrated Circuits) for electronic wristwatches made up of complementary IGFETs include a crystal oscillation circuit as shown in FIG. 1 and a crystal oscillation circuit as shown in FIG. In Figures 1 and 2, 1 is an amplifier circuit, 2 is a feedback circuit, and if the amplification factor of the amplifier circuit is α and the attenuation factor of the feedback circuit is β, it is necessary that αβ≧1 for oscillation to be sustained. The phase shift amount of the amplifier circuit is 180 degrees, and the phase shift amount of the feedback circuit is the desired 360 degrees.
It has a phase shift amount of 180 degrees to give a phase shift of 180 degrees. Q 1 is a P-channel IGFET, and Q 2 is an N-channel IGFET, and Q 1 and Q 2 form an inverter that reverses the phase shift. The resistor connected in series with the transistor is a frequency stabilizing resistor, C D is a temperature compensation capacitor, C G is a frequency adjustment capacitor, Q Z is a crystal oscillator, and the resistor R 1 , capacitors C D , C G and A feedback circuit 2 having a phase shift of 180 degrees is formed by the vibrator QZ . R f is a feedback resistor and sets the DC bias level of the inverter so that the input voltage and output voltage are equal. This DC bias level is 1/2 of the supply voltage, ie, V SS /2, and is located in the high gain region of the inverter characteristics.

第1図における従来の水晶発振回路は、最小の
発振開始電圧VSTはほぼPチヤンネル型IGFET
のスレツシユホールド電圧STPと、Nチヤンネル
型IGFETのスレツシユホールド電圧VTNによつ
て決まりIVTpIとVTNの和にほぼ等しい値とな
り、またこの水晶発振回路の消費電流はほぼVSS
−(IVTpl+VTN)の指数関数に比例する。これは
PチヤンネルIGFET Q1とNチヤンネルIGFET
Q2が同時にONしている時にQ1とQ2を通して慣通
電流が流れるためである。したがつて、スレツシ
ユホールド電圧のバラツキ及び電源電圧の変動に
より、消費電流つまり消費電力が大きく変化す
る。したがつてスレツシユホールド電圧のバラツ
キの許容範囲は、lVTplとVTNの和の上限が最小
の発振開始電圧によつて決まり、lVTplとVTN
〓〓〓〓
和の下限は腕時計の許容消費電力によつて決ま
る。よつて従来の第1図の水晶発振回路は消費電
流がVSS−(lVTpl+VTN)の指数関数に比例して
増大するという欠点がある。
In the conventional crystal oscillation circuit shown in Fig. 1, the minimum oscillation start voltage V ST is approximately P-channel type IGFET.
It is determined by the threshold voltage S TP of the N-channel IGFET and the threshold voltage V TN of the N-channel IGFET, and the value is approximately equal to the sum of IV Tp I and V TN , and the current consumption of this crystal oscillator circuit is approximately V SS
-(IV Tp l + V TN ). This is P channel IGFET Q 1 and N channel IGFET
This is because a normal current flows through Q 1 and Q 2 when Q 2 is ON at the same time. Therefore, the current consumption, that is, the power consumption, changes greatly due to variations in the threshold voltage and fluctuations in the power supply voltage. Therefore, the permissible range of threshold voltage variation is determined by the oscillation start voltage at which the upper limit of the sum of lV Tp l and V TN is minimum, and the difference between lV Tp l and V TN is
The lower limit of the sum is determined by the watch's allowable power consumption. Therefore, the conventional crystal oscillation circuit shown in FIG. 1 has the disadvantage that current consumption increases in proportion to an exponential function of V SS -(lV Tp l +V TN ).

また第2図は第1図の水晶発振回路を低電力化
した水晶発振回路の従来例であり、R2,R3は電
流制限用抵抗であり、発振開始電圧VSTはバツク
ゲート効果の影響をうける。つまりΔVTpはPチ
ヤンネル型IGFETのバツクバイアス効果による
スレツシユホールド電圧VTpの変化分、ΔVTN
Nチヤンネル型IGFETのバツクバイアス効果に
よるスレツシユホールド電圧VTNの変化分とする
と、発振開始直前にはQ1とQ2が同時にONしてい
る状態であり、流れている電流をIとするとR2
に対して電圧降下が生じQ1のソース電極が基板
電位に対し、IR2のバツクゲート電圧がかかり、
TpがΔVTpだけ増加する。またNチヤンネル型
IGFET Q2のソース電極が基板であるPウエルの
電位に対しIR3のバツクゲート電圧がかかりVTN
がΔVTNだけ増加する。したがつて発振開始電圧
は|VTp|+|ΔVTp|+VTN+ΔVTN+IR2
IR3となりバツクゲート効果の影響を大きく受
け、第1図の水晶発振回路の発振開始電圧よりは
るかに高くなるという欠点があつた。
Furthermore, Fig. 2 shows a conventional example of a crystal oscillation circuit that is a low-power version of the crystal oscillation circuit shown in Fig. 1. R 2 and R 3 are current limiting resistors, and the oscillation start voltage V ST is controlled by the influence of the backgate effect. box office. In other words, if ΔV Tp is the change in threshold voltage V Tp due to the back bias effect of the P-channel IGFET, and ΔV TN is the change in threshold voltage V TN due to the back bias effect of the N-channel IGFET, then immediately before the start of oscillation , Q 1 and Q 2 are ON at the same time, and if the flowing current is I, then R 2
A voltage drop occurs between the source electrode of Q 1 and the back gate voltage of IR 2 relative to the substrate potential.
V Tp increases by ΔV Tp . Also N channel type
A back gate voltage of IR 3 is applied to the potential of the P well where the source electrode of IGFET Q 2 is the substrate, and V TN
increases by ΔV TN . Therefore, the oscillation start voltage is |V Tp |+|ΔV Tp |+V TN +ΔV TN +IR 2 +
The disadvantage was that the voltage was much higher than the oscillation starting voltage of the crystal oscillator circuit shown in Figure 1 , and was greatly affected by the backgate effect.

しかし、第2図の水晶発振回路はR2により電
流制限作用を受けるためスレツシユホールド電圧
|VTp|、VTNのバラツキ及び供給電源電圧VSS
の変動に対して第1図の水晶発振回路の消費電流
に対して消費電流のバラツキと変動は少ないとい
う利点を持つている。
However, since the crystal oscillator circuit shown in Fig. 2 is subject to current limiting action by R 2 , variations in the threshold voltage |V Tp |, V TN and the supply voltage V SS
This has the advantage that the variation in current consumption is small compared to the current consumption of the crystal oscillation circuit shown in FIG.

以上詳述した如く、第1図、第2図に示すよう
な従来の水晶発振回路は上記のような欠点をもつ
ている。
As detailed above, the conventional crystal oscillation circuits as shown in FIGS. 1 and 2 have the above-mentioned drawbacks.

本発明の目的は上記の欠点を排除するものであ
り、消費電力が小さく、そのバラツキも小さく、
発振開始電圧もバツクゲート効果の悪影響を受け
ないし、電流制限抵抗による電圧降下の悪影響を
受けない、低い発振開始電圧を持つ水晶発振回路
を提供するものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to achieve low power consumption and small variation in power consumption.
The object of the present invention is to provide a crystal oscillation circuit having a low oscillation starting voltage, which is not adversely affected by the backgate effect or voltage drop caused by a current limiting resistor.

以下に本発明の実施例を示して説明する。 Examples of the present invention will be shown and explained below.

第3図は本発明の一実施例であり、Q1とQ3
はPチヤンネル型IGFET、Q2とQ4はNチヤンネ
ル型IGFET、Rfは帰還抵抗R2,R3は電流制限用
抵抗、R1は抵抗、CDは温度補償用コンデンサ
ー、CGは周波数調整用コンデンサー、QZは水晶
発振子、3はインバーター、Aは制御用入力端子
である。PチヤンネルIGFET Q1のソース電極を
接地電位GND(VDD)に接続し、Q1のドレイン
電極を抵抗R2の一端及びPチヤンネルIGFET
Q3のソース電極に接続し、Q3のドレイン電極は
R2の他端及び帰還抵抗Rfの一端及び出力端子O
及び抵抗R1の一端及びNチヤンネルIGFET Q2
のドレイン電極に接続する。Q2のソース電極を
Q2の基板電極及び抵抗R3の一端及びNチヤンネ
ルIGFET Q4のドレイン電極に接続し、Q4のソ
ース電極をQ2の基板電極及びR3の他端に接続
し、電源端子VSSに接続する。R1の他端を温度
補償用コンデンサーCDの一端及び水晶発振子QZ
の一端に接続し、QZの他端は周波数調整用コン
デンサーCGの一端とRfの他端とQ1のゲート電極
及びQ2のゲート電極に接続し、CDの他端及びC
Gの他端は接地電極に接続し、制御入力端子Aは
Q4のゲート電極とインバータ3の入力に接続
し、3の出力はQ3のゲート電極に接続する。
Figure 3 shows an embodiment of the present invention, where Q 1 and Q 3 are P-channel IGFETs, Q 2 and Q 4 are N-channel IGFETs, Rf is a feedback resistor R 2 , and R 3 is a current limiting resistor. , R1 is a resistor, C D is a temperature compensation capacitor, C G is a frequency adjustment capacitor, Q Z is a crystal oscillator, 3 is an inverter, and A is a control input terminal. The source electrode of P-channel IGFET Q 1 is connected to the ground potential GND (V DD ), and the drain electrode of Q 1 is connected to one end of resistor R 2 and the P-channel IGFET.
Connect to the source electrode of Q 3 , and connect the drain electrode of Q 3 to
The other end of R2 , one end of the feedback resistor Rf, and the output terminal O
and one end of resistor R 1 and N-channel IGFET Q 2
Connect to the drain electrode of Q 2 source electrode
Connect the substrate electrode of Q 2 and one end of resistor R 3 to the drain electrode of N-channel IGFET Q 4 , connect the source electrode of Q 4 to the substrate electrode of Q 2 and the other end of R 3 , and connect it to the power supply terminal V SS. Connecting. Connect the other end of R1 to one end of the temperature compensation capacitor C D and the crystal oscillator Q Z
The other end of Q Z is connected to one end of the frequency adjustment capacitor C G , the other end of Rf, the gate electrode of Q 1 and the gate electrode of Q 2 , and the other end of C D and the other end of C
The other end of G is connected to the ground electrode, and the control input terminal A is
The gate electrode of Q 4 is connected to the input of inverter 3, and the output of 3 is connected to the gate electrode of Q 3 .

第4図は第3図の制御入力端子に接続する一具
体例であり、Iは分周回路の入力端子、4,5は
インバーター、6,7,8,9,10,11,1
2,13,14,15,16,17,18,1
9,20はφ入力が“1”から“0”になる時に
出力信号Qが反転するバイナリーフリツプフロツ
プ(またはトリガーフリツプフロツプ)であり、
21,22はリセツト入力信号端子付バイナリー
フリツプフロツプであり、23,24はNANDゲ
ート、R4は抵抗、C1はコンデンサーであり、B
は第3図のAに接続する制御信号出力端子であ
る。分周回路の入力端子Iは第3図のOに接続
し、インバーター4の入力に接続し、4の出力は
インバーター5の入力と6の入力に接続し、5
の出力は6のφ入力に接続する。6のQ出力は7
のφ入力に6の出力は7の入力に接続する。
以下同様に7から8,8から9,9から10,1
0から11,11から12,12から13,13
から14,14から15,15から16,16か
ら17,17から18,18から19,19から
20,20から21,21から22に接続する。
また抵抗R4の一端C端子はNANDゲート24の入
力とコンデンサーC1の一端とリセツト入力付バ
イナリーフリツプフロツプのリセツト入力端子
〓〓〓〓
に接続し24の出力端子はB端子とNANDゲート
23の入力に接続し、23の出力は24の入力に
接続し、22の出力は23の入力に接続する。
制御信号出力Bは第3図のA端子に接続する。
FIG. 4 shows a specific example of connection to the control input terminals in FIG. 3, where I is the input terminal of the frequency dividing circuit, 4 and 5 are inverters, and
2, 13, 14, 15, 16, 17, 18, 1
9 and 20 are binary flip-flops (or trigger flip-flops) in which the output signal Q is inverted when the φ input changes from "1" to "0";
21 and 22 are binary flip-flops with reset input signal terminals, 23 and 24 are NAND gates, R4 is a resistor, C1 is a capacitor, and B
is a control signal output terminal connected to A in FIG. The input terminal I of the frequency divider circuit is connected to O in FIG.
The output of is connected to the φ input of 6. Q output of 6 is 7
The output of 6 is connected to the input of 7.
Similarly from 7 to 8, 8 to 9, 9 to 10, 1
0 to 11, 11 to 12, 12 to 13, 13
Connect from 14, 14 to 15, 15 to 16, 16 to 17, 17 to 18, 18 to 19, 19 to 20, 20 to 21, 21 to 22.
Also, one end C terminal of resistor R4 is the input of NAND gate 24, one end of capacitor C1 , and the reset input terminal of the binary flip-flop with reset input.
The output terminal of 24 is connected to the B terminal and the input of NAND gate 23, the output of 23 is connected to the input of 24, and the output of 22 is connected to the input of 23.
Control signal output B is connected to terminal A in FIG.

第3図において制御入力端子Aのレベルが
GND(VDD)レベルつまり“1”レベルの時は
NチヤンネルIGFET Q4はONする。また3の出
力レベルはVSSレベルつまり“L”レベルとなり
PチヤンネルIGFET Q3はONする。R2に対して
Q3のON抵抗を充分小さくし、R3に対してQ4
ON抵抗を充分小さくするようにQ3のゲート巾/
ゲート長及びQ4のゲート巾/ゲート長を設定す
ることによりQ1とQ2に流れる電流はR2にはほと
んど流れずQ3に流れ、R3にもほとんど流れずR4
に流れる。またQ3とQ4のゲート巾/ゲート長を
Q1とQ4のそれに対し非常に大きくとつておくこ
とによりQ3のドレイン−ソース間、Q4のドレイ
ン―ソース間にはほとんど電圧降下を生じない。
つまりQ3はR2に対し電流をバイパスし、Q4はR3
に対し電流をバイパスするので、抵抗R2及びR3
の存在を無視することができる。したがつて出力
端子Oから見た増幅器の出力インピーダンスは
Q3とQ4が無い場合に比較して小さくなり発振を
開始する電圧はバイパス用IGFET Q3とQ4が無
く、抵抗が電源端子間にIGFETと直列に接続さ
れている第2図のような従来の水晶発振回路の発
振開始電圧よりも低くなり、その分だけPチヤン
ネルIGFETのスレツシユホールド電圧VTpとN
チヤンネルIGFETのスレツシユホールド電圧VT
を大きくすることができ、許容されるVTpの最
大値とVTNの最大値がそれぞれ大きくなるので、
TpとVTNの製造によるバラツキをその分だけ大
きくすることができ歩留りの向上になり、低コス
トのLSIを供給することができる。また、製造の
バラツキは従来と同じにした場合は、VTp,VTN
の中心値及び最小値をそれぞれ大きくすることが
できる。また制御入力端子AがGND(VDD)レ
ベルつまり“L”レベルの時はNチヤンネル
IGFET Q4はCFFし、3の出力は“H”レベル
となり、PチヤンネルIGFETもOFFする。また
発振開始電圧VSTと発振維持電圧最小値VHOL
の電圧差は0.15Vあり、VSTHOLD+0.15の関
係がある。よつて一端発振を開始したことを確認
したあとはA端子を“L”レベルにすることによ
り、Q3,Q4は共にOFFになり、Q1Q2が共にON
している時に流れる慣通電流は抵抗R2及びR3
制限されるので抵抗R2,R3がない場合に比較し
てむだになる慣通電流は少なくなり、VTp,VTN
のバラツキに対しても慣通電流のバラツキは小さ
く、電源電圧の変動に対しても慣通電流の変動は
少ない。したがつて低消費電力の水晶発振回路を
提供することができる。
In Figure 3, the level of control input terminal A is
When the GND (V DD ) level is "1" level, the N-channel IGFET Q 4 is turned on. Further, the output level of 3 becomes the V SS level, that is, the "L" level, and the P channel IGFET Q 3 is turned on. for R 2
Make Q 3 's ON resistance sufficiently small, and set Q 4 's resistance to R 3 .
Q3 gate width/
By setting the gate length and the gate width/gate length of Q 4 , the current flowing through Q 1 and Q 2 will flow to Q 3 with almost no current flowing to R 2 , and almost no current will flow to R 3 and will flow to R 4 .
flows to Also, the gate width/gate length of Q 3 and Q 4
By setting the voltage to be much larger than that of Q 1 and Q 4 , almost no voltage drop occurs between the drain and source of Q 3 and between the drain and source of Q 4 .
So Q 3 bypasses the current to R 2 and Q 4 bypasses R 3
resistors R 2 and R 3 to bypass the current for
The existence of can be ignored. Therefore, the output impedance of the amplifier seen from the output terminal O is
The voltage at which oscillation starts is smaller than when Q 3 and Q 4 are not present, and the voltage at which oscillation starts is lower than that in the case where there are no bypass IGFETs Q 3 and Q 4 , and a resistor is connected in series with the IGFET between the power supply terminals, as shown in Figure 2. The threshold voltage V Tp and N of the P channel IGFET are lower than the oscillation start voltage of a conventional crystal oscillator circuit, and the threshold voltage V Tp and N of the P channel IGFET are lower by that amount.
Channel IGFET threshold voltage V T
Since N can be increased, the maximum allowable value of V Tp and the maximum value of V TN will become larger.
The manufacturing variations in V Tp and V TN can be increased by that much, yield is improved, and low-cost LSIs can be supplied. Also, if the manufacturing variations are the same as before, V Tp , V TN
The center value and minimum value of can be increased. Also, when the control input terminal A is at the GND (V DD ) level, that is, the “L” level, the N channel
IGFET Q 4 is CFFed, the output of Q 3 becomes “H” level, and the P channel IGFET is also turned OFF. Further, the voltage difference between the oscillation start voltage V ST and the oscillation sustaining voltage minimum value V HOL is 0.15 V, and there is a relationship of V ST V HOLD +0.15. After confirming that oscillation has started, by setting the A terminal to "L" level, both Q 3 and Q 4 are turned OFF, and both Q 1 and Q 2 are turned ON.
Since the current that flows when the resistors R 2 and R 3 are in the
The variation in the running current is small even with variations in the current, and the variation in the running current is small even with variations in the power supply voltage. Therefore, a crystal oscillation circuit with low power consumption can be provided.

第5図は第3図、第4図の各部の波形と消費電
力を示すものであり、aはVSSの電位、bはR4
とC1との接続点C点の電位、cは21の出力の
Qの波形、dは22の出力のの波形、eはB端
子すなわちA端子の波形fは発振回路の出力端子
OとIの波形gは発振回路での消費電力を表わす
図である。
Figure 5 shows the waveforms and power consumption of each part in Figures 3 and 4, where a is the potential of V SS and b is R 4
and C 1 , c is the waveform of the Q output of 21, d is the waveform of the output of 22, e is the waveform of the B terminal, that is, the A terminal, and f is the output terminal O and I of the oscillation circuit. The waveform g is a diagram representing the power consumption in the oscillation circuit.

最初VSS電源を投入すると、C点の波形はコン
デンサーC1の作用により第5図のbに示すよう
に一端VSSレベルつまり“L”レベルまで下がる
がR4を通してC点に充電された電荷が放電され
C1R4の時定数でGNDレベルつまり“H”レベル
になろうとする。C点が“L”レベルの時に
NAND24の出力Bは“H”レベルになり、リセ
ツト入力付フリツプフロツプ21,22のQ出力
はリセツト入力が“L”レベルの時にリセツトさ
れる、つまりQ出力は“L”レベルとなり出力
は“H”レベルとなるので、この時に21のQ出
力は“L”レベル22の出力は“H”レベルと
なりNAND23の出力は“L”レベルとなり
NAND24の出力はC点が“H”レベルとなつて
も“H”レベルが保持される。従つて制御入力端
子AはB端子と接続されているのでQ4はON、3
の出力は“L”レベルの出力となりQ3はONす
る。よつてQ4は抵抗R3をQ3は抵抗R2をバイパス
する役割をするので発振開始電圧は下がり、その
分だけ低い電源電圧で発振する。またこの時は電
流制限用抵抗R2,R3をバイパスして慣流電流が
流れるので第5図のgのTONの期間に示すように
消費電力は大きくなる。しかし一端発振を開始す
ると、発振出力Oが分周回路の入力端子Iに接続
されパイナリ―フリツプフロツプ6から20まで
とリセツト入力端子付バイナリ―フリツプフロツ
プ21,22で分周され、水晶発振子が
32.768KHzの共振周波数のものを使用すると6か
ら21まで16段バイナリ―フリツプフロツプがある
〓〓〓〓
ので21のQ出力は32768×2-16=1/2Hzの周波数と
なる。また22の出力は1/4Hzの周波数となる。
したがつて発振が開始されてから2秒後に22の
出力が“H”レベルから“L”レベルとなるので
NAND23の出力は“H”レベルとなり、この時
はC点の電位も既に“H”レベルとなるよう
C1R4の時定数を設定しておくことによりNAND
24の出力B端子は“L”レベルとなり、つまり
A端子も“L”レベルとなりNチヤンネル
IGFET Q4はOFFし、インバーター3の出力は
“H”レベルとなりPチヤンネルIGFET Q3
OFFしするので電流増幅回路に流れる慣通電流
は電流制限抵抗R2とR3で制限された小さな値の
電流となりQ1からR2,R2からQ2,Q2からR3へと
流れる。その結果発振回路での消費電力は慣通電
流がかなり小さくなるので第5図のgのTOFF
期間に示すように消費電力は小さくなり、このま
ま発振が接続される。この時の発振維持電圧VHO
LDは電流制限用抵抗をバイパスした時の発振開始
電圧より低いから、発振が持続される。
When the V SS power is first turned on, the waveform at point C drops to the V SS level, that is, the "L" level, as shown in Figure 5b, due to the action of the capacitor C1 , but the charge accumulated at point C through R4 is discharged
It attempts to reach the GND level, that is, the "H" level, with a time constant of C 1 R 4 . When point C is at “L” level
The output B of the NAND 24 goes to the "H" level, and the Q outputs of the flip-flops 21 and 22 with reset inputs are reset when the reset input is at the "L" level, that is, the Q output goes to the "L" level and the output goes to "H". At this time, the Q output of 21 becomes "L" level, the output of 22 becomes "H" level, and the output of NAND 23 becomes "L" level.
The output of the NAND 24 remains at the "H" level even if the point C becomes the "H" level. Therefore, since control input terminal A is connected to B terminal, Q 4 is ON, 3
The output becomes "L" level and Q3 turns ON. Therefore, Q4 serves to bypass resistor R3 , and Q3 serves to bypass resistor R2 , so the oscillation start voltage is lowered, and oscillation occurs at a correspondingly lower power supply voltage. Also, at this time, the current current flows bypassing the current limiting resistors R 2 and R 3 , so the power consumption increases as shown in the T ON period g in FIG. 5. However, once oscillation starts, the oscillation output O is connected to the input terminal I of the frequency divider circuit, and the frequency is divided by the binary flip-flops 6 to 20 and the binary flip-flops 21 and 22 with reset input terminals, and the crystal oscillator is
If you use one with a resonant frequency of 32.768KHz, there are 16 stages of binary flip-flops from 6 to 21〓〓〓〓
Therefore, the Q output of 21 has a frequency of 32768 x 2 -16 = 1/2Hz. Also, the output of 22 has a frequency of 1/4Hz.
Therefore, 2 seconds after oscillation starts, the output of 22 changes from "H" level to "L" level.
The output of NAND23 becomes "H" level, and at this time, the potential at point C is already at "H" level.
By setting the time constant of C 1 R 4 , NAND
The output B terminal of 24 becomes "L" level, that is, the A terminal also becomes "L" level, and the N channel
IGFET Q 4 turns OFF, and the output of inverter 3 becomes “H” level, and P channel IGFET Q 3 also turns OFF.
Since it is turned OFF, the normal current flowing in the current amplifier circuit becomes a small current limited by current limiting resistors R 2 and R 3 , and flows from Q 1 to R 2 , from R 2 to Q 2 , and from Q 2 to R 3 . . As a result, the power consumption in the oscillator circuit becomes considerably smaller due to the constant current, so the power consumption becomes smaller as shown in the T OFF period of g in FIG. 5, and the oscillation continues as it is. Oscillation sustaining voltage V HO at this time
Since the LD has a lower oscillation start voltage when the current limiting resistor is bypassed, oscillation is sustained.

このように本発明の水晶発振回路により、発振
開始電圧を低くすることができ、しかも低消費電
力な腕時計用LSIを製造することができる。また
クロツクゲートを使用してIGFETの時計用のよ
うな長い時間の保持特性が要求されるLSIに対し
ては、IGFETのテーリング領域を避けるためな
るべくVTを高くする方がよい。
As described above, by using the crystal oscillation circuit of the present invention, it is possible to lower the oscillation start voltage and to manufacture an LSI for a wristwatch with low power consumption. Furthermore, for LSIs that require long-time retention characteristics such as IGFET clocks that use a clock gate, it is better to make V T as high as possible to avoid the tailing region of the IGFET.

従来の第2図のような水晶発振回路では電流制
限用抵抗によるバツクゲート効果による発振開始
電圧の上昇と電流制限用抵抗を発振開始時にバイ
パスするようになつていないので発振開始電圧が
高くなるが、本発明ではこのようなことはない。
したがつて従来の水晶発振回路での|VTp|とV
TNの和より本発明の水晶発振回路の|VTp|とV
TNの和が大きくできるので|VTp|とVTNの上限
を上げることができ、ダイナミツクで動作するク
ロツクゲートの論理回路を有し、保持時間を要求
される保持に対して厳しいLSIに対して非常に有
効である。
In the conventional crystal oscillator circuit as shown in Fig. 2, the oscillation start voltage increases due to the backgate effect caused by the current limiting resistor, and the oscillation starting voltage increases because the current limiting resistor is not bypassed at the start of oscillation. This does not happen with the present invention.
Therefore, |V Tp | and V in the conventional crystal oscillator circuit
|V Tp | and V of the crystal oscillator circuit of the present invention from the sum of TN
Since the sum of TN can be increased, the upper limit of |V Tp | and V TN can be raised, and it has a clock gate logic circuit that operates dynamically, making it extremely suitable for LSIs that have strict retention requirements and require a retention time. It is effective for

また第3図に示した従来例の電流制限抵抗R2
に対しバイパス用のPチヤンネル型IGFETQ3
並列に接続し、電流制限抵抗R3に対しバイパス
用のNチヤンネルIGFETQ4を並列に接続しても
第3図で示した一実施例と同様な動作をさせるこ
とができる。また第4図の制御回路に対し、腕時
計のスイツチを第3図のA端子に接続し、A端子
とVSS電源との間に抵抗性素子を接続し、スイツ
チがONした時はGND(VDD)に接続し、スイツ
チが通常OFF状態になるようにしてOFFの時は
SSの電位になるので、発振開始時にスイツチを
ONし、発振して表示が所定の表示をするとスイ
ツチをOFFする動作をすることにより発振開始
電圧が低くて、低消費電力の腕時計用LSIを提供
することができる。またスレツシユホールド電圧
を上げることができ、製造プロセスのスレツシユ
ホールド電圧の上限を高くすることができるので
歩留りのよいLSIを製造することができる。
In addition, the current limiting resistor R 2 of the conventional example shown in Fig. 3
Even if a P-channel type IGFETQ 3 for bypass is connected in parallel to the current limiting resistor R 3 , and an N-channel IGFETQ 4 for bypass is connected in parallel to the current limiting resistor R 3, the same operation as in the embodiment shown in Fig. 3 will occur. can be made to In addition, for the control circuit shown in Fig. 4, a wristwatch switch is connected to the A terminal shown in Fig. 3, a resistive element is connected between the A terminal and the V SS power supply, and when the switch is turned on, the GND (V DD ) so that the switch is normally in the OFF state, and when it is OFF, the potential is V SS , so when the oscillation starts, the switch is connected to
By turning on the switch, oscillating, and turning off the switch when the display shows a predetermined display, it is possible to provide an LSI for wristwatches with a low oscillation start voltage and low power consumption. Furthermore, since the threshold voltage can be increased and the upper limit of the threshold voltage of the manufacturing process can be increased, LSIs with high yield can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水晶発振回路の一例を示す図、
第2図は従来の他の水晶発振回路の一例を示す
図、第3図は本発明の一実施例を示す図、第4図
は第3図に用いる制御回路の具体例を示す図、第
5図は第3図及び第4図の各部の波形と消費電力
を示す図。 図において、Q1,Q3はPチヤンネルIGFET、
Q2,Q4はNチヤンネルIGFET、R1〜R3,Rfは抵
抗、QZは水晶振動子、CD,CGはコンデンサを
それぞれ示す。 〓〓〓〓
Figure 1 is a diagram showing an example of a conventional crystal oscillation circuit.
2 is a diagram showing an example of another conventional crystal oscillation circuit, FIG. 3 is a diagram showing an embodiment of the present invention, FIG. 4 is a diagram showing a specific example of the control circuit used in FIG. FIG. 5 is a diagram showing waveforms and power consumption of each part in FIGS. 3 and 4. In the figure, Q 1 and Q 3 are P channel IGFETs,
Q 2 and Q 4 are N-channel IGFETs, R 1 to R 3 and Rf are resistors, Q Z is a crystal resonator, and C D and CG are capacitors. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 相補型トランジスタで構成された増幅回路
と、該増幅回路の出力端に接続された帰還回路と
を含む水晶発振回路において、電源の一端に第1
の抵抗を介して一導電型の第1のトランジスタの
一端を接続し、該第1のトランジスタの他端を出
力端に接続し、該出力端に第2の抵抗を介して逆
導電型の第2のトランジスタの一端を接続し、該
第2のトランジスタの他端を電源の他端に接続
し、前記第1の抵抗と並列に一導電型の第3のト
ランジスタを接続し、前記第2の抵抗と並列に逆
導電型の第4のトランジスタを接続し、前記第3
および第4のトランジスタを発振開始時に夫々真
補の信号で制御することにより同時にオンするこ
とを特徴とする水晶発振回路。
1. In a crystal oscillator circuit including an amplifier circuit composed of complementary transistors and a feedback circuit connected to the output terminal of the amplifier circuit, a first
One end of a first transistor of one conductivity type is connected through a resistor, the other end of the first transistor is connected to an output end, and a second transistor of an opposite conductivity type is connected to the output end through a second resistor. one end of the second transistor is connected, the other end of the second transistor is connected to the other end of the power supply, a third transistor of one conductivity type is connected in parallel with the first resistor, and the second transistor A fourth transistor of a reverse conductivity type is connected in parallel with the resistor, and the third transistor is connected in parallel with the resistor.
A crystal oscillation circuit characterized in that the fourth transistor and the fourth transistor are turned on at the same time by controlling each with a true complement signal at the time of starting oscillation.
JP3126977A 1977-03-22 1977-03-22 Crystal oscillator circuit Granted JPS53116763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3126977A JPS53116763A (en) 1977-03-22 1977-03-22 Crystal oscillator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3126977A JPS53116763A (en) 1977-03-22 1977-03-22 Crystal oscillator circuit

Publications (2)

Publication Number Publication Date
JPS53116763A JPS53116763A (en) 1978-10-12
JPS6227565B2 true JPS6227565B2 (en) 1987-06-16

Family

ID=12326606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3126977A Granted JPS53116763A (en) 1977-03-22 1977-03-22 Crystal oscillator circuit

Country Status (1)

Country Link
JP (1) JPS53116763A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956618A (en) * 1989-04-07 1990-09-11 Vlsi Technology, Inc. Start-up circuit for low power MOS crystal oscillator

Also Published As

Publication number Publication date
JPS53116763A (en) 1978-10-12

Similar Documents

Publication Publication Date Title
US5600280A (en) Differential amplifier and variable delay stage for use in a voltage controlled oscillator
US3958187A (en) Clock signal generating device with complementary mos transistors
US4196404A (en) Crystal oscillator having low power consumption
KR100835130B1 (en) Oscillator circuit
JP3270880B2 (en) Crystal oscillation circuit
JPS6367822A (en) Oscillator
JPS6259924B2 (en)
US3959744A (en) CMOS oscillator having bias circuit outside oscillator feedback loop
JPH01161906A (en) Oscillation circuit
US4218661A (en) C-MOS crystal oscillator including circuit for temporarily increasing closed loop gain
JP3201339B2 (en) Oscillation circuit
JPH0254698B2 (en)
JPH06177719A (en) Clock generating circuit
JP3308393B2 (en) Voltage controlled oscillator
JPS6227565B2 (en)
GB2084421A (en) Oscillator Circuit With Low Current Consumption
JP6385176B2 (en) Analog electronic clock
US20090219103A1 (en) Oscillator Arrangement and Method for Operating an Oscillating Crystal
JPH0629743A (en) Oscillating circuit
JP3259528B2 (en) Crystal oscillation circuit
JP3635519B2 (en) Oscillator circuit
JPS6036644B2 (en) oscillation circuit
JP3255581B2 (en) Oscillator circuit
JPS6034847B2 (en) crystal oscillation circuit
JPH02113606A (en) Oscillating circuit