JPS6142854B2 - - Google Patents

Info

Publication number
JPS6142854B2
JPS6142854B2 JP16315778A JP16315778A JPS6142854B2 JP S6142854 B2 JPS6142854 B2 JP S6142854B2 JP 16315778 A JP16315778 A JP 16315778A JP 16315778 A JP16315778 A JP 16315778A JP S6142854 B2 JPS6142854 B2 JP S6142854B2
Authority
JP
Japan
Prior art keywords
layer
amorphous layer
single crystal
amorphous
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16315778A
Other languages
Japanese (ja)
Other versions
JPS5587429A (en
Inventor
Shigeru Tatsuta
Teruo Sakurai
Toshio Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16315778A priority Critical patent/JPS5587429A/en
Publication of JPS5587429A publication Critical patent/JPS5587429A/en
Publication of JPS6142854B2 publication Critical patent/JPS6142854B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明はキヤリアのライフタイムを制御した
PN接合を有する半導体装置の製造方法に関す
る。
[Detailed Description of the Invention] The present invention controls the carrier lifetime.
The present invention relates to a method of manufacturing a semiconductor device having a PN junction.

PN接合を形成した半導体装置において蓄積電
荷時間を短くするために従来プロトン注入や金拡
散等により半導体装置内に少数キヤリアの再結合
中心となるライフタイム・キラーを導入すること
がいろいろ行なわれている。
In order to shorten the charge accumulation time in semiconductor devices with PN junctions formed, various methods have been used to introduce lifetime killers, which act as recombination centers for minority carriers, into semiconductor devices by proton injection, gold diffusion, etc. .

このようなプロトン注入法や金拡散等による再
結合中心となるライフタイム・キラーの導入は非
常に制御性の悪い問題がある。
The introduction of a lifetime killer, which serves as a recombination center, by proton injection, gold diffusion, etc. has the problem of extremely poor controllability.

例えば、金拡散法の場合金拡散のための加熱処
理は、シリコン基板の厚さを堪案したうえで温度
及び時間を設定しなければならず、また金拡散を
行なう前のシリコン基板中に内在された結晶欠陥
に金が集中あるいは偏析するため、金の濃度分布
を制御することは技術的に非常に難かしい。
For example, in the case of the gold diffusion method, the heat treatment for gold diffusion requires setting the temperature and time with careful consideration of the thickness of the silicon substrate. It is technically very difficult to control the gold concentration distribution because gold is concentrated or segregated in the crystal defects that have formed.

一方、プロトン注入法の場合、プロトン注入に
より形成される再結晶中心となる結晶欠陥は500
℃から600℃程度の低温加熱処理で、容易に消滅
する傾向があるため、500℃以上の加熱処を行な
う製造工程をプロトン注入後の半導体装置の工程
に用いることができない問題がある。
On the other hand, in the case of the proton injection method, the number of crystal defects that become recrystallization centers formed by proton injection is 500.
Since it tends to be easily destroyed by heat treatment at a low temperature of about 600 °C to 600 °C, there is a problem that a manufacturing process that involves heat treatment at 500 °C or higher cannot be used in the process of semiconductor devices after proton implantation.

本発明は、再結合中心となる加熱処理によつて
も安定な結晶欠陥層を再現性よく所定の位置に精
度よく形成し、上記の問題点を解決する新規な
PN接合を有する半導体装置の製造方法を提供す
るもので、シリコン基板上の一導型単結晶層にイ
オン注入法より所定量のシリコンイオンを注入し
て所定の厚さの非晶質層を形成し、次いで所定量
の逆導電型不純物イオンを前記シリコンイオンよ
り浅く注入して前記非晶質層表面に不純物注入領
域を形成した後、450℃乃至600℃の温度で加熱処
理を行ない前記非晶質層と前記不純物注入領域と
でなすPN接合を含む非晶質層表面を再結晶化す
ると共に、前記非晶質層と前記単結晶層との界面
付近に結晶格子欠陥層を形成することを特徴とす
る。
The present invention is a novel method that solves the above problems by accurately forming a stable crystal defect layer at a predetermined position with good reproducibility even through heat treatment, which is the center of recombination.
This provides a method for manufacturing a semiconductor device having a PN junction, in which a predetermined amount of silicon ions are implanted into a single-conductivity single crystal layer on a silicon substrate using an ion implantation method to form an amorphous layer with a predetermined thickness. Then, after implanting a predetermined amount of impurity ions of the opposite conductivity type to a shallower depth than the silicon ions to form an impurity implanted region on the surface of the amorphous layer, heat treatment is performed at a temperature of 450°C to 600°C to form the amorphous layer. Recrystallizing the surface of the amorphous layer including the PN junction formed between the crystalline layer and the impurity implanted region, and forming a crystal lattice defect layer near the interface between the amorphous layer and the single crystal layer. Features.

次に本発明をその実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図乃至第4図は、スイツチング・ダイオー
ド用シリコン基板の一部製造工程を示す。
1 to 4 show a part of the manufacturing process of a silicon substrate for a switching diode.

第1図はn+型キヤリア濃度1015cm-3のシリコン
基板1に厚さ10μ程度のn型キヤリア濃度1020cm
-3のエピタキシル層3が形成されたシリコン単結
晶基板を示す。
Figure 1 shows a silicon substrate 1 with an n + type carrier concentration of 10 15 cm -3 and an n type carrier concentration of 10 20 cm with a thickness of about 10 μ.
3 shows a silicon single crystal substrate on which an epitaxial layer 3 of -3 is formed.

このような単結晶基板表面に、イオン注入法に
より150KeVの注入エネルギーでドーズ量5×
1015cm-3のシリコン(Si+)を注入し、第2図に示
す如く、非晶質層3を形成する。続いて、イオン
注入法により45KeVの注入エネルギーでドーズ量
1×1015cm-2のフツ化硼素イオン(BF2 +)を第3
図に示す如く前記非晶質層表面に注入し、不純物
注入領域4を形成する。
A dose of 5× is applied to the surface of such a single crystal substrate using an ion implantation method with an implantation energy of 150KeV.
10 15 cm -3 of silicon (Si + ) is implanted to form an amorphous layer 3 as shown in FIG. Next, boron fluoride ions (BF 2 + ) were implanted at a dose of 1×10 15 cm -2 using a third implantation method with an implantation energy of 45 KeV.
As shown in the figure, impurity is implanted into the surface of the amorphous layer to form an impurity implanted region 4.

次に550℃の窒素雰囲気中で100分間熱処理を行
なうと、第4図に示す如く前記非晶質層3が基板
表面より再結晶化されて単結晶層2′が形成さ
れ、非晶質層3の底部、つまりn型エピタキシヤ
ル層2との界面部分のみ非晶質状態のまま残留す
る。この非晶質状態のまま残つた部分が結晶格子
欠陥層5となる。この加熱処理で、非晶層3の表
面の不純物注入領域4も再結晶化されて単結晶層
4′となる。
Next, when heat treatment is performed for 100 minutes in a nitrogen atmosphere at 550°C, the amorphous layer 3 is recrystallized from the substrate surface to form a single crystal layer 2', as shown in FIG. Only the bottom of the layer 3, that is, the interface with the n-type epitaxial layer 2 remains in an amorphous state. The portion remaining in this amorphous state becomes the crystal lattice defect layer 5. By this heat treatment, the impurity implanted region 4 on the surface of the amorphous layer 3 is also recrystallized to become a single crystal layer 4'.

第5図及び第6図はSi+及びBF2 +注入により形
成された非晶質層が加熱処理により再結晶化され
る過程をヘリウムイオンの後方散乱法により調べ
た結果を示すもので、横軸はチヤンネル数、すな
わち基板表面からの深さ〔Å〕を、縦軸はチヤン
ネル当りのカウント数を示す。第5図において、
51はSi+及びBF2 +注入直後を、52はSi+及びBF2 +
注入後550℃の窒素雰囲気中で10分間加熱詞理後
を、53は前記550℃の加熱処理を100分間行なつ
た後を調べた結果である。
Figures 5 and 6 show the results of investigating the process by which an amorphous layer formed by Si + and BF 2 + implantation is recrystallized by heat treatment using the helium ion backscattering method. The axis shows the number of channels, that is, the depth [Å] from the substrate surface, and the vertical axis shows the number of counts per channel. In Figure 5,
51 is immediately after Si + and BF 2 + implantation, 52 is Si + and BF 2 +
53 shows the results after heating in a nitrogen atmosphere at 550° C. for 10 minutes after injection, and after heating at 550° C. for 100 minutes.

第5図の51のような結晶表面から約230Åの
厚さまで形成された非晶質層が、加熱処理によつ
て次第に再結晶化される52のようになり、さら
に加熱されると53のように図中のピークDが顕
著となり残留欠陥層が、非晶質層と単結晶基板と
の界面付近すなわち基板表より2300Åの深さ付近
に形成される。図中のピークDが顕著となり残留
欠陥層が、非晶質層と単結晶基板との界面付近す
なわち基板表面より2300Åの深さ付近に形成され
る。
The amorphous layer formed from the crystal surface to a thickness of about 230 Å, as shown at 51 in Figure 5, gradually recrystallizes as shown in 52 through heat treatment, and when heated further, becomes as shown in 53. The peak D in the figure becomes noticeable, and a residual defect layer is formed near the interface between the amorphous layer and the single crystal substrate, that is, at a depth of about 2300 Å from the substrate surface. The peak D in the figure becomes prominent, and a residual defect layer is formed near the interface between the amorphous layer and the single crystal substrate, that is, at a depth of about 2300 Å from the substrate surface.

第6図において、61は第5図における53と
同一試料を62はイオン注入前のシリコン基板を
調べた結果を示すもので、基板表面より約2300Å
の深さ付近まで、61及び62が重なつているこ
とからイオン注入により形成された非晶質層は注
入前のシリコン基板と同様の結晶性を回復したこ
とを示している。
In FIG. 6, 61 is the same sample as 53 in FIG. 5, and 62 is the result of examining a silicon substrate before ion implantation, about 2300 Å from the substrate surface.
The fact that 61 and 62 overlap to a depth near , indicates that the amorphous layer formed by ion implantation has recovered the same crystallinity as the silicon substrate before implantation.

尚、再結晶化のための加熱処理温度450℃以下
とした場合には再結晶化速度が遅くて実用的でな
い。又、600℃以上の温度で再結晶化処理を行な
つた場合、P+不純物である硼素が再拡散され
て、PN接合位置が変わるため望ましくない。
It should be noted that if the heat treatment temperature for recrystallization is set to 450° C. or lower, the recrystallization rate is too slow to be practical. Furthermore, if the recrystallization treatment is performed at a temperature of 600° C. or higher, boron, which is a P + impurity, will be re-diffused and the PN junction position will change, which is not desirable.

次に、再結晶化処理後の基板表面より順次深さ
方向に基板をエツチング除去して、熱起電力測定
によるPN判定を行ないPN接合部の深さを測定し
た結果、PN接合は基板表面より1900Åの深に形
成されていた。これは、BF2 +注入の際に設定し
たPN接合の位置と一致していた。
Next, the substrate was etched away in the depth direction from the substrate surface after recrystallization treatment, and the PN judgment was performed by thermoelectromotive force measurement to measure the depth of the PN junction. As a result, the PN junction was found to be deeper than the substrate surface. It was formed at a depth of 1900 Å. This was consistent with the position of the PN junction established during BF 2 + injection.

このようにして形成されたPN接合を有するシ
リコン基板を用いて、通常のスイツチング・ダイ
オード形成工程により形成されたスイツチング・
ダイオードのスイツチングスピードは、従来と同
様のスイツチングスピードが得られた。
Using a silicon substrate having a PN junction formed in this way, a switching diode is formed by a normal switching diode forming process.
The switching speed of the diode was the same as the conventional one.

また、従来の金拡散法によれば、スイツチング
スピードが同一の製造工程をへても各半導体基板
により早いもので5μsec、遅いもので約100μ
secと非常にバラツキが大きいのに対して、本発
明によれば、20%程度の誤差で10μsecのスイツ
チングスピードのダイオードが再現性よく形成さ
れてた。
In addition, according to the conventional gold diffusion method, the switching speed varies from 5 μsec for each semiconductor substrate to approximately 100 μsec for a slow one even though the same manufacturing process is performed.
sec, but according to the present invention, a diode with a switching speed of 10 μsec was formed with good reproducibility with an error of about 20%.

以上のように本発明によれば、シリコンイオン
所定の注入エネルギー及び注入量で注入すること
により制御性よく所定の厚さの非晶質層を単結晶
表面に形成することができ、次の加熱処理工程で
再結晶化され且つ、前記非晶質層と単結晶層の界
面付近に結晶欠陥領域が形成されることから再結
合中心とする結晶欠陥層を所定の位置に再現性よ
く形成されると共に、P型不純物の注入により、
所定の位置にPN接合を形成でき、再現性よく所
定の特性を有する半導体装置を形成することがで
きる利点がある。
As described above, according to the present invention, an amorphous layer of a predetermined thickness can be formed on a single crystal surface with good controllability by implanting silicon ions at a predetermined implantation energy and implantation amount. Since it is recrystallized in the treatment process and a crystal defect region is formed near the interface between the amorphous layer and the single crystal layer, a crystal defect layer centered on recombination is formed at a predetermined position with good reproducibility. At the same time, by implanting P-type impurities,
There is an advantage that a PN junction can be formed at a predetermined position and a semiconductor device having predetermined characteristics can be formed with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、本発明による一部製造工
程を説明する図、第5図、第6図は、ヘリウムイ
オンの後方散乱実験によるエネルギースペクトル
で、基板の結晶性を示す図である。 1……シリコン単結晶基板、2……一導電型エ
ピタキシヤル単結晶層、3……非晶質層、4……
逆導電型不純物層、5……結晶欠陥層。
Figures 1 to 4 are diagrams explaining some of the manufacturing steps according to the present invention, and Figures 5 and 6 are energy spectra obtained by backscattering experiments of helium ions, showing the crystallinity of the substrate. . DESCRIPTION OF SYMBOLS 1...Silicon single crystal substrate, 2...Epitaxial single crystal layer of one conductivity type, 3...Amorphous layer, 4...
Opposite conductivity type impurity layer, 5...crystal defect layer.

Claims (1)

【特許請求の範囲】 1 シリコン基板上の一導電型単結晶層にイオン
注入法により所定量のシリコンイオンを注入して
所定の厚さの非晶質層を形成し、 次いで、所定量の逆導電型不純物イオンを前記
シリコンイオンより浅く注入して前記非晶質層表
面に不純物注入領域を形成した後、 450℃乃至600℃の温度で加熱処理を行ない前記
非晶質層と前記不純物注入領域とでなすPN接合
を含む非晶質層表面を再結晶化すると共に、前記
非晶質層と前記単結晶層との界面付近に結晶格子
欠陥層を形成することを特徴とする半導体装置の
製造方法。
[Claims] 1. A predetermined amount of silicon ions are implanted into a single conductivity type single crystal layer on a silicon substrate by an ion implantation method to form an amorphous layer with a predetermined thickness, and then a predetermined amount of inverse After implanting conductive type impurity ions to a shallower depth than the silicon ions to form an impurity implanted region on the surface of the amorphous layer, heat treatment is performed at a temperature of 450° C. to 600° C. to form the amorphous layer and the impurity implanted region. Manufacturing a semiconductor device characterized by recrystallizing the surface of an amorphous layer including a PN junction formed with and forming a crystal lattice defect layer near the interface between the amorphous layer and the single crystal layer. Method.
JP16315778A 1978-12-26 1978-12-26 Manufacture of semiconductor device Granted JPS5587429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16315778A JPS5587429A (en) 1978-12-26 1978-12-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16315778A JPS5587429A (en) 1978-12-26 1978-12-26 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5587429A JPS5587429A (en) 1980-07-02
JPS6142854B2 true JPS6142854B2 (en) 1986-09-24

Family

ID=15768304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16315778A Granted JPS5587429A (en) 1978-12-26 1978-12-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5587429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217856U (en) * 1988-07-22 1990-02-06

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209120A (en) * 1982-05-31 1983-12-06 Toshiba Corp Manufacture of semiconductor device
JPS6095921A (en) * 1983-10-31 1985-05-29 Toshiba Corp Manufacture of semiconductor device
JPS61142738A (en) * 1984-12-17 1986-06-30 Toshiba Corp Method for implanting ions in single crystal substrate
JPH0235715A (en) * 1988-07-26 1990-02-06 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH02306622A (en) * 1989-05-22 1990-12-20 Oki Electric Ind Co Ltd Semiconductor device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217856U (en) * 1988-07-22 1990-02-06

Also Published As

Publication number Publication date
JPS5587429A (en) 1980-07-02

Similar Documents

Publication Publication Date Title
US4412868A (en) Method of making integrated circuits utilizing ion implantation and selective epitaxial growth
EP0165971B1 (en) Method of making a bipolar junction transistor
EP0090940B1 (en) Method of forming emitter and intrinsic base regions of a bipolar transistor
JPH06342805A (en) Manufacture of semiconductor device composed of silicon
WO1986003334A3 (en) Semiconductors having shallow, hyperabrupt doped regions, and process for preparation thereof using ion implanted impurities
US4295898A (en) Method of making isolated semiconductor devices utilizing ion-implantation of aluminum and heat treating
JPH07101677B2 (en) Method for manufacturing semiconductor device
Pearton et al. Rapid thermal annealing in GaAs IC processing
US4362574A (en) Integrated circuit and manufacturing method
JPS6142854B2 (en)
Shoji et al. Improved crystalline quality of Si1− xGex formed by low‐temperature germanium ion implantation
JPS6227727B2 (en)
JPS6122455B2 (en)
Calder et al. Rapid Thermal Annealing of Pre-Amorphized B and BF2-Implanted Silicon
JPH08316164A (en) Manufacture of semiconductor element
US4113513A (en) Method of manufacturing a semiconductor device by non-selectively implanting a zone of pre-determined low resistivity
EP0042380B1 (en) Method for achieving ideal impurity base profile in a transistor
JP2664416B2 (en) Method for manufacturing semiconductor device
JP2019009454A (en) Method of forming semiconductor device
Masum Choudhury et al. Formation of p‐type GaAs layers using Mg+ implantation and capless rapid thermal annealing
JPH05259075A (en) Manufacture of semiconductor device
JPS6129537B2 (en)
JPS63124520A (en) Manufacture of semiconductor device
JP2563798B2 (en) Method for manufacturing semiconductor device
JPS6328505B2 (en)