JPS6141538A - Ceramic substrate and manufacture thereof - Google Patents

Ceramic substrate and manufacture thereof

Info

Publication number
JPS6141538A
JPS6141538A JP59163894A JP16389484A JPS6141538A JP S6141538 A JPS6141538 A JP S6141538A JP 59163894 A JP59163894 A JP 59163894A JP 16389484 A JP16389484 A JP 16389484A JP S6141538 A JPS6141538 A JP S6141538A
Authority
JP
Japan
Prior art keywords
composite material
plating
ceramic substrate
nickel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59163894A
Other languages
Japanese (ja)
Other versions
JPH0214189B2 (en
Inventor
鶴岡 重雄
国谷 啓一
英夫 荒川
秋雄 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59163894A priority Critical patent/JPS6141538A/en
Publication of JPS6141538A publication Critical patent/JPS6141538A/en
Publication of JPH0214189B2 publication Critical patent/JPH0214189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、セラミック基板及びその製造方法に係わジ、
特に好ましくは、セラミック基板の表層に半導体素子で
あるシリコンや放熱板との接合全阻害しない金属層全被
覆した半導体素子搭載用セラミック基板及びその製造方
法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a ceramic substrate and a method for manufacturing the same.
Particularly preferably, the present invention relates to a ceramic substrate for mounting a semiconductor element, in which the surface layer of the ceramic substrate is completely coated with a metal layer that does not completely inhibit the bonding with silicon, which is a semiconductor element, and a heat sink, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

炭化ケイ累に少量のベリリア金含むセラミックは、高熱
伝導性と高電気絶縁性を兼ね備えた新しいタイプのセラ
ミックである。このように優れた特性全有するセラミッ
クは、半導体素子搭載用基板等に用いられるが、半導体
素子のシリコン等と接合するため、表層を金属化する必
要がある。
Ceramic containing a small amount of beryllia gold in silicon carbide is a new type of ceramic that has both high thermal conductivity and high electrical insulation. Ceramics having all of these excellent properties are used for substrates for mounting semiconductor elements, etc., but the surface layer needs to be metallized in order to bond with silicon or the like of the semiconductor element.

従来、セラミック表ItIW金属化する方法は、用途及
び目的によって種々ある。例えば、アルミナセラミック
への金属化法は、特開昭55−113683号にも述べ
られているように金属用組成物ペーストをセラミック上
に塗布し、水素中あるいは水素と窒素の混合気中で焼結
して金属化@全作り、しかる後ニッケルめっき等t施す
方法が一般的に行われている。そこで従来の方法で炭化
ケイ素を主成分とするセラミック表層全金属化、すなわ
ち、モリブデン粉末ベースト全印刷し、1300〜15
00℃の湿潤水素雰囲気及び乾燥水素雰囲気中で焼成し
て金属化し電気ニッケルめっきする構造では、熱処理に
よる信頼性がニッケルめっき厚みに左右されると言う問
題がある。
Conventionally, there are various methods for metallizing ceramic surfaces depending on the application and purpose. For example, the metallization method for alumina ceramics is as described in JP-A-55-113683, in which a metal composition paste is applied onto the ceramic, and then sintered in hydrogen or a mixture of hydrogen and nitrogen. A commonly used method is to metallize the entire structure and then apply nickel plating, etc. Therefore, we used a conventional method to fully metalize the surface layer of a ceramic whose main component was silicon carbide, that is, to print the entire surface layer on a molybdenum powder base.
In a structure in which metallization is performed by firing in a wet hydrogen atmosphere or a dry hydrogen atmosphere at 00° C., and electronickel plating is performed, there is a problem in that the reliability due to heat treatment depends on the thickness of the nickel plating.

ここで、従来製造法の問題点について考察する。第2図
に示すように、炭1じケイ素を主成分とするセラミック
基体1表層全金属化22して電気ニッケルめつき23し
た従来構造は、金属化層とセラミック境界からはく離會
起しやすい。
Here, problems with conventional manufacturing methods will be discussed. As shown in FIG. 2, in the conventional structure in which the surface layer of a ceramic substrate 1 whose main components are carbon, silicon, and the entire surface layer is metallized 22 and electrolytically nickel plated 23, peeling easily occurs from the boundary between the metallized layer and the ceramic.

そして、第2図に示す従来構造の金属化層がば〈離する
原因は、炭化ケイ素、モリブデン及びニッケルの熱膨張
率が異なることにある。すなわち、炭化ケイ素は3.5
 X 10=/ u、モリブデン4.9 X 10−6
/ ℃ と炭化ケイ素とモリブデンとの熱膨張率は大差
ないのに比べ、ニッケルの熱膨張率は13.6 X 1
 o−6/ r:  と大きいため、熱処理の際の冷却
時において、ニッケル層の収縮がセラミック及びモリブ
デン#に比べ犬となり、収縮率なモリブデン層とセラミ
ック全引張り、相対的強さから金属化層とセラミック境
界にはく離を起してしまうことにある。特に、ニッケル
めつき膜厚分布が不均一であったり厚目であったりする
と、熱処理による収縮応力が大きくなり、金属化層によ
りはく離しやすくなってしまう。そのため、ニッケルめ
っき膜は薄目に均一に分布しなければならないとの制約
がある。
The reason why the metallized layer of the conventional structure shown in FIG. 2 separates is that silicon carbide, molybdenum, and nickel have different coefficients of thermal expansion. That is, silicon carbide is 3.5
X 10 = / u, molybdenum 4.9 X 10-6
/ ℃ There is not much difference in the coefficient of thermal expansion of silicon carbide and molybdenum, but the coefficient of thermal expansion of nickel is 13.6 × 1
o-6/r: Because of the large size, the shrinkage of the nickel layer during cooling during heat treatment is greater than that of ceramic and molybdenum, and due to the shrinkage rate of the molybdenum layer and the ceramic total tensile strength, and the relative strength, the metallized layer This causes delamination at the ceramic interface. In particular, if the nickel plating thickness distribution is uneven or thick, the shrinkage stress due to heat treatment will increase, making the metallized layer more likely to peel off. Therefore, there is a restriction that the nickel plating film must be thin and uniformly distributed.

他方、半導体素子搭載用基板に用いられるセラミックは
小形であり、大量に生産される。一般に、小形物音一度
に多数めっきする方法にバレルめつき法がある。しかし
、バレルめつきは、ダミー全弁して通電するため、めっ
き電流密度が一定でなく、めつき膜厚分布もまた均一で
ない。したがって、炭化けい素を生成分とするセラミッ
ク表層全金属化し、バレル電気ニッケルめっきすると、
ニッケルめつき膜厚分布が不均一であるために、熱処理
の際の収縮応力の不均一から金属1ヒ層がはく離しやす
くなってしまう。
On the other hand, ceramics used for semiconductor element mounting substrates are small and produced in large quantities. Generally, the barrel plating method is used to plate many small objects at once. However, in barrel plating, since all dummy valves are energized, the plating current density is not constant and the plating film thickness distribution is also not uniform. Therefore, if the surface layer of a ceramic containing silicon carbide is completely metallized and barrel electroplated with nickel,
Since the nickel plating film thickness distribution is non-uniform, the metal 1 layer tends to peel off due to non-uniform shrinkage stress during heat treatment.

第  1  表 第1表は、硫酸ニッケル2409/l、塩化ニッケル4
5 t/l、ホウ酸3ot7tから成るワット浴又はス
ルファミン酸ニッケル375f/l、ホウ酸30 f/
l、ラウリル硫酸ナトリウム0.4f/lから成るスル
ファミン酸ニッケルめっき浴を用い、温度50℃、めっ
き電流密度I A/ dm”、回転速度5 rpm、め
っき厚み2.5.10μmにバレルめっきした後、水素
雰囲気中、温度500℃、保持時間5分の熱処理をした
結果全示し、Δ印は金属化層がはく離したものもあり、
x印は金属化層がほとんどに〈離してしまったこと全示
す。その結果、ワット浴又はスルフアミノ酸ニッケルめ
っき浴を用いた場合共に、ニッケルめっきが厚くなると
特に金属化層がはく離してしまう傾向にある。そのため
、炭化ケイ素を主成分とするセラミック表層全モリブデ
ン金属化した後のニッケルめっきは、ニッケルめっき厚
みが均一に分布している必要がある。しかし、バレルめ
つきでは、めっき電流密度が不均一なので均一なめつき
厚みが得られない。したがって、炭化ケイ素を主成分と
するセラミック表層全モリブデン金属化した後のニッケ
ルめっきは、単品ずつ行わねばならず生産性が悪い。
Table 1 Table 1 shows nickel sulfate 2409/l, nickel chloride 4
5 t/l, watts bath consisting of 3 t/7 t of boric acid or 375 f/l of nickel sulfamate, 30 f/l of boric acid
After barrel plating using a nickel sulfamate plating bath consisting of 0.4 f/l of sodium lauryl sulfate at a temperature of 50°C, a plating current density of IA/dm", a rotation speed of 5 rpm, and a plating thickness of 2.5.10 μm. All the results are shown after heat treatment in a hydrogen atmosphere at a temperature of 500°C for a holding time of 5 minutes, and the Δ marks indicate that the metallized layer has peeled off in some cases.
The x marks indicate that the metallization layer has mostly separated. As a result, both when using a Watt bath or a sulfamino acid nickel plating bath, there is a tendency for the metallized layer to peel off, especially when the nickel plating becomes thick. Therefore, the nickel plating after the entire surface layer of the ceramic whose main component is silicon carbide has been made into molybdenum metal requires that the nickel plating thickness be uniformly distributed. However, in barrel plating, a uniform plating thickness cannot be obtained because the plating current density is non-uniform. Therefore, nickel plating after the entire surface layer of a ceramic whose main component is silicon carbide has been metallized with molybdenum has to be performed one by one, resulting in poor productivity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱処理による信頼性が高く、また、生
産性全高めたセラミック基板及びその製造方法を提供す
ることにある。
An object of the present invention is to provide a ceramic substrate that has high reliability through heat treatment and is highly productive, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

氷見開音概説すれば、本発明の第1の発明にセラミック
基板に関する発明であって、セラミック製基体と、この
基体上に接合される銅又はアルミニウム−炭素繊維複合
材料層と、この複合材料層上に形成される金属めつ@層
全備え、該複合材料Ivi表面は該めっき層に対して該
炭素繊維が触れない構造であることを特徴とする。
Kaito Himi To summarize, the first invention of the present invention relates to a ceramic substrate, which comprises a ceramic base, a copper or aluminum-carbon fiber composite material layer bonded onto the base, and this composite material layer. The composite material Ivi is characterized in that the surface of the composite material Ivi, which includes the entire metal plating layer formed thereon, has a structure in which the carbon fibers do not touch the plating layer.

そして、本発明の第2の発明は、セラミック基板の製造
方法に関する発明であって、セラミック製基体に、銅又
はアルミニウム−炭素繊維複合材料層全接合させる工程
、該工程の前又は後で該複合材料層表面に該炭素繊維が
露出しないように処理する工程、及び最後に金属めっき
?行う工程の各工程全包含することを特徴とする。
A second invention of the present invention relates to a method for manufacturing a ceramic substrate, including a step of bonding all copper or aluminum-carbon fiber composite layers to a ceramic substrate, and a step of bonding the composite material before or after the step. Process to prevent the carbon fiber from being exposed on the surface of the material layer, and finally metal plating? It is characterized by including all of the steps involved.

本発明方法において使用する銅又にアルミニウムマトリ
ックスに炭素繊維ケ埋め込んだ形態の銅又はアルミニウ
ム−炭素繊維複合材料に、熱伝導性及び導電性が良く、
熱膨張率が低い等の特性會有すると共に、銅又はアルミ
ニウムマトリックスは柔軟性を有するので応力緩和材に
もなる。
The copper or aluminum-carbon fiber composite material used in the method of the present invention, in which carbon fibers are embedded in a copper or aluminum matrix, has good thermal conductivity and electrical conductivity.
In addition to having characteristics such as a low coefficient of thermal expansion, the copper or aluminum matrix also has flexibility, so it can also be used as a stress relief material.

本発明者等は、本発明によるセラミック基板では、熱処
理により金属めっき層に生じる収縮応力が銅(又はアル
ミニウム)−炭素繊維複合材料によって緩和されるので
、金属1ヒ層のはく離全防止できること全見出した。
The present inventors have discovered that in the ceramic substrate according to the present invention, the shrinkage stress generated in the metal plating layer due to heat treatment is alleviated by the copper (or aluminum)-carbon fiber composite material, so that the peeling of the metal layer can be completely prevented. Ta.

本発明において使用する前記複合材料は公知の材料であ
り、例えば銅−炭素繊維複合材料は、特開昭55−12
8274号公報に、他方アルミニウム−炭素繊維複合材
料は、特開昭49−18891号公報に記載されている
The composite material used in the present invention is a known material, for example, a copper-carbon fiber composite material is disclosed in Japanese Patent Publication No. 55-12
8274, while an aluminum-carbon fiber composite material is described in JP-A-49-18891.

しかし、前述したように、銅(又はアルミニウム)−炭
素繊維複合材料は、銅(又はアルミニウム)マトリック
スに炭素繊維を埋め込んだ形態であり、表面に炭素繊維
が露出していると均一な金属めっきができない。そこで
、銅(又はアルミニウム)−炭素繊維複合材料の表面に
炭素繊維が露出しない形態にすることにより均一な金属
めっき層が得られる。
However, as mentioned above, copper (or aluminum)-carbon fiber composite materials have carbon fibers embedded in a copper (or aluminum) matrix, and if the carbon fibers are exposed on the surface, uniform metal plating cannot be achieved. Can not. Therefore, by forming the copper (or aluminum)-carbon fiber composite material so that the carbon fibers are not exposed on the surface, a uniform metal plating layer can be obtained.

また、セラミック製基体に接合した銅(又はアルミニウ
ム)−炭素繊維複合材料は、金属めっき膜に悪影響を及
ぼさないばかりでなく、本発明のセラミック基板の1用
途である半導体素子搭載用基板としての特性にも何ら悪
影響を及ぼさない。
In addition, the copper (or aluminum)-carbon fiber composite material bonded to the ceramic substrate not only does not have a negative effect on the metal plating film, but also has characteristics as a substrate for mounting semiconductor elements, which is one use of the ceramic substrate of the present invention. It does not have any negative effect on the

したがって、本発明のセラミック基板は、セラミック本
来の特性を損わないばかりでなく、銅(又はアルミニウ
ム)−炭素繊維複合材料の特性音も兼ね備えた新規構造
を有する。そして、金属めつ@會する手段としてバレル
めつき法?用いても、熱処理による信頼性を低下させな
いので、該基板の量産ができることも見出した。
Therefore, the ceramic substrate of the present invention has a novel structure that not only does not impair the original characteristics of ceramic, but also has the characteristic sound of a copper (or aluminum)-carbon fiber composite material. And the barrel plating method as a means of meeting metal plating? It has also been found that the substrates can be mass-produced because the reliability is not degraded by heat treatment even when the substrates are used.

しかして、本発明方法において重要なる、炭素繊維が露
出しないように処理する工程は、それ自体公知の方法で
行ってよく、例えば、該複合材料を接合する前又は後で
、該複合材料を銅箔をつけるか、めっきで覆えばよく、
あるいは、ホットプレスで複合材料全サンドイッチすれ
ばよい。
Therefore, the step of treating the carbon fibers so that they are not exposed, which is important in the method of the present invention, may be carried out by a method known per se. For example, before or after joining the composite material, All you have to do is cover it with foil or plate it.
Alternatively, the whole composite material can be sandwiched in a hot press.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって更に具体的に説明するが
、本発明はこれら実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

なお、第1図は、本発明のセラミック基板の1例の構造
を示す断面概略図である。第1図において、符号1はセ
ラミック基体、2は銅(又はアルミニウム)−炭素繊維
複合材、5は接合材、4はめつきした金属材を意味する
Note that FIG. 1 is a schematic cross-sectional view showing the structure of one example of the ceramic substrate of the present invention. In FIG. 1, numeral 1 means a ceramic substrate, 2 means a copper (or aluminum)-carbon fiber composite material, 5 means a bonding material, and 4 means a plated metal material.

実施例1 造粒−ホットプレス−切断・研削した厚み[16111
1%幅91111 %長す15 am (7)炭化ケ(
’XK少量のベリリアを含むセラミック基体と、直径6
μmの炭素繊維を45%含み表面全厚み20μmの銅箔
で覆った厚み0.1=、幅8m、長さ12■の銅−炭素
繊維複合材料を、厚み25μmのマンガンろう全用いア
ルゴン雰囲気中、温度870℃、保持時間1秒の条件で
接合し、酸性浴中で表面活性化処理した後、硫酸ニッケ
ル240t / t、塩化ニッケル451/l、ホウ酸
50f / tから成るワット浴又はスルファミン酸ニ
ッケル575 t/l、 ホウ酸509/l、5ウリル
硫酸ナトリウム0−4f/lから成るスルフアミン酸ニ
ッケルめっき浴を用い、温度50℃、めっき電流密度I
 A/am”、回転速度5 rpmで平均厚み2.5.
10μmにバレルニッケルめっきしてセラミック/1I
iIl−炭素繊維複合材料/ニッケルの複合板全作製し
た。
Example 1 Granulation - Hot pressing - Cutting and grinding thickness [16111
1% Width 91111% Length 15 am (7) Carbonized Ke(
'XK Ceramic substrate containing a small amount of beryllia and diameter 6
A copper-carbon fiber composite material with a thickness of 0.1 = 8 m in width and 12 cm in length, which contains 45% of carbon fibers with a total surface thickness of 20 μm, is placed in an argon atmosphere using a manganese wax with a thickness of 25 μm. , bonded at a temperature of 870°C and a holding time of 1 second, and after surface activation treatment in an acidic bath, a Watts bath consisting of 240t/t of nickel sulfate, 451/l of nickel chloride, and 50f/t of boric acid or sulfamic acid. A nickel sulfamate plating bath consisting of 575 t/l of nickel, 509/l of boric acid, and 0-4 f/l of sodium pentauryl sulfate was used at a temperature of 50°C and a plating current density of I.
A/am”, rotation speed 5 rpm, average thickness 2.5.
10μm barrel nickel plated ceramic/1I
A complete composite plate of iIl-carbon fiber composite material/nickel was prepared.

以上の方法で作製したセラミック/銅−炭素滅維複合材
料/ニッケル複合板ケ、水素雰囲気中、温度500℃、
保持時間5分の熱処理をした結果、第2表に示すように
金属化層がはく離する等の変形は認められなかった。表
中O印に金属化層に変形のないこと全示す。
Ceramic/copper-carbon sterile composite material/nickel composite plate prepared by the above method, in a hydrogen atmosphere at a temperature of 500°C,
As a result of heat treatment for a holding time of 5 minutes, no deformation such as peeling of the metallized layer was observed as shown in Table 2. The O mark in the table indicates that there is no deformation in the metallized layer.

第  2  表 次に、同じく作製したセラミック/銅−炭素繊維複合材
料/ニッケル複合板の特性全調査した結果、半導体素子
搭載用基板として用いるに十分満足できるものであった
Table 2 Next, as a result of investigating all the characteristics of the ceramic/copper-carbon fiber composite material/nickel composite plate produced in the same manner, it was found to be sufficiently satisfactory for use as a substrate for mounting a semiconductor element.

また本発明によれば、セラミック表層全金属化する際の
金属化組成ペーストの作製及び塗布、焼結等の工程を省
くことができる。
Further, according to the present invention, it is possible to omit steps such as preparing, applying, and sintering a metallization composition paste when fully metallizing the ceramic surface layer.

したがって、本発明により、熱処理による信頼性が高く
、生産性も高い半導体素子搭載用基板に用いられる炭1
1Zケイ素を主成分とするセラミック基板を効率良く製
造できる。
Therefore, according to the present invention, charcoal 1 can be used for semiconductor element mounting substrates that have high reliability through heat treatment and high productivity.
Ceramic substrates containing 1Z silicon as a main component can be efficiently manufactured.

実施例2 実施例1と同じ方法で作製した厚み0.6m+、幅9 
tll s長さ13慎の炭化ケイ素に少量のベリリアを
含むセラミック基体と、直径6μmの炭素繊維を45%
含む厚み[lLlmm、幅8劉、長さ12憫の銅−炭素
繊維複合材料を厚み25μmのマンガンろうを用い、ア
ルゴン雰囲気中、温度870℃、保持時間1秒の条件で
接合し、酸性浴中で表面活性化処理した後、硫酸銅20
0 tll、硫酸50づ/l、塩酸α15ゴ/lの硫酸
銅めっき浴全用い、温度30℃、めっき電流密度1A 
/ dm”、回転速度5 rpmで第1層に厚み5μm
の銅めっきを行い、更に第2層VC実施例1のニッケル
めっきと同じ条件で、厚み2.5.10μmにバレルニ
ッケルめっきして、セラミック/銅−炭素繊維複合材料
/ニッケルの複合板全作製した。
Example 2 Thickness 0.6m+, width 9 manufactured by the same method as Example 1
Ceramic substrate containing a small amount of beryllia in silicon carbide with a length of 13 cm and 45% carbon fiber with a diameter of 6 μm
A copper-carbon fiber composite material with a thickness of 8 mm, a width of 8 mm, and a length of 12 mm was bonded using manganese solder with a thickness of 25 μm in an argon atmosphere at a temperature of 870°C and a holding time of 1 second, and in an acid bath. After surface activation treatment with copper sulfate 20
0 tll, sulfuric acid 50 g/l, hydrochloric acid α15 g/l copper sulfate plating bath, temperature 30°C, plating current density 1A
/ dm”, rotation speed 5 rpm, first layer thickness 5 μm
Then, under the same conditions as the nickel plating in the second layer VC Example 1, barrel nickel plating was performed to a thickness of 2.5.10 μm to produce a complete ceramic/copper-carbon fiber composite/nickel composite plate. did.

以上の方法で作製したセラミック/銅−炭素繊維複合材
料/ニッケル板を、実施例1と同じように水素雰囲気中
、温度500℃、保持時間5分の熱処理會した結果、実
施例1の結果と同様、金属化層がはく離する等の現象は
認められなかった。
The ceramic/copper-carbon fiber composite material/nickel plate produced by the above method was heat-treated in a hydrogen atmosphere at a temperature of 500°C for 5 minutes in the same manner as in Example 1. Similarly, no phenomena such as peeling of the metallized layer were observed.

以上、実施例1及び2では、炭化ケイ素に少量のベリリ
ア會含むセラミック基体に銅−炭素繊維複合材料全マン
ガンろう付けする前、又はろう付は後に炭素繊維が表面
VC露出しないように処理してニッケルめっきし、セラ
ミック/@−炭素繊維複合材料/ニッケル複合板全作製
することについて述べたが、本発明の目的は、根本的に
は表層を金属化した半導体素子搭載用セラミック基板の
熱処理による信頼性全低下させないで生産性金高めるこ
とにある。したがって、本発明に、本実施例1及び2で
説明した銅−炭素繊維複合材料の他に、アルミニウム−
炭素繊維複合材料等を接合し、ニッケル等の金属めっき
?してセラミック/繊維強化複合材料/金属めっき層か
らなること全特徴とする構造の複合板、及びその複合板
の製造法全般に適用できる。
As described above, in Examples 1 and 2, the carbon fibers were treated to prevent the surface VC from being exposed before or after brazing the copper-carbon fiber composite material to the ceramic substrate containing a small amount of beryllia in silicon carbide with manganese. Although we have described the production of a nickel-plated ceramic/@-carbon fiber composite material/nickel composite board, the fundamental purpose of the present invention is to improve reliability through heat treatment of a ceramic substrate for mounting semiconductor elements with a metalized surface layer. The goal is to increase productivity without reducing productivity. Therefore, in the present invention, in addition to the copper-carbon fiber composite material explained in Examples 1 and 2, aluminum-
Bonding carbon fiber composite materials etc. and plating with metal such as nickel? The present invention can be applied to composite plates having a structure consisting of ceramic/fiber-reinforced composite material/metal plating layer, and to general methods of manufacturing such composite plates.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、熱処理による信
頼性が高く、工程省略等により生産性の高いセラミック
基板及びその製造方法が提供された点で、顕著な効果が
奏せられた。
As explained above, according to the present invention, remarkable effects have been achieved in that a ceramic substrate and a method for manufacturing the same are provided which have high reliability through heat treatment and high productivity due to omission of steps and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミック基板の1例の構造金示す断
面概略図、第2図は従来のセラミック基板の1例の構造
全示す断面概略図である。 1:セラミック基体、2:銅(又はアルミニウム)−炭
素繊維複合材、5:接合材、4:めっきした金属材、2
2:金属化層、23:ニツケルめっき材
FIG. 1 is a schematic cross-sectional view showing the structure of an example of a ceramic substrate of the present invention, and FIG. 2 is a schematic cross-sectional view showing the entire structure of an example of a conventional ceramic substrate. 1: Ceramic substrate, 2: Copper (or aluminum)-carbon fiber composite material, 5: Bonding material, 4: Plated metal material, 2
2: Metalized layer, 23: Nickel plating material

Claims (1)

【特許請求の範囲】 1、セラミック製基体と、この基体上に接合される銅又
はアルミニウム−炭素繊維複合材料層と、この複合材料
層上に形成される金属めつき層を備え、該複合材料層表
面は該めつき層に対して該炭素繊維が触れない構造であ
ることを特徴とするセラミック基板。 2、セラミック製基体に、銅又はアルミニウム−炭素繊
維複合材料層を接合させる工程、該工程の前又は後で該
複合材料層表面に該炭素繊維が露出しないように処理す
る工程、及び最後に金属めつきを行う工程の各工程を包
含することを特徴とするセラミック基板の製造方法。
[Claims] 1. A ceramic substrate, a copper or aluminum-carbon fiber composite material layer bonded onto the substrate, and a metal plating layer formed on the composite material layer, the composite material comprising: A ceramic substrate characterized in that a layer surface has a structure in which the carbon fibers do not touch the plating layer. 2. A step of bonding a copper or aluminum-carbon fiber composite material layer to a ceramic substrate, a step of treating the surface of the composite material layer so that the carbon fibers are not exposed before or after this step, and finally a step of bonding a metal A method for manufacturing a ceramic substrate, characterized by including each step of plating.
JP59163894A 1984-08-06 1984-08-06 Ceramic substrate and manufacture thereof Granted JPS6141538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59163894A JPS6141538A (en) 1984-08-06 1984-08-06 Ceramic substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59163894A JPS6141538A (en) 1984-08-06 1984-08-06 Ceramic substrate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6141538A true JPS6141538A (en) 1986-02-27
JPH0214189B2 JPH0214189B2 (en) 1990-04-06

Family

ID=15782826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59163894A Granted JPS6141538A (en) 1984-08-06 1984-08-06 Ceramic substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6141538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521479A (en) * 1991-07-15 1993-01-29 Mitsubishi Electric Corp Hybrid integrated circuit device
JP2007500450A (en) * 2003-05-08 2007-01-11 クラミック エレクトロニクス ゲーエムベーハー Composite materials and electrical circuits or modules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113683A (en) * 1979-02-21 1980-09-02 Kyoto Ceramic Method and composition of metallizing carbide type ceramic body
JPS55127044A (en) * 1979-03-26 1980-10-01 Hitachi Ltd Electric circuit substrate and its manufacture
JPS5745248A (en) * 1980-09-01 1982-03-15 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113683A (en) * 1979-02-21 1980-09-02 Kyoto Ceramic Method and composition of metallizing carbide type ceramic body
JPS55127044A (en) * 1979-03-26 1980-10-01 Hitachi Ltd Electric circuit substrate and its manufacture
JPS5745248A (en) * 1980-09-01 1982-03-15 Hitachi Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521479A (en) * 1991-07-15 1993-01-29 Mitsubishi Electric Corp Hybrid integrated circuit device
JP2007500450A (en) * 2003-05-08 2007-01-11 クラミック エレクトロニクス ゲーエムベーハー Composite materials and electrical circuits or modules

Also Published As

Publication number Publication date
JPH0214189B2 (en) 1990-04-06

Similar Documents

Publication Publication Date Title
JP2002520863A (en) Thermal management element and method of manufacturing the same
JPS61104085A (en) Coated structure on metallized metallic layer for electronic parts
JPS6141538A (en) Ceramic substrate and manufacture thereof
JPS6032343A (en) Power semiconductor module substrate
JPS59121175A (en) Manufacture of heat radiator
JP3635379B2 (en) Metal-ceramic composite substrate
JP2000022055A (en) Carbon fabric composite radiator plate
JPS62189790A (en) Ceramic wiring circuit board
JPS60107845A (en) Circuit substrate for semiconductor
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JPH11354699A (en) Semiconductor heat sink and its manufacture
JPH1087385A (en) Metal-ceramic composite substrate and its production
JPH107480A (en) Composite metal-ceramic substrate and its production
JP2623640B2 (en) Heat-resistant composite Ni-plated member
JPS61101481A (en) Metallization of silicon carbide base ceramic sintered body
JPS60120592A (en) Ceramic circuit board and method of producing ceramic circuit board
JP2598931B2 (en) Metal core printed circuit board and method of manufacturing the same
JPS61245555A (en) Terminal connecting structure for semiconductor
CN114698255A (en) Printed circuit board and preparation method
JPH01157589A (en) Manufacture of metal base substrate
JPS60145980A (en) Ceramic sintered body with metallized coating and manufacture
JP2611310B2 (en) Method of manufacturing heat-resistant composite Ni-plated member
JPS63199878A (en) Production of ceramic coated copper foil
JPS6270284A (en) Metallized silicon carbide ceramics body and its production
JP2004176117A (en) Method of metallizing copper to ceramics surface