JPS6138217A - Method for manufacturing fluid bearing - Google Patents

Method for manufacturing fluid bearing

Info

Publication number
JPS6138217A
JPS6138217A JP16034984A JP16034984A JPS6138217A JP S6138217 A JPS6138217 A JP S6138217A JP 16034984 A JP16034984 A JP 16034984A JP 16034984 A JP16034984 A JP 16034984A JP S6138217 A JPS6138217 A JP S6138217A
Authority
JP
Japan
Prior art keywords
portions
resist films
resist film
bearing
fluid compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16034984A
Other languages
Japanese (ja)
Inventor
Isao Matsumoto
勲 松本
Tatsuro Kubo
達郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16034984A priority Critical patent/JPS6138217A/en
Publication of JPS6138217A publication Critical patent/JPS6138217A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To process fluid compression concave portions having multistage shape where bore becomes smaller sequentially in high accuracy by repeating forming and etching of resist films sequentially by using photo-etching method. CONSTITUTION:When forming multi-stage fluid compression concave portions 3, resist films 4 coating is applied on portions which become minimum diameter portions 3a first and an exposed inner circumferential face where resist films are not formed is etched to a predetermined depth. Next second resist films 5 coating is applied on portions which becomes first step portions 3b while resist films 4 are provided on the minimum diameter portions 3a. And an exposed inner circumferential face where neither of the resist films 4, 5 is formed is etched to a predetermined depth. And further, third resist films 6 coating is applied on portions which become second step portions 3c while the resist films 4, 5 are provided on the minimum diameter portions 3a and the first step portions 3b.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、軸を70−ティング状態で支持する流体軸受
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of manufacturing a fluid bearing that supports a shaft in a 70-ring state.

(従来技術) 従来より、軸受面内周と軸との間にオイル、エア等の流
体を介在させて、軸の回転に伴って生起する流体圧縮圧
力によりこの軸を70−ティング状態で支持する流体軸
受が公知である。この軸受面内周には、軸の回転方向に
沿って漸次内径の小さくなる流体圧縮凹部を有し、軸の
回転に伴ってその粘性抵抗によって流動する流体が上記
凹部内で圧縮されて、軸を中心方向に付勢する反発力が
生じて浮かせるものである。
(Prior art) Conventionally, a fluid such as oil or air is interposed between the inner periphery of the bearing surface and the shaft, and the shaft is supported in a 70-ring state by the fluid compression pressure generated as the shaft rotates. Hydrodynamic bearings are known. The inner periphery of this bearing surface has a fluid compression recess whose inner diameter gradually decreases along the rotational direction of the shaft, and as the shaft rotates, the fluid flowing due to its viscous resistance is compressed within the recess, and the shaft A repulsive force is generated that urges the object toward the center, causing it to float.

しかして、上記流体圧縮凹部は数μから数10μ程度の
深さに形成され、しかも漸次深さが変化するように設け
る必要があり、その加工が困難で、量産化の障害となっ
ている。
However, the fluid compression recesses are formed to a depth of several microns to several tens of microns, and must be provided so that the depth gradually changes, making machining difficult and hindering mass production.

従来における上記流体圧縮凹部の形成方法としては、回
転研削砥石によって軸受内周面を順次研削する方法が採
用されている。しかるに、この方法では、内周に形成さ
れる凹部は円弧状であって、流体の圧縮に寄与する形状
は、凹部の半分であることから、この凹部によって生起
する反発力は小さく、フローティング効果が充分に得ら
れずに許容される軸受荷重も小さなものである。
As a conventional method for forming the fluid compression recess, a method has been adopted in which the inner circumferential surface of the bearing is sequentially ground using a rotating grindstone. However, in this method, the recess formed on the inner periphery is arc-shaped, and the shape that contributes to fluid compression is half of the recess, so the repulsive force generated by this recess is small and the floating effect is reduced. The bearing load that is not sufficiently obtained and is allowed is also small.

(発明の目的) 本発明は上記事情に鑑み、機械加工によっては形成困難
な形状を有する多段流体圧縮凹部を形成可能とし、高い
流体反発力を得ることができるようにした流体軸受の製
造方法を提供することを目的とするものである。
(Object of the Invention) In view of the above circumstances, the present invention provides a method for manufacturing a fluid bearing that makes it possible to form a multi-stage fluid compression recess that has a shape that is difficult to form by machining, and that makes it possible to obtain a high fluid repulsion force. The purpose is to provide

(発明の構成) 本発明の製造方法は、最初に軸受最小径部を形成すべき
部位のみにレジスト膜をコーティングした後、内周面を
第1段部に必要な深さにエツチングし、次に上記レジス
ト膜に加えて第1段部を形成すべき部位にレジスト膜を
コーティングして残部の内周面を第2段部に必要な深さ
にエツチングし、上記ステップを所望段部が形成される
まで繰り返すことにより、軸受面内周に多段流体圧縮凹
部を形成することを特徴とするものである。
(Structure of the Invention) In the manufacturing method of the present invention, first, a resist film is coated only on the portion where the bearing minimum diameter portion is to be formed, and then the inner circumferential surface is etched to the depth required for the first step portion. In addition to the above-mentioned resist film, a resist film is coated on the area where the first step part is to be formed, and the remaining inner peripheral surface is etched to the depth required for the second step part, and the above step is completed to form the desired step part. This is characterized in that a multi-stage fluid compression recess is formed on the inner periphery of the bearing surface by repeating the process until the bearing surface is compressed.

(発明の効果) 本発明によれば、フォトエツチング法を利用して順次レ
ジスト膜の形成とエツチングを繰り返すことにより、順
次内径の小さくなる多段階形状を有する流体圧縮凹部を
高精度に加工することができ、この得られた形状を有す
る多段流体圧縮凹部はその凹部全体が流体の圧縮作用に
寄与し、高い反発力が得られて軸受荷重の増大を図るこ
とができるとともに、量産加工が実施できるなどの利点
を有するものである。
(Effects of the Invention) According to the present invention, by sequentially repeating the formation and etching of a resist film using a photo-etching method, a fluid compression recess having a multi-stage shape whose inner diameter is gradually reduced can be processed with high precision. In the multi-stage fluid compression recess having this shape, the entire recess contributes to the fluid compression action, and a high repulsion force is obtained, making it possible to increase the bearing load and mass production processing. It has the following advantages.

(実施例) 以下、図面により本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明方法によって製造された流体軸受の断面
図であって、その凹部形状は誇張して示している。また
、第2図ないし第4図はそれぞれ製造工程を順に示す部
分断面図である。
FIG. 1 is a sectional view of a hydrodynamic bearing manufactured by the method of the present invention, and the shape of the recess is exaggerated. Moreover, FIGS. 2 to 4 are partial sectional views showing the manufacturing steps in order.

流体軸受1はその内周軸受面に、軸2の回転方向Aに沿
って順次内径が小さくなる多段流体圧縮凹部3が複数個
(図示の場合6個)配設されている。また、上記多段流
体圧縮凹部3は、最小径部3aに対し第1段部3b、第
2段部3Cおよび第3段部3dの3段階に形成する。例
えば、上記多′ 段流体圧縮凹部3の各段部3b;3c
、3dの深さは各々6μ程度で、最も深い部分で約20
μとなるように形成する。
The fluid bearing 1 is provided with a plurality (six in the illustrated case) of multistage fluid compression recesses 3 whose inner diameters become smaller in sequence along the rotational direction A of the shaft 2 on its inner peripheral bearing surface. Further, the multi-stage fluid compression recess 3 is formed in three stages, a first stage part 3b, a second stage part 3C, and a third stage part 3d, with respect to the minimum diameter part 3a. For example, each step 3b; 3c of the multi-stage fluid compression recess 3
, 3d are each about 6μ deep, and the deepest part is about 20μ.
Form it so that it becomes μ.

その形成は、まず、第2図に示すように、最小径部3a
となる部位にレジスト膜4をコーティングし、レジメ1
〜膜4が形成されていない露出内周面を、所定の深さに
エツチングする。このレジスト膜4は軸受内周面をエツ
チングする際の抵抗性を有し、液体状のレジスト液を刷
毛もしくはマスキングを介してのスプレーによって塗布
し乾燥させたもの、または1、あらかじめフィルム状の
に形成されたものを貼り付けることによってコーティン
グする。また、エツチング処理は、化学エツチング、電
解エツチングもしくはドライエツチング等によって食刻
し、第1段部3bに必要な深さにエツチングする。
Its formation begins with the smallest diameter portion 3a as shown in FIG.
Coat the resist film 4 on the area where
~The exposed inner peripheral surface on which the film 4 is not formed is etched to a predetermined depth. This resist film 4 has resistance when etching the inner circumferential surface of the bearing, and can be prepared by applying a liquid resist solution by spraying with a brush or masking and drying it, or by preparing a film in advance. Coating by pasting the formed material. Further, the etching process is performed by chemical etching, electrolytic etching, dry etching, etc., and etching is performed to a depth required for the first step portion 3b.

次に、第3図に示すように、最小径部3aにレジスト膜
4を設けたままで、上記エツチング処理によって形成さ
れた凹部の内、第1段部3bとなる部位に第2のレジス
ト膜5をコーティングする。
Next, as shown in FIG. 3, while the resist film 4 is still provided on the minimum diameter portion 3a, a second resist film 5 is applied to a portion of the recess formed by the etching process that will become the first step portion 3b. Coating.

この第2のレジスト膜5の形成は、前記第1のレジスト
膜4と同様であって、例えば、第1段部3b以外の部分
をマスクフィルムで覆った状態で、レジスト液を刷毛塗
りもしくはスプレー塗布することによって形成する。続
いて、両レジスト膜4゜5を形成していない露出内周面
を、所定の深さにエツチングする。エツチング処理は、
前記第1のエツチング同様の処理によって食刻し、第2
段部3Cに必要な深さとなるようにエツチングする。
The formation of this second resist film 5 is similar to that of the first resist film 4, and for example, with the portion other than the first step portion 3b covered with a mask film, a resist solution is applied by brushing or spraying. Formed by coating. Subsequently, the exposed inner peripheral surface on which both resist films 4.5 are not formed is etched to a predetermined depth. The etching process is
It is etched by the same process as the first etching, and the second
Etch to the depth required for the stepped portion 3C.

さらに、最小径部3aおよび第1段部3bにレジスト膜
4,5を設けたままで、上記エツチング処理によって形
成した凹部の内、第4図に示すように、第2段部3Cと
なる部位に第3のレジスト膜6をコーティングする。こ
の第3のレジスト膜6の形成は、前記第2のレジスト膜
5と同様であって、例えば、第2段部3C以外の部分を
マスクフィルムで覆った状態で、レジスト液を刷毛塗り
もしくはスプレー塗布することによって形成する。
Furthermore, while the resist films 4 and 5 are still provided on the minimum diameter portion 3a and the first step portion 3b, a portion of the recess formed by the above etching process, which will become the second step portion 3C, is etched as shown in FIG. A third resist film 6 is coated. The third resist film 6 is formed in the same manner as the second resist film 5, and for example, with the portion other than the second step portion 3C covered with a mask film, a resist solution is applied by brushing or spraying. Formed by coating.

続いて、レジスト膜4.5.6を形成していない露出内
周面を、所定の深さにエツチングし、第3段部3dを形
成する。エツチング処理は、前記エツチングと同様の処
理によって食刻し、第3段部3dに必要な深さとなるよ
うにエツチングする。
Subsequently, the exposed inner peripheral surface on which the resist film 4.5.6 is not formed is etched to a predetermined depth to form the third step portion 3d. In the etching process, etching is performed by the same process as the etching described above, and etching is performed to a depth required for the third step portion 3d.

上記の如くレジスト膜4,5..6の形成とエツチング
を繰り返して、第3段部3dを形成すると、上記レジス
ト膜4.5.6を有機溶剤等によって溶解除去し、これ
によって前記多段流体圧縮凹部3が所望の形状に形成さ
れた流体軸受1を得ることができる。
As described above, the resist films 4, 5. .. 6 and etching are repeated to form the third step portion 3d, the resist film 4.5.6 is dissolved and removed using an organic solvent or the like, thereby forming the multi-stage fluid compression recess 3 in a desired shape. A hydrodynamic bearing 1 can be obtained.

上記多段流体圧縮凹部3は、流体軸受1の軸受内周面に
軸心に平行に形成するほか、軸心に対して傾斜するよう
に角度をもって形成するようにしても良く、また、流体
軸受1の軸心中央部を境に両側で傾斜の向きが変更する
V字状にもしくはW字状に形成するようにしても良い。
The multi-stage fluid compression recess 3 may be formed on the bearing inner circumferential surface of the fluid bearing 1 parallel to the axis, or may be formed at an angle so as to be inclined with respect to the axis. It may be formed in a V-shape or a W-shape in which the direction of inclination changes on both sides with the central part of the axis as a boundary.

その場合、軸2に対して油圧発生部がら旋状に位置し、
円周上均等に存在するので、軸2がより安定して回転す
るものである。また、軸受1と軸2との間への流体の補
給がスムーズに行えるものである。
In that case, the hydraulic pressure generating part is located in a spiral shape with respect to the shaft 2,
Since they are evenly distributed on the circumference, the shaft 2 rotates more stably. Further, fluid can be smoothly supplied between the bearing 1 and the shaft 2.

なお、軸受内周面への多段流体圧縮凹部3の配設数は、
上記6分割のほか必要に応じて適宜設定され、また、そ
の段数も適宜設計変更されるものである。また、特に、
多段流体圧縮凹部3の形成を高精度に行う場合には、内
周面全体にフォトレジスト膜を形成し、このフォトレジ
スト膜を所定のパターンを有するフォトマスクを介して
露光し、現像処理することによってレジスト膜を所定の
パターンに精度良くコーティングすることができるフォ
トレジストの技術を使用するようにしても良い。
Note that the number of multistage fluid compression recesses 3 provided on the inner circumferential surface of the bearing is as follows:
In addition to the above-mentioned six divisions, the number of stages may be appropriately set as necessary, and the design of the number of stages may be changed as appropriate. Also, especially
When forming the multi-stage fluid compression recess 3 with high precision, a photoresist film is formed on the entire inner peripheral surface, and this photoresist film is exposed through a photomask having a predetermined pattern and developed. Alternatively, a photoresist technique that can accurately coat a resist film in a predetermined pattern may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によって製造された流体軸受の一例
をその四部形状を誇張して示す断面図、第2図ないし第
4図はそれぞれ製造工程を順に示す部分断面図である。 1・・・・・・流体軸受      2・・・・・・軸
3・・・・・・多段流体圧縮凹部  3a・・・・・・
最小径部3b・・−・・・第1段部     3G・・
・・・・第2段部3d・・・・・・第3段部 4.5.6・・・・・・レジスト膜 第1図 第2図
FIG. 1 is a cross-sectional view showing an example of a hydrodynamic bearing manufactured by the method of the present invention with its four parts exaggerated, and FIGS. 2 to 4 are partial cross-sectional views sequentially showing the manufacturing steps. 1...Fluid bearing 2...Shaft 3...Multi-stage fluid compression recess 3a...
Minimum diameter portion 3b...First step portion 3G...
...Second step section 3d...Third step section 4.5.6...Resist film Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)軸受面内周に軸の回転方向に沿って順次内径が小
さくなる多段流体圧縮凹部を複数形成してなる流体軸受
の製造方法であつて、最初に軸受最小径部を形成すべき
部位のみにレジスト膜をコーティングした後、内周面を
第1段部に必要な深さにエッチングし、次に上記レジス
ト膜に加えて第1段部を形成すべき部位にレジスト膜を
コーティングして残部の内周面を第2段部に必要な深さ
にエッチングし、上記ステップを所望段部が形成される
まで繰り返すことにより、軸受面内周に多段流体圧縮凹
部を形成することを特徴とする流体軸受の製造方法。
(1) A method for manufacturing a fluid bearing in which a plurality of multi-stage fluid compression recesses are formed on the inner periphery of the bearing surface, the inner diameter of which decreases sequentially along the rotational direction of the shaft, where the minimum diameter portion of the bearing is to be formed first. After coating the resist film on only the resist film, the inner circumferential surface is etched to the depth required for the first step, and then in addition to the resist film, a resist film is coated on the area where the first step is to be formed. The remaining inner circumferential surface is etched to a depth required for the second step, and the above steps are repeated until the desired step is formed, thereby forming a multi-stage fluid compression recess on the inner circumference of the bearing surface. A manufacturing method for hydrodynamic bearings.
JP16034984A 1984-07-31 1984-07-31 Method for manufacturing fluid bearing Pending JPS6138217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16034984A JPS6138217A (en) 1984-07-31 1984-07-31 Method for manufacturing fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16034984A JPS6138217A (en) 1984-07-31 1984-07-31 Method for manufacturing fluid bearing

Publications (1)

Publication Number Publication Date
JPS6138217A true JPS6138217A (en) 1986-02-24

Family

ID=15713056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16034984A Pending JPS6138217A (en) 1984-07-31 1984-07-31 Method for manufacturing fluid bearing

Country Status (1)

Country Link
JP (1) JPS6138217A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177453A (en) * 1992-01-09 1993-07-20 Think Lab Kk Manufacture of emboss roll
US5328272A (en) * 1991-12-23 1994-07-12 International Business Machines Spindle system for a disk drive
US5328270A (en) * 1993-03-25 1994-07-12 International Business Machines Corporation Hydrodynamic pump
CN107061501A (en) * 2017-06-06 2017-08-18 袁虹娣 The miniature ladder bearing of abnormity
CN107228120A (en) * 2017-06-19 2017-10-03 袁虹娣 New energy-conservation ramp platform thrust slide bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328272A (en) * 1991-12-23 1994-07-12 International Business Machines Spindle system for a disk drive
US5430590A (en) * 1991-12-23 1995-07-04 International Business Machines Corporation Spindle system for a disk drive
JPH05177453A (en) * 1992-01-09 1993-07-20 Think Lab Kk Manufacture of emboss roll
US5328270A (en) * 1993-03-25 1994-07-12 International Business Machines Corporation Hydrodynamic pump
CN107061501A (en) * 2017-06-06 2017-08-18 袁虹娣 The miniature ladder bearing of abnormity
CN107228120A (en) * 2017-06-19 2017-10-03 袁虹娣 New energy-conservation ramp platform thrust slide bearing

Similar Documents

Publication Publication Date Title
US6698735B2 (en) Fluid bearings and vacuum chucks and methods for producing same
US6439774B1 (en) Rotary air bearing and process for manufacturing the same
US6267869B1 (en) Electrode design for electrochemical machining of grooves
JPS6138217A (en) Method for manufacturing fluid bearing
JP2007511897A (en) Photoresist coating process for microlithography
US4761210A (en) Method for generating structures in micro-mechanics
TWI257979B (en) Dynamic bearing manufacturing method
Kim et al. Micro gas bearings fabricated by deep X-ray lithography
KR100213925B1 (en) Method for forming hydrodynamic groove on fluid bearing
JPS5947517A (en) Fluid bearing with dynamic pressure generating mechanism and manufacturing method thereof
JPH0474874A (en) Method for working surface of tube
JPH017849Y2 (en)
JP3842415B2 (en) Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing
US20090117496A1 (en) Method for treating surface of element
JPS6211491B2 (en)
KR100191003B1 (en) Groove forming method for bearing of dynamic press
JPS5850314A (en) Porous static pressure gas bearing
JPS59106718A (en) Dynamic-pressure type fluid bearing apparatus
JP2001214936A (en) Manufacturing method for aerodynamic or hydrodynamic bearing and bearing manufactured thereby
JPS63308217A (en) Bearing made of ceramics and its manufacture
KR100408273B1 (en) Manufacture method for ink-jet head of single unit type
KR100196932B1 (en) Fluid journal bearing system
KR19980059007A (en) Manufacturing method of thrust bearing and thrust bearing manufactured by this method
JPS63242422A (en) Manufacture of fluid bearing
JP2001115278A (en) Method for forming groove for generating dynamic pressure