JPH017849Y2 - - Google Patents

Info

Publication number
JPH017849Y2
JPH017849Y2 JP10660981U JP10660981U JPH017849Y2 JP H017849 Y2 JPH017849 Y2 JP H017849Y2 JP 10660981 U JP10660981 U JP 10660981U JP 10660981 U JP10660981 U JP 10660981U JP H017849 Y2 JPH017849 Y2 JP H017849Y2
Authority
JP
Japan
Prior art keywords
shaft
bearing
groove
bearing device
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10660981U
Other languages
Japanese (ja)
Other versions
JPS5816428U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10660981U priority Critical patent/JPS5816428U/en
Publication of JPS5816428U publication Critical patent/JPS5816428U/en
Application granted granted Critical
Publication of JPH017849Y2 publication Critical patent/JPH017849Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【考案の詳細な説明】 本考案は、軸体および軸受を非接触に軸支する
ことのできる動圧気体軸受装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrodynamic gas bearing device capable of pivotally supporting a shaft body and a bearing in a non-contact manner.

従来、動圧気体軸受装置として、円筒軸受に軸
支される円柱状の軸体の外周面上にヘリングボー
ン(herring bone)状すなわち軸方向に対して
一定角度傾斜した複数の溝が刻設されたヘリング
ボーン溝軸受装置が用いられている。上記ヘリン
グボーン溝は、溝深さが数10μm程度以下であり
かつ軸線に対して一定角度傾斜しているので通常
の機械加工は適用できず溝加工は例えば化学腐食
加工などのような特殊加工に依拠している。とこ
ろが、上記化学腐食加工はパターン作図、フイル
ム作成、レジスト塗布、露光、エツチング等のよ
うな複雑な工程を経由しなければならないので、
生産能率がすこぶる低いのみならず、化学腐食に
より溝を形成するので、溝の断面形状は角形状に
限定されてしまい、動圧の発生という点からは好
ましくない。しかも、溝は軸線方向に対して一定
角度傾斜しているので軸体の回転方向が定まつて
しまい、まんいち逆回転した場合、重大な損傷を
招来する虞がある。
Conventionally, in a hydrodynamic gas bearing device, a plurality of grooves are carved in a herringbone shape, that is, inclined at a certain angle with respect to the axial direction, on the outer peripheral surface of a cylindrical shaft body that is supported by a cylindrical bearing. A herringbone groove bearing device is used. The above-mentioned herringbone groove has a groove depth of several tens of micrometers or less and is inclined at a certain angle with respect to the axis, so normal machining cannot be applied, and groove machining is suitable for special machining such as chemical corrosion machining. Relying on. However, the chemical corrosion processing described above requires complicated steps such as pattern drawing, film creation, resist coating, exposure, etching, etc.
Not only is the production efficiency extremely low, but since the grooves are formed by chemical corrosion, the cross-sectional shape of the grooves is limited to a rectangular shape, which is undesirable from the viewpoint of generating dynamic pressure. Moreover, since the groove is inclined at a certain angle with respect to the axial direction, the direction of rotation of the shaft body is fixed, and if the shaft rotates in the opposite direction all the time, there is a risk of serious damage.

本考案は、上記事情を勘案してなされたもの
で、軸体の外周面に横断面形状が左右対称の円弧
状をなし且つ軸方向に平行な溝を複数個等配して
設けることにより、機械加工が容易で軸受として
の性能が向上した動圧気体軸受装置を提供するこ
とを目的とする。
The present invention was made in consideration of the above circumstances, and by providing a plurality of grooves equally spaced in the outer peripheral surface of the shaft body, the cross-sectional shape of which has a symmetrical circular arc shape and which is parallel to the axial direction. An object of the present invention is to provide a hydrodynamic gas bearing device that is easy to machine and has improved performance as a bearing.

以下、本考案を図面を参照して実施例に基づい
て詳述する。
Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.

第1図に示す動圧気体軸受装置は、いわゆるジ
ヤーナル軸受の一種で、円筒状の軸受1と、この
軸受1により軸支された上記軸受1よりもわずか
に小さい径の円柱状の軸体2とから構成されてい
る。そうして、第2図に示すように、軸体2の外
周面上にはこの軸体2の中心軸線と平行な複数の
直線状の溝3…が等配して形成されている。この
溝3…は、たとえばボールエンドミルを用いたフ
ライス加工で製作されていて、各溝3…の中心軸
線に直角な断面形状は、第3図に示すように、円
弧で、その最大深さは、数10μmないし数100μm
の範囲内である。そうして、各溝3…の中心軸線
に直角な断面形状は左右対称になつている。
The hydrodynamic gas bearing device shown in FIG. 1 is a type of so-called journal bearing, and includes a cylindrical bearing 1 and a cylindrical shaft body 2 with a slightly smaller diameter than the bearing 1, which is supported by the cylindrical bearing 1. It is composed of. As shown in FIG. 2, a plurality of linear grooves 3 parallel to the central axis of the shaft 2 are equally distributed on the outer peripheral surface of the shaft 2. These grooves 3 are manufactured by milling using a ball end mill, for example, and the cross-sectional shape perpendicular to the central axis of each groove 3 is an arc, as shown in Figure 3, and its maximum depth is , several tens of μm to several hundred μm
is within the range of Thus, the cross-sectional shape of each groove 3 perpendicular to the central axis is symmetrical.

しかして、この動圧気体軸受装置において軸体
2をたとえば10000r.p.m以上の高速で回転させる
と、回転にともなつて第3図中の動圧曲線4で示
すような動圧が発生し、軸体2は軸受1に対し完
全非接触で軸支される。上記動圧は、溝3…中に
巻き込まれた空気の渦動と、各溝3…の軸受1内
周面に対するくさび作用とが相俟つて発生するも
のである。したがつて、本実施例の動圧気体軸受
装置を用いたスピンドルでは、数万r.p.mの回転
を安定して、かつ高精度で得ることができる。ち
なみに、第4図は、本実施例の動圧気体軸受装置
と従来のヘリングボーン溝軸受装置との回転安定
性を示している。この図において、Λは、圧縮数
(Compressibility Number)と呼ばれる無次元
数であつて、次式で与えられる。
Therefore, when the shaft body 2 is rotated at a high speed of, for example, 10,000 rpm or higher in this hydrodynamic gas bearing device, a dynamic pressure as shown by the dynamic pressure curve 4 in FIG. 3 is generated as the shaft rotates. The shaft body 2 is supported by the bearing 1 in a completely non-contact manner. The above-mentioned dynamic pressure is generated by a combination of the vortices of the air caught in the grooves 3 and the wedge action of each groove 3 on the inner circumferential surface of the bearing 1. Therefore, the spindle using the hydrodynamic gas bearing device of this embodiment can stably rotate at tens of thousands of rpm with high precision. Incidentally, FIG. 4 shows the rotational stability of the hydrodynamic gas bearing device of this embodiment and the conventional herringbone groove bearing device. In this figure, Λ is a dimensionless number called a compressibility number and is given by the following equation.

Λ=6μω/Pa(R/Cr)2 … ただし、μは気体粘性係数、ωは回転角速度、
Paは大気圧、Rは軸体の半径、Crは軸受の半径
すきまである。一方、は、安定限界値と呼ばれ
るもので次式で与えられる。
Λ=6μω/Pa(R/Cr) 2 ...where, μ is the gas viscosity coefficient, ω is the rotational angular velocity,
Pa is the atmospheric pressure, R is the radius of the shaft, and Cr is the radial clearance of the bearing. On the other hand, is called the stability limit value and is given by the following equation.

=ω(MCr/PaLD)1/2 … ただし、Lは軸体の長さ、Dは軸径であつてR
の2倍、Mは軸体の質量である。この第5図にお
いて溝深さは、次式で与えられる。
= ω (MCr/PaLD) 1/2 … However, L is the length of the shaft, D is the shaft diameter, and R
twice, M is the mass of the shaft. In FIG. 5, the groove depth is given by the following equation.

=δ/Cr … つまり、=1の場合は、半径すきまと溝深さ
が等しいことを示している。この第4図において
は、が1,2,3である本実施例の動圧気体軸
受装置の安定・不安定領域及びが1.35みぞ流入
角βが25゜のヘリングボーン溝軸受装置の安定・
不安定領域が示されている。ただし、この場合、
偏心率ε=0.5L/D=1となつている。この図に
おいて、不安定領域においては、ふれまわりが発
生し不安定現象を生じ、他方の安定領域において
はふれまわりは生じず高精度の回転を得ることが
できる。かくして、第4図が示すように、本実施
例の動圧気体軸受装置は、ヘリングボーン溝軸受
装置に比べて例えばΛ=50以上の大きなΛ領域に
ても回転安定性を維持することができる。つま
り、本実施例の動圧気体軸受装置は、ヘリングボ
ーン溝軸受装置に比べてより高速域、あるいは軸
受すきまがより小さい場合でも安定して焼付きを
生じることなく使用できる。したがつて、設計条
件を広く取ることができる結果、軸受装置として
の汎用性が格段に向上する格別の効果を奏する。
さらに、上述のように、溝3…は軸体2の中心軸
線に平行かつ直線状に形成されているので、機械
加工により溝3…の断面形状を円弧に形成するこ
とが可能となり、従来の特殊加工による溝形成に
比べて、より能率的かつ高精度で溝加工を行なう
ことができる。したがつて、溝3…の断面が円弧
に形成されていることにより、従来のヘリングボ
ーン溝のような角形状に比べて、動圧が大きくな
り気体軸受としての性能が向上する。さらにま
た、溝3…は横断面形状が左右対称の円弧状をな
し、なおかつ、中心軸線に平行かつ直線状に形成
されているので、正逆いずれの方向の回転に対し
ても同一の軸受性能を得ることができる。
=δ/Cr... In other words, when =1, it indicates that the radial clearance and the groove depth are equal. In FIG. 4, the stable/unstable regions of the hydrodynamic gas bearing device of this embodiment are 1, 2, and 3, and the stable/unstable regions of the herringbone groove bearing device where the groove inflow angle β is 25° are 1.35.
Regions of instability are shown. However, in this case,
Eccentricity ε=0.5L/D=1. In this figure, in the unstable region, whirling occurs and an unstable phenomenon occurs, and in the other stable region, whirling does not occur and highly accurate rotation can be obtained. Thus, as shown in FIG. 4, the hydrodynamic gas bearing device of this embodiment can maintain rotational stability even in a large Λ region of Λ=50 or more, compared to a herringbone groove bearing device. . In other words, the hydrodynamic gas bearing device of this embodiment can be used stably without seizure even at higher speeds or when the bearing clearance is smaller than the herringbone groove bearing device. Therefore, a wide range of design conditions can be adopted, and as a result, the versatility of the bearing device is greatly improved, which is an exceptional effect.
Furthermore, as mentioned above, since the grooves 3 are formed linearly and parallel to the central axis of the shaft body 2, it is possible to form the cross-sectional shape of the grooves 3 into an arc by machining, which is different from the conventional method. Compared to groove formation by special machining, groove processing can be performed more efficiently and with high precision. Therefore, by forming the cross section of the grooves 3 in an arcuate shape, the dynamic pressure is increased and the performance as a gas bearing is improved compared to a square shape such as a conventional herringbone groove. Furthermore, since the grooves 3 have a symmetrical arc cross-sectional shape and are formed in a straight line and parallel to the central axis, the bearing performance is the same for both forward and reverse rotations. can be obtained.

なお、上記実施例においては、各溝3…の軸方
向に直角な断面形状は円弧であるが、これに限る
ことなく、軸方向に直角な断面が左右対称であれ
ば楕円弧でもよい。
In the above embodiment, the cross-sectional shape of each groove 3 perpendicular to the axial direction is a circular arc, but is not limited to this, and may be an elliptical arc as long as the cross-sectional shape perpendicular to the axial direction is symmetrical.

以上のように、本考案の動圧気体軸受装置は、
軸体の外周面に横断面形状が左右対称の円弧状を
なし且つ軸方向に平行な複数の溝を等配したもの
で、溝形成に通常の機械加工を適用することが可
能になるので、従来のヘリングボーン溝軸受装置
に比べて溝形成を迅速、高精度かつ廉価で行なう
ことができるようになる。しかも、軸受特性が向
上しなおかつ正逆いずれの方向の回転に対しても
同一の軸受性能を得ることができるようになる結
果、ヘリングボーン溝軸受装置よりも軸受設計条
件が緩和するので、軸受装置としての汎用性が向
上するという格別の効果を奏する。
As described above, the hydrodynamic gas bearing device of the present invention is
The outer circumferential surface of the shaft body has a symmetrical arc cross-sectional shape and multiple grooves parallel to the axis are equally distributed, making it possible to apply normal machining to groove formation. Compared to conventional herringbone groove bearing devices, grooves can be formed quickly, with high precision, and at low cost. Furthermore, the bearing characteristics have been improved and the same bearing performance can be obtained for both forward and reverse rotations, resulting in easier bearing design conditions than herringbone groove bearing devices. This has the extraordinary effect of improving the versatility of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例における動圧気体軸
受装置の軸方向に直角な断面図、第2図は第1図
の動圧気体軸受装置の斜視図、第3図は同じく第
1図の動圧気体軸受装置の要部断面図、第4図は
軸受の安定曲線を示すグラフ。 1…軸受、2…軸体、3…溝。
FIG. 1 is a cross-sectional view perpendicular to the axial direction of a hydrodynamic gas bearing device according to an embodiment of the present invention, FIG. 2 is a perspective view of the hydrodynamic gas bearing device shown in FIG. 1, and FIG. FIG. 4 is a sectional view of a main part of a hydrodynamic gas bearing device, and FIG. 4 is a graph showing a stability curve of the bearing. 1...Bearing, 2...Shaft body, 3...Groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 円柱状の軸体と、この軸体を軸支する軸受とを
備え、上記軸体の外周面には軸方向に直角な横断
面形状が左右対称の円弧状をなしかつ上記軸方向
に平行な動圧発生溝が複数本等配して形成されて
いることを特徴とする動圧気体軸受装置。
The shaft has a cylindrical shaft and a bearing that pivotally supports the shaft, and the shaft has a cross-sectional shape perpendicular to the axial direction that is symmetrical and parallel to the axial direction. A dynamic pressure gas bearing device characterized in that a plurality of dynamic pressure generating grooves are formed at equal intervals.
JP10660981U 1981-07-20 1981-07-20 Dynamic pressure gas bearing device Granted JPS5816428U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10660981U JPS5816428U (en) 1981-07-20 1981-07-20 Dynamic pressure gas bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10660981U JPS5816428U (en) 1981-07-20 1981-07-20 Dynamic pressure gas bearing device

Publications (2)

Publication Number Publication Date
JPS5816428U JPS5816428U (en) 1983-02-01
JPH017849Y2 true JPH017849Y2 (en) 1989-03-02

Family

ID=29901076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10660981U Granted JPS5816428U (en) 1981-07-20 1981-07-20 Dynamic pressure gas bearing device

Country Status (1)

Country Link
JP (1) JPS5816428U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625311B2 (en) * 1992-03-13 1997-07-02 大同メタル工業株式会社 Multi-arc bearing and method of manufacturing the same
US6428211B1 (en) * 1998-03-10 2002-08-06 Sumitomo Electric Industries, Ltd. Hydrodynamic gas bearing structure

Also Published As

Publication number Publication date
JPS5816428U (en) 1983-02-01

Similar Documents

Publication Publication Date Title
JP2516967B2 (en) Bearing device
JP4602497B2 (en) Bearing device and spindle motor assembly using the same
JP3592713B2 (en) Air bearing
JPH017849Y2 (en)
KR0185739B1 (en) Dynamic pressure gas bearing structure
KR100213882B1 (en) Hydrodynamic fluid bearing with uniform pressure distribution
JPH0215726B2 (en)
US2403489A (en) Bearing construction for turbines or the like
US5997180A (en) Circumferential flow type dynamic pressure bearing
US6428211B1 (en) Hydrodynamic gas bearing structure
US11703079B2 (en) Bearing element with a smooth continuous profile
JPH11247843A (en) Dynamic pressure gas journal bearing
KR200177723Y1 (en) Air dynamic pressure bearing apparatus having micro pockets
JP2945256B2 (en) Dynamic pressure gas bearing and method of manufacturing the dynamic pressure gas bearing
JPS63312509A (en) Fluid bearing structure
JPH11101224A (en) Dynamic pressure gas journal bearing
JPS5737116A (en) Spindle device
KR100196932B1 (en) Fluid journal bearing system
JPS63285320A (en) Fluid bearing structure
JPS6322333Y2 (en)
JPH03157513A (en) Bearing structure
JPH03204411A (en) Dynamic-pressure air bearing with asymmetric groove
JPH0457888B2 (en)
JPH0722123U (en) Dynamic pressure air bearing
JPS6319621Y2 (en)