JPH0722123U - Dynamic pressure air bearing - Google Patents
Dynamic pressure air bearingInfo
- Publication number
- JPH0722123U JPH0722123U JP5831493U JP5831493U JPH0722123U JP H0722123 U JPH0722123 U JP H0722123U JP 5831493 U JP5831493 U JP 5831493U JP 5831493 U JP5831493 U JP 5831493U JP H0722123 U JPH0722123 U JP H0722123U
- Authority
- JP
- Japan
- Prior art keywords
- sleeve
- air bearing
- inner diameter
- dynamic pressure
- pressure air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
(57)【要約】 (修正有)
【目的】 動圧空気軸受におけるラジアル軸受の、湿度
による起動摩擦の増大を最小限に抑えた動圧空気軸受を
得る。
【構成】 軸1にスリーブ2を遊嵌してなる動圧空気軸
受本体と、円筒形状から僅かに樽型、釣り鐘型、または
テーパ状に変形させ、さらに樽型を除く場合には中心部
分に空間を設けたスリ−ブとで構成している。
(57) [Summary] (Modified) [Purpose] To obtain a dynamic pressure air bearing that minimizes the increase in starting friction due to humidity in the radial bearing of the dynamic pressure air bearing. [Structure] A dynamic pressure air bearing main body in which a sleeve 2 is loosely fitted on a shaft 1, and a barrel shape, a bell shape, or a taper shape is deformed slightly from the cylindrical shape. It is composed of a sleeve with a space.
Description
【0001】[0001]
本考案は、情報機器、画像機器、計測機器に用いられる光偏向器の動圧空気軸受 に関する。 The present invention relates to a dynamic pressure air bearing for an optical deflector used in information equipment, image equipment, and measuring equipment.
【0002】[0002]
レーザビームプリンタ、フィルム製版器等に於いてポリゴンミラー、プリズム 等を高速で回転させ光ビームを走査する光偏向器が用いられている。その軸受に は通常ボールベアリングなどが用いられているがより一層の高速化、高精度化を めざし動圧空気軸受型光偏向器の開発が進められている。動圧空気軸受は軸また はスリーブの回転により発生する空気動圧により軸受を構成するものである。し かしながらその圧力は小さいため必要な軸受剛性を確保するには軸とスリーブの 隙間を極めて小さく取る必要がある。一般的な軸とスリーブの隙間は半径にして 2乃至8μm程度である。この隙間は1μm違うだけで軸受剛性に多大の影響を 与えるので軸及びスリーブは極めて精度よく加工される必要があった。 In a laser beam printer, a film plate making machine, etc., an optical deflector for rotating a polygon mirror, a prism, etc. at a high speed to scan a light beam is used. Ball bearings are usually used for the bearings, but development of a dynamic pressure air bearing type optical deflector is underway with the aim of further increasing speed and accuracy. The dynamic pressure air bearing constitutes the bearing by the dynamic air pressure generated by the rotation of the shaft or the sleeve. However, since the pressure is small, it is necessary to make the gap between the shaft and sleeve extremely small in order to secure the required bearing rigidity. The gap between the general shaft and the sleeve is about 2 to 8 μm in radius. Only a gap of 1 μm has a great effect on bearing rigidity, so the shaft and sleeve had to be machined with extremely high precision.
【0003】[0003]
動圧空気軸受はスリーブと軸の回転速度差により動圧を発生するので当然静止 時には動圧は発生せず、軸とスリーブは接触状態にある。起動時にはこの接触に よる摩擦力より大きなトルクをモータで発生させ起動している。ところが高湿度 雰囲気中では必要な起動トルクが増大するという現象が発生する。これは図6に 示すように軸1とスリーブ2の接触部近辺に薄い水の膜Aができ表面張力による 軸1とスリーブ2の吸いつき現象が発生し、その結果軸1とスリーブ2が押しつ けられ摩擦が増大するためと考えられる。動圧空気軸受の性能は軸1とスリーブ 2の隙間が1μm変化するだけで変わってくるため図7に示すように従来の動圧 空気軸受では軸1及びスリーブ2が極めて精度よく加工されており、結果として 接触部分が大きくなるため高湿度雰囲気中では起動に必要なトルクが極端に増大 するという問題点があった。またこれまでの設計でも加工誤差等によりスリーブ 形状が釣り鐘型になってしまうという現象はあったがそれだけでは接触面積は図 8、図9に示すようにまだかなり大きく起動トルクの増大は避けられなかった。 このときのトルクを出すためにはモータ定数を大きくするかモータ電流を大きく する必要があり、どちらを採用するにしてもモータ、電源、ドライブ回路に多大 な負担を強いるものであった。 Since the dynamic pressure air bearing generates dynamic pressure due to the difference in rotational speed between the sleeve and shaft, naturally no dynamic pressure is generated at rest, and the shaft and sleeve are in contact. At startup, the motor generates a torque that is greater than the frictional force due to this contact. However, the phenomenon occurs that the required starting torque increases in a high humidity atmosphere. As shown in FIG. 6, a thin water film A is formed in the vicinity of the contact portion between the shaft 1 and the sleeve 2, and the phenomenon of sticking between the shaft 1 and the sleeve 2 due to the surface tension occurs. As a result, the shaft 1 and the sleeve 2 are pushed. It is thought that this is because friction is increased. Since the performance of the dynamic pressure air bearing changes only when the gap between the shaft 1 and the sleeve 2 changes by 1 μm, the shaft 1 and the sleeve 2 are processed with extremely high precision in the conventional dynamic pressure air bearing as shown in FIG. As a result, the contact area becomes large and the torque required for start-up increases extremely in a high humidity atmosphere. In the previous designs, there was a phenomenon that the sleeve shape became bell-shaped due to processing errors, etc. However, the contact area was still quite large as shown in Figs. 8 and 9, and an increase in starting torque was unavoidable. It was In order to generate the torque at this time, it is necessary to increase the motor constant or increase the motor current, and whichever method is adopted, a great burden is imposed on the motor, the power supply, and the drive circuit.
【0004】[0004]
本考案は以上の課題を解決するため、軸1にスリーブ2を遊嵌して構成される 動圧空気軸受において、スリーブ2の内径形状を樽型に形成、または、スリーブ 2の内径形状を釣り鐘型に形成し、さらにスリーブ2の中心付近に内径が大なる 部分Bを設ける、または、スリーブ2の内径形状を釣り鐘型に形成し、さらに軸 1のスリーブ2の中心付近に対応する部分に外径が小なる部分Cを設ける、また は、スリーブ2の中心付近に内径が大なる部分Bを設け、その両側のスリーブ2 の内径形状をテーパ状に形成する。さらにそのスリーブ2の両端側の内径と、中 心側の内径の差を0.5μm乃至5μmとした動圧空気軸受型光偏向器である。 In order to solve the above problems, the present invention provides a dynamic pressure air bearing configured by loosely fitting a sleeve 2 on a shaft 1. The inner diameter of the sleeve 2 is formed into a barrel shape, or the inner diameter of the sleeve 2 is bell-shaped. The sleeve 2 is formed into a mold, and a portion B having a large inner diameter is provided near the center of the sleeve 2, or the inner diameter of the sleeve 2 is formed into a bell shape, and the outer portion is provided outside the portion corresponding to the center of the sleeve 2 of the shaft 1. A portion C having a small diameter is provided, or a portion B having a large inner diameter is provided in the vicinity of the center of the sleeve 2, and the inner diameter shape of the sleeve 2 on both sides thereof is formed in a tapered shape. Further, it is a dynamic pressure air bearing type optical deflector in which the difference between the inner diameter on both ends of the sleeve 2 and the inner diameter on the center side is 0.5 μm to 5 μm.
【0005】[0005]
本考案では、スリーブの形状を円筒形状から僅かに樽型、釣り鐘型、またはテ ーパ状に変形させ、さらに樽型を除く場合には中心部分に空間を設けているので 静止時の軸とスリーブの接触面積が極めて小さく、高湿度中で軸、及びスリーブ に薄い水の膜ができたとしても接触面積が小さいため接触部にはたらく表面張力 が極めて小さくなるので高湿度中でも起動摩擦の増大を防止するという作用を有 する。 In the present invention, the sleeve shape is slightly deformed from a cylindrical shape to a barrel shape, a bell shape, or a taper shape, and when the barrel shape is excluded, a space is provided in the central portion, so that the sleeve is The contact area of the sleeve is extremely small, and even if a thin water film is formed on the shaft and the sleeve in high humidity, the contact area is small, so the surface tension acting on the contact area is extremely small, so the starting friction increases even in high humidity. It has the effect of preventing.
【0006】[0006]
以下、図面を参照して本考案の実施例について説明する。図1は本考案による 構成の動圧空気軸受の第1の実施例の断面図である。動圧軸1とスリーブ2は回 転自在に嵌合されておりスリーブ2の内径は中心部の径が小さく両端部の径が大 きい釣り鐘型に加工されている。スリーブ2内径の両端部と中心部の径の差は例 えば4μmである。一方回転軸1のスリーブ内となっている部分に2組のヘリン グボーン溝3が形成されておりこれにより動圧ラジアル空気軸受を構成する。ま た回転軸1のスリーブ2の中心部に対応する部分Cの径は他の部分の径より例え ば1mm小さくなっている。スリーブ2の中心部には穴4があけられ、軸が1m m小さくなっている部分Cを大気圧にしている。このような軸受形状にすること により静止時の接触部はD,Eの2点の近辺のみとなり水の膜の形成面積を最小 限に抑え起動摩擦の増大を抑えることができる。図2は第2の実施例であって図 1と同様であるがスリーブの中心部の軸を1mm削り込む変わりにスリーブ2を 1mm径を大きく(B)したものである。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a first embodiment of a dynamic pressure air bearing constructed according to the present invention. The dynamic pressure shaft 1 and the sleeve 2 are rotatably fitted together, and the inner diameter of the sleeve 2 is processed into a bell shape with a small diameter at the center and large diameters at both ends. The difference between the inner diameter of the sleeve 2 and the inner diameter of the sleeve 2 is, for example, 4 μm. On the other hand, two sets of herringbone grooves 3 are formed in the portion of the rotary shaft 1 that is inside the sleeve, and thus a dynamic pressure radial air bearing is formed. Further, the diameter of the portion C corresponding to the central portion of the sleeve 2 of the rotary shaft 1 is smaller than the diameters of the other portions by, for example, 1 mm. A hole 4 is formed at the center of the sleeve 2, and the portion C where the axis is reduced by 1 mm is set to the atmospheric pressure. With such a bearing shape, the contact portion at rest is only in the vicinity of the two points D and E, and it is possible to minimize the formation area of the water film and suppress the increase of the starting friction. FIG. 2 shows a second embodiment, which is similar to FIG. 1, except that the sleeve 2 is enlarged by 1 mm in diameter (B) instead of cutting the axis of the central portion of the sleeve by 1 mm.
【0007】 図3は本考案による動圧空気軸受の第3の実施例である。スリーブ2の中心部 には他の部分のスリーブ内径より例えば1mm径の大きい部分Bが形成されてい る。さらに他の部分のスリーブ内径は外向きのテーパー状に加工されている。作 用に付いては第1の実施例と同様である。図4は第4の実施例であって図3の例 と同様であるがスリーブ内径を内向きのテーパー状としたものである。テーパー は最小径と最大径の差が例えば4μmとなるようにつけられている。図5は本考 案の第5の実施例であってスリーブ2の内側を樽型に形成したものである。 以上の実施例のいずれにおいても静止時の軸とスリーブの接触部はD,Eの2 点の近辺のみとなり水の膜の形成を最小限にとどめ起動摩擦の増大を防止する構 造となっている。実際にスリーブ内径を研磨によって仕上げることを考えた場合 、第1と第2の実施例が最適である。研磨の場合通常でも周辺部分がだれるとい う現象が起こるのでこの現象をわざとおこさせ両端部を4μm広げる加工は容易 に行える。他の実施例においてもそれぞれ加工方法に適する形状を選ぶことで加 工は容易に行える。またこのようにスリーブ2が真の円筒でないと当然ながら軸 受剛性などの軸受性能に影響を与えるが当初からスリーブ2の形状を本考案の形 状として設計すれば本考案の範囲内であれば必要な軸受性能を持つ軸受の設計は 可能である。FIG. 3 is a third embodiment of the dynamic pressure air bearing according to the present invention. A portion B having a diameter of, for example, 1 mm larger than the inner diameter of the sleeve of the other portion is formed in the center of the sleeve 2. Further, the inner diameter of the sleeve of the other portion is processed to have an outward taper shape. The operation is the same as in the first embodiment. FIG. 4 shows a fourth embodiment, which is similar to the example of FIG. 3, but the inner diameter of the sleeve is tapered inward. The taper is attached so that the difference between the minimum diameter and the maximum diameter is, for example, 4 μm. FIG. 5 shows a fifth embodiment of the present invention in which the inside of the sleeve 2 is formed into a barrel shape. In any of the above embodiments, the contact portion between the shaft and the sleeve at rest is only in the vicinity of the two points D and E, and the structure is such that the formation of the water film is minimized and the increase of the starting friction is prevented. There is. Considering that the inner diameter of the sleeve is actually finished by polishing, the first and second embodiments are optimal. In the case of polishing, the phenomenon that the peripheral part is sagging usually occurs, so it is easy to intentionally cause this phenomenon and widen both ends by 4 μm. Also in the other examples, the processing can be easily performed by selecting the shape suitable for the processing method. If the sleeve 2 is not a true cylinder as described above, it naturally affects bearing performance such as bearing rigidity, but if the shape of the sleeve 2 is designed as the shape of the present invention from the beginning, it is within the scope of the present invention. It is possible to design a bearing with the required bearing performance.
【0008】[0008]
【考案の効果】 以上詳細に説明したように本考案によれば、スリーブの形状を円筒形状から僅 かに樽型、釣り鐘型、またはテーパ状に変形させ、さらに樽型を除く場合には中 心部分に空間を設けているので静止時の軸とスリーブの接触面積が極めて小さく 、高湿度中で軸、及びスリーブに薄い水の膜ができたとしても接触面積が小さい ため接触部にはたらく表面張力が極めて小さくなるので高湿度中でも起動摩擦の 増大を防止するという効果を有する。As described above in detail, according to the present invention, the sleeve shape is slightly changed from a cylindrical shape to a barrel shape, a bell shape, or a taper shape. Since the space is provided in the core, the contact area between the shaft and sleeve at rest is extremely small, and even if a thin water film is formed on the shaft and sleeve in high humidity, the contact area is small, so the surface that works for the contact part Since the tension is extremely low, it has the effect of preventing an increase in starting friction even in high humidity.
【図1】本考案による動圧空気軸受の第1の実施例を示
す断面図。FIG. 1 is a sectional view showing a first embodiment of a dynamic pressure air bearing according to the present invention.
【図2】本考案による動圧空気軸受の第2の実施例を示
す断面図。FIG. 2 is a sectional view showing a second embodiment of the dynamic pressure air bearing according to the present invention.
【図3】本考案による動圧空気軸受の第3の実施例を示
す断面図。FIG. 3 is a sectional view showing a third embodiment of the dynamic pressure air bearing according to the present invention.
【図4】本考案による動圧空気軸受の第4の実施例を示
す断面図。FIG. 4 is a sectional view showing a fourth embodiment of the dynamic pressure air bearing according to the present invention.
【図5】本考案による動圧空気軸受の第5の実施例を示
す断面図。FIG. 5 is a sectional view showing a fifth embodiment of the dynamic pressure air bearing according to the present invention.
【図6】動圧空気軸受の起動摩擦の増大を説明する図。FIG. 6 is a diagram illustrating an increase in starting friction of a dynamic pressure air bearing.
【図7】従来の動圧空気軸受の一例の断面図。FIG. 7 is a sectional view of an example of a conventional dynamic pressure air bearing.
【図8】従来の動圧空気軸受の別の例の断面図。FIG. 8 is a sectional view of another example of a conventional dynamic pressure air bearing.
【図9】従来の動圧空気軸受のさらに別な例を示す断面
図。FIG. 9 is a sectional view showing still another example of a conventional dynamic pressure air bearing.
1:動圧軸、 2:スリーブ、
3:ヘリングボーン溝、 4:穴、A:水の
膜、 B、C:空間、D、E:軸
とスリーブの接触部。1: dynamic pressure shaft, 2: sleeve,
3: Herringbone groove, 4: Hole, A: Water film, B, C: Space, D, E: Shaft and sleeve contact part.
Claims (4)
される動圧空気軸受において、スリーブ(2)の内径形
状を樽型に形成し、スリーブ(2)の両端部の内径と中
心部の内径の差を0.5μm乃至5μmとしたことを特
徴とする動圧空気軸受。1. A dynamic air bearing constructed by loosely fitting a sleeve (2) on a shaft (1), wherein the inner diameter of the sleeve (2) is formed into a barrel shape, and both ends of the sleeve (2) are formed. A dynamic pressure air bearing, wherein the difference between the inner diameter and the inner diameter of the central portion is 0.5 μm to 5 μm.
される動圧空気軸受において、スリーブ(2)の内径形
状を釣り鐘型に形成し、さらにスリーブ(2)の中心付
近に内径が大なる部分を設け、スリーブ(2)の両端部
の内径と中心部の内径が大なる部分に接する部分の内径
の差を0.5μm乃至5μmとしたことを特徴とする動
圧空気軸受。2. A dynamic pressure air bearing formed by loosely fitting a sleeve (2) on a shaft (1), wherein the inner diameter of the sleeve (2) is formed in a bell shape, and the sleeve (2) is further near the center thereof. The inner diameter of the sleeve (2) is increased, and the difference between the inner diameters of both ends of the sleeve (2) and the inner portion of the sleeve (2) contacting the inner diameter of the sleeve is set to 0.5 μm to 5 μm. bearing.
される動圧空気軸受において、スリーブ(2)の内径形
状を釣り鐘型に形成し、さらに軸(1)のスリーブ
(2)の中心付近に対応する部分に外径が小なる部分を
設け、スリーブ(2)の両端部の内径と中心部の内径の
差を0.5μm乃至5μmとしたことを特徴とする動圧
空気軸受。3. A dynamic pressure air bearing constructed by loosely fitting a sleeve (2) on a shaft (1), wherein the inner diameter of the sleeve (2) is formed in a bell shape, and the sleeve (1) of the shaft (1) is further formed. The dynamic pressure is characterized in that a portion having a small outer diameter is provided in a portion corresponding to the vicinity of the center of 2), and the difference between the inner diameter of both ends of the sleeve (2) and the inner diameter of the central portion is 0.5 μm to 5 μm. Air bearing.
される動圧空気軸受において、スリーブ(2)の中心付
近に内径が大なる部分を設け、その両側のスリーブ
(2)の内径形状をテーパ状に形成し、スリーブ(2)
の両端部の内径と中心部の内径が大なる部分に接する部
分の内径の差を0.5μm乃至5μmとしたことを特徴
とする動圧空気軸受。4. A dynamic air bearing constructed by loosely fitting a sleeve (2) on a shaft (1), wherein a portion having a large inner diameter is provided near the center of the sleeve (2), and the sleeves (2) on both sides thereof are provided. ) Has a tapered inner diameter, and the sleeve (2)
The dynamic pressure air bearing is characterized in that the difference between the inner diameters of both end portions and the portion in contact with the large inner diameter portion of the central portion is 0.5 μm to 5 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5831493U JPH0722123U (en) | 1993-09-30 | 1993-09-30 | Dynamic pressure air bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5831493U JPH0722123U (en) | 1993-09-30 | 1993-09-30 | Dynamic pressure air bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0722123U true JPH0722123U (en) | 1995-04-21 |
Family
ID=13080803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5831493U Pending JPH0722123U (en) | 1993-09-30 | 1993-09-30 | Dynamic pressure air bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0722123U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100865070B1 (en) * | 2007-07-10 | 2008-10-24 | 정옥희 | Hybrid composite shoulder bearing and method for manufacturing the same and rotor system having hybrid composite shoulder bearing |
JP2011038564A (en) * | 2009-08-07 | 2011-02-24 | Alphana Technology Co Ltd | Disk driving device |
DE102016008385A1 (en) * | 2016-07-12 | 2018-01-18 | Minebea Co., Ltd. | Spindle motor with improved run-in behavior |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501759B1 (en) * | 1969-10-11 | 1975-01-21 | ||
JPH04357318A (en) * | 1991-05-31 | 1992-12-10 | Matsushita Electric Ind Co Ltd | Fluid bearing device |
JPH0579510A (en) * | 1990-07-16 | 1993-03-30 | Lincoln Laser Co | Gas supporting type bearing with self- pressurizing system |
-
1993
- 1993-09-30 JP JP5831493U patent/JPH0722123U/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501759B1 (en) * | 1969-10-11 | 1975-01-21 | ||
JPH0579510A (en) * | 1990-07-16 | 1993-03-30 | Lincoln Laser Co | Gas supporting type bearing with self- pressurizing system |
JPH04357318A (en) * | 1991-05-31 | 1992-12-10 | Matsushita Electric Ind Co Ltd | Fluid bearing device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100865070B1 (en) * | 2007-07-10 | 2008-10-24 | 정옥희 | Hybrid composite shoulder bearing and method for manufacturing the same and rotor system having hybrid composite shoulder bearing |
JP2011038564A (en) * | 2009-08-07 | 2011-02-24 | Alphana Technology Co Ltd | Disk driving device |
DE102016008385A1 (en) * | 2016-07-12 | 2018-01-18 | Minebea Co., Ltd. | Spindle motor with improved run-in behavior |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5873657A (en) | Conic fluid bearing and head drum and spindle motor each including the same | |
US6123460A (en) | Hydrodynamic gas bearing structure and optical deflection scanner comprising the same | |
US5538347A (en) | Dynamic pressure bearing | |
JP4451771B2 (en) | Spindle motor | |
JPH0722123U (en) | Dynamic pressure air bearing | |
JPH0651224A (en) | Optical scanning device | |
JPH06235421A (en) | Spindle motor | |
JP3017068B2 (en) | Rotating polygon mirror drive motor | |
JPS60208629A (en) | Light deflector device | |
JP3095139B2 (en) | Fluid bearing device | |
JP3572796B2 (en) | Hydrodynamic bearing | |
JPH03292414A (en) | Air bearing for high speed revolution | |
JPH06311701A (en) | Spindle motor | |
JPH0669434U (en) | Gas bearing device | |
JPH03181612A (en) | Bearing device | |
JP2003166524A (en) | Hydrodynamic bearing unit | |
JPH0516408Y2 (en) | ||
JPH10311330A (en) | Dynamic pressure bearing and motor using the same | |
KR100213921B1 (en) | Assembling method of hemisphere bearing | |
JPH0574166U (en) | motor | |
JP2970124B2 (en) | Rotating head drum device | |
JP2560426Y2 (en) | Hydrodynamic bearing device | |
JPH08163817A (en) | Polygon motor | |
KR100235172B1 (en) | Dynamic-pressure gas bearing structure and optical deflection scanning apparatus | |
JP3193091B2 (en) | Manufacturing method of hydrodynamic bearing device |