JPS6137475A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137475A
JPS6137475A JP59159103A JP15910384A JPS6137475A JP S6137475 A JPS6137475 A JP S6137475A JP 59159103 A JP59159103 A JP 59159103A JP 15910384 A JP15910384 A JP 15910384A JP S6137475 A JPS6137475 A JP S6137475A
Authority
JP
Japan
Prior art keywords
layer
film
color
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159103A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159103A priority Critical patent/JPS6137475A/en
Publication of JPS6137475A publication Critical patent/JPS6137475A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain highly reliable and densely recordable optical recording element by providing constituent layers such as a layer A of color-forming compound, layer B of assistant color-forming material and a light-absorbing layer existing between the layer A and the layer B and making up both layers A, B of either a monomolecular film or an accumulated film. CONSTITUTION:The titled optical recording element is composed of a layer-A 2 of color-forming compound, a layer-B 4 of assistant color-forming compound and a light-absorbing layer 3 of light-absorbing material existing between the layers A and B. The layer-A 2 and layer-B 4 are laminates of monomolecular film or accumulated film of the former, and the light-absorbing layer 3 is a laminate of laminated films. The layer-B 4 is supported on a substrate 1 and the substrate, layer B, light-absorbing layer and layer A are laminated in that order. As a result, as compared to the conventional optical recording element, the titled element has the higher packing density and higher signal/noise ratio thus improving recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配向された有機薄膜を利用した高信頼・高密度
記録の可能な光記録素子に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an optical recording element using organic materials, and in particular to an optical recording device capable of highly reliable and high-density recording using a highly molecularly oriented organic thin film. It is related to the element.

[従−来の技術〕 最近、オフィス・オートメーション(OA)の中心的記
録(憶)素子として光ディスクが脚光を集めている。そ
の理由は光ディスク一枚で、大量の文書、文献などを記
録(又は記tα)できるからであり、したがって該光デ
ィスクを用いる情報記憶装置を導入するとオフィスにお
ける文書、文献の整理、管理に一大変革をもたらすもの
と期待されている。又、該光デイスク用記録材料として
は安価性、製作容易性、高雀度記録性等の特徴を有する
有機材料が注目されている。
[Prior Art] Recently, optical disks have been attracting attention as a central recording device for office automation (OA). The reason for this is that a large amount of documents, literature, etc. can be recorded (or recorded) on a single optical disc, and therefore, introducing an information storage device using this optical disc will revolutionize the organization and management of documents and literature in offices. It is expected that this will bring about In addition, as recording materials for optical discs, organic materials are attracting attention because they have characteristics such as low cost, ease of manufacture, and high-speed recording performance.

この様な有機記録材を用いる従来技術の中で、特に発色
剤と助色剤の接触による発色反応を利用する二成分系の
光記録素子が報告されている(日経産業新聞 昭和58
年IO月18日〕。
Among the conventional techniques using such organic recording materials, a two-component optical recording element that utilizes a color reaction caused by contact between a color former and an auxiliary has been reported (Nikkei Sangyo Shimbun, 1972).
IO month 18th].

該光記録;(3子の1例をI:2面に基づいて説明する
と、第2図(a)に示す様に発色剤層7と助色剤層5と
が光吸収層6によって隔てられて基板1上に積層された
構成からなるものである。
Optical recording; (Explaining one example of triplets based on the I:2 plane, as shown in FIG. It has a structure in which the substrate 1 is laminated on the substrate 1.

発色剤(ロイコ体)及び助色剤は各々単独で存存すると
きは明色又は淡色である。
The coloring agent (leuco substance) and the auxiliary colorant are light or pale in color when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収層6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があく。
When recording on the recording element, a laser beam 8 is irradiated onto a desired position of the light absorption layer 6 as shown in FIG. 2(b).
The portion of the light-absorbing layer that is irradiated with the laser beam absorbs the laser beam, melts, and rips, leaving a small hole.

その結果、第2図(C)に示す様に光吸収層6によって
隔てられていた発色剤と助色剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射率、透過率等の変化を検出するこ
とにより行われる。
As a result, as shown in FIG. 2(C), the color forming agent and the auxiliary color agent, which were separated by the light absorbing layer 6, mix through the small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflectance, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点] 上記の光記録素子に於いて、記録の高密度化を図るため
には光吸収層6が極力薄く、平坦で、かつ膜厚のむらの
ないものが望ましい。しかしながら、従来の光記録素子
において、光吸収層は例えば真空蒸着法又は回転塗布法
などによって基板上に被膜されているため、厚さを20
0〜500A以下に薄くしようとすればピンホールが多
発しやすく、このピンホールの箇所で発色剤と助色剤の
2成分が接触して発色するため、信4S1性に欠ける欠
点があった。その上、前記の従来の被膜方法で形成され
る各層の膜内の分子分布配向がランダムであるため、光
照射に伴って膜内で光散乱が生じ、微視的にみた場合、
各光照射の度に生ずる化学反応の度合が異なってくる。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording density, it is desirable that the light absorption layer 6 be as thin as possible, flat, and without unevenness in film thickness. However, in conventional optical recording elements, the light absorption layer is coated on the substrate by, for example, a vacuum evaporation method or a spin coating method, so the thickness is reduced to 20%.
If an attempt is made to reduce the thickness to 0 to 500 A or less, pinholes are likely to occur frequently, and the two components, the coloring agent and the auxiliary colorant, come into contact with each other at these pinholes and develop color, resulting in a lack of reliability. Moreover, since the molecular distribution and orientation within the film of each layer formed by the above-mentioned conventional coating method is random, light scattering occurs within the film with light irradiation, and when viewed microscopically,
The degree of chemical reaction that occurs with each light irradiation differs.

さらに、上述の被膜方法では光ディスクの基板を大面積
化すると、膜厚のむらが生じ、記録品質のわらが発生す
る等の欠点があった。
Furthermore, the above-mentioned coating method has drawbacks such as unevenness in film thickness and poor recording quality when the substrate area of an optical disk is increased.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむらもないことが望ま
しく、またできる限り膜厚が薄いことが、記録め高圧痩
化、高信頼化のために要望される0本発明はかかる要望
に鑑みてなされたもので、本発明の目的は高信頼・高密
度記録が可能な光記録素子を提供することにある。本発
明の別の目的は製作容易で安価な光記録素子を提供する
ことにある。本発明のさらに別の目的は大面積の光記録
素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation within the film be uniform, that there are no pinholes, and that there is no unevenness in the film thickness, and that the film thickness be as thin as possible to achieve high-pressure thinning and high reliability. The present invention has been made in view of these demands, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-density recording. Another object of the present invention is to provide an optical recording element that is easy to manufacture and inexpensive. Yet another object of the present invention is to provide a large-area optical recording element.

[問題点を解決するための手段]及び[作用コ即ち、本
発明は通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層と、A層とB層との間に介在する光吸
収層とからなり、かつ (イ)前記A層は発色性化合物の単分子膜又はその累積
膜からなる層、 (ロ)前記B層は助色性化合物の単分子膜又はその累積
Nからなる層、 から構成されることを特徴とする光記録素子である。
[Means for Solving the Problems] and [Operations] In other words, the present invention consists of a layer A consisting of a color-forming compound that is usually colorless or light-colored, and a layer B consisting of an auxochrome compound that develops a color when it comes into contact with the color-forming compound. and a light absorption layer interposed between the A layer and the B layer, and (a) the A layer is a monomolecular film of a color-forming compound or a cumulative film thereof, and (b) the B layer. is an optical recording element characterized by comprising a monomolecular film of an auxochrome compound or a layer consisting of a cumulative N thereof.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は通常無色ないし淡色の発色
性化合物からなるA H,と、前記発色性化合物と接触
して発色せしめる助色性化合物からなるB層との間に、
光吸収層を介在せしめた構成からなるものであり、該A
層及びB層には互に接触、!足金することにより発色す
る物質を組合せて用いることが基本的に要請される。こ
の様な関係にあるA層の通常無色ないし淡色の発色性化
合物及びB層の前記発色性化合物と接触して発色せしめ
る助色性化合物の具体例を示すと (イ) 酸性物質(B層)と該酸性物質に接触すること
によって発色する染料のロイコ体(色素前駆体)(A層
) (ロ)酸化剤(B層)と該酸化剤に接触することによっ
て発色する染料の°ロイコ体(A層)(ハ)還元剤(B
層)と該還元剤に接触することによって発色する染料の
ロイコ体(A層)(ニ)還元剤(B層)とステアリン酸
第2#、のように還元されると発色する酸化剤(A層)
(ホ)酸化剤(B層)と没食子酸のように醇化されると
発色する還元剤(A層) 等が挙げられる。
The optical recording element according to the present invention has a layer B between an AH composed of a color-forming compound that is usually colorless or light-colored, and a layer B composed of an auxochromic compound that develops a color when brought into contact with the color-forming compound.
It consists of a structure in which a light absorption layer is interposed, and the A
Layer and B layer are in contact with each other,! Basically, it is required to use a combination of substances that develop color when added. Specific examples of the normally colorless to light-colored color-forming compound in layer A and the auxochrome compound that develops color when they come into contact with the color-forming compound in layer B, which have such a relationship, are as follows: (a) Acidic substance (layer B) and the leuco form of the dye (dye precursor) that develops color when it comes into contact with the acidic substance (layer A) (b) The leuco form of the dye that develops color when it comes into contact with the oxidizing agent (layer B) and the oxidizing agent (layer B) A layer) (c) Reducing agent (B
layer) and a leuco form of dye that develops color when it comes into contact with the reducing agent (layer A) (d) reducing agent (layer B) and an oxidizing agent (layer A) that develops color when reduced, such as #2 stearic acid. layer)
(e) An oxidizing agent (layer B) and a reducing agent (layer A) which develops a color when thickened, such as gallic acid.

前記(イ)の場合をさらに詳しく例示すれば、染料のロ
イコ体と接触して反応し発色せしめるB層の酸性物質と
しては、ベンゼンスルポン酸等の芳香族スルホン酸化合
物、安息香酸等の芳香族カルボン酸類、パルミチン酸(
C:、、H,、C00)I)、ステアリン酸(C1?H
15COOH)、アラキシン酸(C,9H,fcOOH
)等の高級脂肪酸カルボン酸類、p−t−ブチルフェノ
ール、α−ナフトール、β−ナフトール、フェノールフ
タレイン、ビスフェノールA、 4−ヒドロキシジフェ
ノキシド、4−ヒドロキシアセトフェノン等のフェノー
ル性化合物等が挙げられる。
To give a more detailed example of the case (a) above, the acidic substances in the B layer that react with the leuco form of the dye and develop color include aromatic sulfonic acid compounds such as benzenesulfonic acid, aromatic acids such as benzoic acid, etc. group carboxylic acids, palmitic acid (
C:,,H,,C00)I), stearic acid (C1?H
15COOH), araxic acid (C,9H,fcOOH)
), phenolic compounds such as pt-butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, 4-hydroxydiphenoxide, and 4-hydroxyacetophenone.

次に、前記酸性物質と接触して反応するA層の染料のロ
イコ体としては例えば、トリフェニルメタン系、フルオ
ラン系、フェノチアジン系、オーラミン系、スピロピラ
ン系等があり、それ等に含まれる具体的な化合物の詳細
を提示すると第゛1表の通りである。
Next, examples of the leuco dyes in the A layer that react with the acidic substance include triphenylmethane, fluoran, phenothiazine, auramine, and spiropyran. Details of the compounds are shown in Table 1.

本発明においてA層及びB層はいずれも単分子膜又はそ
の累積膜からなる層から形成されるために、前記の発色
性化合物及び助色性化合物はいずれも分子内の適当な部
位に親木基、疎水基又はその両方の基を導入した誘導体
を用いる必要がある。
In the present invention, both the A layer and the B layer are formed from a monomolecular film or a layer consisting of a cumulative film thereof. It is necessary to use a derivative into which a group, a hydrophobic group, or both groups are introduced.

疎水基及び親水基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and hydrophilic group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the parent group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

なお、A層及びB層の膜厚は200AからlOルの範囲
が望ましく、好適には1,000 Aから1pの範囲で
ある。
The thickness of the A layer and the B layer is desirably in the range of 200 Å to 100 Å, preferably in the range of 1,000 Å to 1 p.

次に、本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収して溶融する溶融性光吸
収色素、又は赤外線を吸収して昇華する昇華性光吸収色
素が好適である。
Next, as the light-absorbing substance used for forming the light-absorbing layer in the present invention, a meltable light-absorbing dye that absorbs infrared rays and melts, or a sublimable light-absorbing dye that absorbs infrared rays and sublimates is suitable. .

該かる光吸収色素の一例をあげれば、例えば銅フタロシ
アニン、バナジウムフタロシアニン等の金属フタロシア
ニン、フルオレスセイン等のキサンチン系色素等がある
Examples of such light-absorbing dyes include metal phthalocyanines such as copper phthalocyanine and vanadium phthalocyanine, and xanthine dyes such as fluorescein.

該光吸収層は従来の被膜方法により形成される膜であれ
ば如何なる膜でもよく、それ等の中で例えば蒸着膜、塗
布1り、浸漬膜、ラミネート等の堆積膜からなる層が好
ましい。
The light-absorbing layer may be any film formed by a conventional coating method, and among these, a layer made of a deposited film such as a vapor-deposited film, a coating film, a dipping film, or a laminate film is preferable.

なお光吸収層の膜厚は90Aから1000Aの範囲が望
ましく、好適には140Aから40OAの範囲である。
The thickness of the light absorption layer is preferably in the range of 90A to 1000A, preferably in the range of 140A to 40OA.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の金属材料、好適に
は強化ガラス、更に好適にはアクリル(PMMA) 、
ポリカーボネート(pc) 、ポリプロピレン、ポ0塩
化ビニール(pvc ) 、ポリスチレン等のプラスチ
ック材料、セラミック材料が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, metal materials such as aluminum, preferably tempered glass, more preferably acrylic (PMMA),
Plastic materials such as polycarbonate (PC), polypropylene, polyvinyl chloride (PVC), polystyrene, and ceramic materials are preferred.

本発明に係わる光記録素子はA層は発色性化合物の単分
子膜又はその累積膜からな−る層及びB層は助色性化合
物の単分子膜又はその累積膜からなる層から構成される
ことを1つの特徴とするものである。
In the optical recording element according to the present invention, layer A is composed of a monomolecular film of a color-forming compound or a cumulative film thereof, and layer B is composed of a monomolecular film of an auxochrome compound or a cumulative film thereof. This is one of its characteristics.

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積膜を作成する方法としては、例えば1.La
ngmuirらの開発したラングミュア・プロジェット
法(LB法)を用いる。ラングミュア・プロジェット法
は、例えば分子内に親木基と疎水基を有する構造の分子
において、両者のバランス(両親媒性のバランス)が適
度に保たれているとき、分子は水面上で親木基を下に向
けて単分子の層になることを利用して単分子膜または単
分子の累積膜を作成する方法である。水面上の単分子層
は二次元系の特徴をもつ。分子がまばらに散開している
ときは、一分子当り面積Aと表面圧nとの間に二次元理
想気体の式、 rlA= kT が成り立ち、“気体膜′°となる。ここに、kはポルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相互作用が強まり二次元固体の“凝縮膜(または
固体膜)°′になる。凝縮膜はプラスチック基板、ガラ
ス基板などの種々の材質や形状を有する担体の表面へ一
層ずつ移すことができる。
As a method for producing a monomolecular film or a cumulative film thereof having such high orderliness and orientation of molecules, for example, 1. La
The Langmuir-Prodgett method (LB method) developed by Ngmuir et al. is used. The Langmuir-Prodgett method is based on the Langmuir-Prodgett method. For example, when a molecule has a parent tree group and a hydrophobic group in its molecule, and the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule will react to the parent tree on the water surface. This is a method of creating a monomolecular film or a monomolecular cumulative film by using the fact that the monomolecular layer is formed with the group facing downward. A monolayer on the water surface has the characteristics of a two-dimensional system. When the molecules are sparsely dispersed, the two-dimensional ideal gas equation, rlA=kT, holds true between the area A per molecule and the surface pressure n, resulting in a "gas film'°. Here, k is Portzmann's constant, T, is the absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes strong, resulting in a two-dimensional solid "condensed film (or solid film) °'. The condensed film can be transferred layer by layer onto the surface of carriers having various materials and shapes, such as plastic substrates and glass substrates.

次に本発明に使用する発色性化合物又は助色性化合物で
ある親木基、疎水基を併有する有機分子の単分子膜又は
その累積膜を形成する方法についてさらに詳述する。
Next, a method for forming a monomolecular film or a cumulative film thereof of an organic molecule having both a parent group and a hydrophobic group, which is a color-forming compound or an auxochrome compound used in the present invention, will be described in more detail.

まず該有機分子をベンゼン、クロロホルム等の揮発性溶
剤に溶解し、シリンダ等でこれを第3図に概略した単分
子累積膜、形成装置の水槽lO内の水相11上に展開さ
せる。
First, the organic molecule is dissolved in a volatile solvent such as benzene or chloroform, and is spread using a cylinder or the like on the aqueous phase 11 in the water tank 10 of the monomolecular cumulative film forming apparatus schematically shown in FIG.

該有機分子は、溶剤の揮発に伴って、親木基12を水相
に向け、疎水基13を気相に向けた状態で水相11上に
展開する。
As the solvent evaporates, the organic molecules develop on the water phase 11 with the parent tree groups 12 facing the water phase and the hydrophobic groups 13 facing the gas phase.

次にこの析出物(有機分子)が水相11上を自由に拡散
して広がりすぎないように仕切板(または浮子)14を
設けて展開面積を制限してHλ膜物質集合状m1を制御
し、その集合状態に比例した表面圧■を得る。9の仕切
板14を動かし、展開面積を縮少して膜物質の集合状態
を11ノ目I目〜表面圧を徐々に上昇させ、累積膜の製
造に適する表面圧nを設定することができる。この表面
圧を維持しながら静かに清浄な基板14を垂直に上下さ
せることにより単分子膜16が基板上に移しとられる。
Next, to prevent the precipitates (organic molecules) from freely diffusing and spreading on the aqueous phase 11, a partition plate (or float) 14 is provided to limit the spread area and control the Hλ film material aggregate m1. , obtain a surface pressure ■ proportional to its collective state. By moving the partition plate 14 of No. 9 to reduce the developed area and gradually increase the surface pressure from the 11th point I onwards, it is possible to set the surface pressure n suitable for producing a cumulative film. By gently vertically moving the clean substrate 14 up and down while maintaining this surface pressure, the monomolecular film 16 is transferred onto the substrate.

単分子膜16は以上で製造されるが、単分子層累積膜1
7は前記の操作を繰り返すことにより所望の累積数の単
分子層累積膜が形成される。
Although the monomolecular film 16 is manufactured in the above manner, the monomolecular layer cumulative film 1
In step 7, by repeating the above operations, a desired cumulative number of monomolecular layers are formed.

例えば表面が親水性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親木基が基板15
側に向いた単分子層18が基板15上に形成される。前
述のように基板15を上下させると、各工程ごとに1枚
ずつ単分子層16が積み重なっていく、成膜分子の向き
が引上げ工程と浸せき工程で逆になるので、この方法に
よると各居間は有機分子の親水基と親木基、有機分子の
疎水基と疎水基が向かい合ういわゆるY型膜が形成され
る(第4図(a) ) 。
For example, when a substrate 15 with a hydrophilic surface is pulled out of water in a direction transverse to the water surface, parent wood groups of the organic molecules are removed from the substrate 15.
A side-facing monolayer 18 is formed on the substrate 15 . When the substrate 15 is moved up and down as described above, the monomolecular layer 16 is stacked one by one in each process.The direction of the film-forming molecules is reversed in the pulling process and the dipping process, so this method allows each living room to be In this case, a so-called Y-type film is formed in which the hydrophilic and parent groups of the organic molecules and the hydrophobic groups of the organic molecules face each other (Fig. 4(a)).

Yyrn口は有機分子の親水基同志、疎水基同志が向い
合っているので強固である。
The Yyrn mouth is strong because the hydrophilic groups and hydrophobic groups of the organic molecules face each other.

それに対し、基板15を水中に引き下げるときにのみ、
基板面に該有機分子を移し取る方法もある。
In contrast, only when lowering the substrate 15 into the water,
There is also a method of transferring the organic molecules onto the substrate surface.

この方法では、累積しても、成膜分子の向きの交代はな
く全ての層において、疎水基が基板15側に向いたX型
膜が形成される(第4図(b))。反対に全ての居にお
いて親木基が基板15側に向いた累積膜はX型膜と呼ば
れる(第4図(C) ) 。
In this method, there is no change in the direction of the film-forming molecules even if the films are accumulated, and an X-type film is formed in which the hydrophobic groups face the substrate 15 in all layers (FIG. 4(b)). On the other hand, a cumulative film in which all parent groups face the substrate 15 side is called an X-type film (FIG. 4(C)).

X型膜は基板15を水中から引上げるときにのみ、基板
面に有機分子を移し取ることによって得られる。
The X-type film is obtained by transferring organic molecules to the substrate surface only when the substrate 15 is lifted out of the water.

以上の方法によって基板上に形成される単分子膜及び単
分子層累積膜は高密度でしかも高度の秩序性・配向性を
有しており、これらの膜で記録層を構成することによっ
て、光熱的記録の可能な高密度で高解像度の記録機能を
有する記録素子を得ることができる。また、これら成膜
方法はその原理からも分る通り、非常に簡単な方法であ
り、上記のような優れた記録機能を有する記録素子を低
コストで提供することができ−る。
The monomolecular film and monomolecular layer cumulative film formed on the substrate by the above method have high density and a high degree of order and orientation, and by configuring the recording layer with these films, photothermal Accordingly, it is possible to obtain a recording element having a high-density and high-resolution recording function capable of performing digital recording. Further, as can be seen from the principle, these film forming methods are very simple methods, and a recording element having the above-mentioned excellent recording function can be provided at low cost.

以上述べた、本発明における単分子膜または単分子累積
膜を形成する基板は特に限定されないが、基板表面に界
面活性物質が付若していると、単分子層を水面から移し
とる時に、単分子膜が乱れ良好な単分子膜または単分子
層累積膜ができないので基板表面がIIII浄なるもの
を使用する必要がある。
The substrate on which the monomolecular film or monomolecular cumulative film in the present invention is formed as described above is not particularly limited, but if a surfactant is attached to the surface of the substrate, when the monomolecular layer is transferred from the water surface, Since the molecular film is disturbed and a good monomolecular film or monomolecular layer stack cannot be formed, it is necessary to use a substrate whose surface is III-level clean.

基板上の単分子膜または単分子層累積膜は、十分に強く
固定されており基板からの剥離、剥落を生じることはほ
とんどないが、付着力を強化する目的で基板と単分子1
1りまたは単分子層累積膜の間に接着層を設けることも
できる。さらに単分子層形成条件例えば水相の水素イオ
ン濃度、イオン種、水温、担体上げ下げ速度あるいは表
面圧の選択等によって付着力を強化することもできる。
A monomolecular film or a monomolecular layer stack on a substrate is sufficiently strongly fixed and rarely peels or peels off from the substrate.
An adhesive layer can also be provided between one or monolayer stacked films. Furthermore, the adhesion force can be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure.

次に、光吸収層の堆積膜の形成方法は前記光吸収性物質
にバインダーと水を添加した水混和物を、ボールミル等
を用いて粉砕混合した後、基板等の上に従来の通常の方
法で塗着して行う。
Next, the method for forming the deposited film of the light absorption layer is to grind and mix a water mixture in which a binder and water are added to the light absorbing substance using a ball mill or the like, and then apply it on a substrate, etc. using a conventional conventional method. Paint it with.

本発明に用いられる前記バインダーとしてはゼラチン、
でんぷんのごとき天然高分子物、硝酸繊維素、カルボキ
シメチルセルローズのごときm mll素環導体塩化ゴ
ム、環化ゴムのごとき天然ゴム可塑物などの半合成高分
子物、ポリイソブチレン、ポリスチロール、テルペン樹
脂、ポリアクリル酸、ポリアクリル酸エステル、ポリメ
タアクリル酩エステル、ポリアクリルニトリル、ポリア
クリルアミド、ポリ酢酸ビニル、ポリビニルアルコール
、ポリビニルピロリドン、ポリアセタール樹脂、ポリ塩
化ビニル、ポリビニルピリジン、ポリビニルカルバゾー
ル、ポリブタジェン、ポリスチレン−ブタジェン、ブチ
ルゴム、ポリオキシメチレン、ポリエチレンイミン、ポ
リエチレンイミンハイドロクロライド、ポリ(2−アク
リルオキシエチルジメチルスルホニウムクロライド)な
どのごとき重合型合”成膜分子、フェノール樹脂、アミ
ン樹脂、トルエン樹脂、アルキッド樹脂、不飽和ポリエ
ステル樹脂、アリル樹脂、ポリカーボネート、ポリアマ
イド樹脂、ポリエーテル樹脂、珪素樹脂、フラン樹脂、
チオコールゴムなどのごとき縮合重合型合成高分子、ポ
リウレタン、ポリ尿票、エポキシ樹脂などのごとき付加
重合型樹脂が挙げられる。
The binder used in the present invention includes gelatin,
Natural polymers such as starch, semi-synthetic polymers such as natural rubber plastics such as chlorinated rubber, cyclized rubber, polyisobutylene, polystyrene, terpene resins, etc. , polyacrylic acid, polyacrylic ester, polymethacrylic ester, polyacrylonitrile, polyacrylamide, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, polyacetal resin, polyvinyl chloride, polyvinylpyridine, polyvinylcarbazole, polybutadiene, polystyrene. Polymerizable synthetic film-forming molecules such as butadiene, butyl rubber, polyoxymethylene, polyethyleneimine, polyethyleneimine hydrochloride, poly(2-acryloxyethyldimethylsulfonium chloride), phenolic resins, amine resins, toluene resins, alkyd resins, Unsaturated polyester resin, allyl resin, polycarbonate, polyamide resin, polyether resin, silicone resin, furan resin,
Examples include condensation polymerization type synthetic polymers such as thiocol rubber, addition polymerization type resins such as polyurethane, polyurethane, and epoxy resins.

以上に説明した方法で製造される本発明に係わる光記録
素子の構成の1例を示すと、第1図に示す通り、発色性
化合物からなるA層2、助色性化合物からなるBq4及
びAiとBqの間に介在する光吸収性物質からなる光吸
収層3からなり、A層2及び3層4は単分子膜又はその
累v1膜、光吸収層3は堆積膜からなる積層体で、3層
4を基板1上に支持し、基板/B層/光吸収層/A層の
順に積層してなるものである。
An example of the structure of the optical recording element according to the present invention manufactured by the method described above is shown in FIG. 1, as shown in FIG. and Bq, the A layer 2 and 3 layer 4 are a monomolecular film or a laminate thereof, and the light absorption layer 3 is a laminate consisting of a deposited film. Three layers 4 are supported on a substrate 1 and are laminated in the order of substrate/B layer/light absorption layer/A layer.

さらに、他の例として前記積層体のA層を基板上に支持
し、基板/AA層光吸収W/BF3の順に積層してもよ
く、又前記積層体を2設置上積重ねて最下層のA層又は
B)Wを基板上に支持してもよい。
Further, as another example, the A layer of the laminate may be supported on a substrate and laminated in the order of substrate/AA layer light absorption W/BF3, or two laminates may be stacked on top of each other to form the lowest layer A. The layer or B) W may be supported on the substrate.

本発明に係わる光記録素子はA層とB層とを光吸収層に
よって隔離して構成されているので、赤外線照射によっ
て光吸収層を溶融ないし昇華せしめて所望の位置に孔を
あけることにより、A層の発色性化合物とBBの助色性
化合物が接触して発色反応が進行し、該位置に発色点を
形成し情報を記録することができる。
Since the optical recording element according to the present invention is constructed by separating the A layer and the B layer by a light absorption layer, by melting or sublimating the light absorption layer by infrared irradiation and making holes at desired positions, The color-forming compound of layer A and the auxochrome compound of BB come into contact, a color-forming reaction progresses, and a color-forming point is formed at the position, so that information can be recorded.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクから、情
報を書き込んだり或いは読取ったりするだめの光ピツク
アップの光学系を有する情報記憶装置の1例を第5図に
示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. FIG. 5 shows an example of an information storage device having an optical pickup optical system for writing and reading information from the optical disk.

該情報記憶装置は、制御回路27と光ピツクアップ光学
系からなる書き込み手段と、本発明に係わる光記録素子
と、出力回路28と光ピツクアップ光学系からなる読取
り手段とによって構成される。
The information storage device is composed of a writing means consisting of a control circuit 27 and an optical pickup optical system, an optical recording element according to the present invention, and a reading means consisting of an output circuit 28 and an optical pickup optical system.

書き込みは次のようにして行う、制御回路27は半導体
レーザ26の発振を制御する。従って、入力情報は制御
回路27及び半導体レーザ26によって光信号に変換さ
れる。光信号28は第5図に示す光ピツクアップ光学系
を通って同期回転している光ディスク18の記録層上に
結像され、上述の発色メカニズムにより発色記録される
Writing is performed as follows. The control circuit 27 controls the oscillation of the semiconductor laser 26. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 26. The optical signal 28 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer of the optical disc 18 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う。半導体レーザ26から発
する低出力の連続発振光を読取り光として使う。低出力
であるから、読取り中に発色記録が行われることはない
からである。または他の可視光用光源を読取り用光源と
して用いてもよい。
Reading is performed as follows. Low-power continuous wave light emitted from the semiconductor laser 26 is used as reading light. This is because, since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク18の基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアップ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disk 18 and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pickup optical system. This converts the signal into an electrical signal and reproduces and reads it.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の膜厚は1,000 A〜2,000 Aが
好適である。その他必要に応じて誘電体ミラーでもよい
The thickness of the metal reflective layer is preferably 1,000 A to 2,000 A. In addition, a dielectric mirror may be used as necessary.

更に、A層、B層、光吸収層等を保鰭するために最外層
の表面に保護層を設けてもよい。そのような保護層用材
料としては5i02等の誘電体、プラスチック樹脂、他
の重合性LB膜等が好適である。
Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the A layer, B layer, light absorption layer, etc. Suitable materials for such a protective layer include dielectrics such as 5i02, plastic resins, and other polymerizable LB films.

[実施例] 以下、実施例を示し、本発明をさらに具体的に説明する
。尚、下記において特に記述のない限り「部」は「重量
部」を「%」は「任:h15%」を表ゎすものとする。
[Example] Hereinafter, the present invention will be explained in more detail by showing examples. In the following, unless otherwise specified, "part" means "part by weight" and "%" means "15%".

合成例1(発色性化合物の合成例) クリスタルバイオレ・・I・ラクトン几、導体の合成例
式(I) で示されるm−7ミノ安息香酸誘導体1部と、式(II
) H で示されるミヒラーズヒドロール1部を奴としてCHK
憂ΣSOj H(パラトルエンスルホン酸)1部を加え
て8時間還流し、 式(ffI) (CH2)、7CH。
Synthesis Example 1 (Synthesis Example of Color-Forming Compound) Synthesis Example of Crystal Violet I Lactone, Conductor One part of the m-7 minobenzoic acid derivative represented by the formula (I), and one part of the m-7 minobenzoic acid derivative represented by the formula (II)
) CHK with 1 part of Michler's Hydrol indicated by H as
Add 1 part of H (para-toluenesulfonic acid) and reflux for 8 hours to obtain the formula (ffI) (CH2), 7CH.

で示されるトリフェニルメタン誘導体を生成した。A triphenylmethane derivative represented by was produced.

次に該生成物のトリフェニルメタン誘導体を2酸化鉛(
1部)存在下硫酸中で3時間加熱した後。
Next, the triphenylmethane derivative of the product was converted into lead dioxide (
1 part) after heating in the presence of sulfuric acid for 3 hours.

式(W)  CH3 (OH2)、7CH3 で示されるクリスタルバイオレットラクトン誘導体を得
た。
A crystal violet lactone derivative represented by the formula (W) CH3 (OH2), 7CH3 was obtained.

次いで、これに苛性ソーダ水溶液を加え、環化すること
により、 式(V) (C:)12)、7CH。
Next, a caustic soda aqueous solution was added to this and cyclized to obtain the formula (V) (C:)12), 7CH.

で示されるクリスタルバイオレットラクトン誘導体0.
2部を得た。
A crystal violet lactone derivative represented by 0.
Got 2 copies.

実施例1 (1) B層の形成方法 厚さ10)、直径180mmの円板上のガラス(ディス
ク)基板を充分に清浄にした。次に前述の単分子基Jj
’i装置を用いて助色性化合物であるアラキシン酸の単
分子累積膜を形成した。
Example 1 (1) Method for Forming Layer B A glass (disk) substrate on a disk with a thickness of 10 mm and a diameter of 180 mm was thoroughly cleaned. Next, the monomolecular group Jj mentioned above
A monomolecular cumulative film of araxic acid, an auxochrome compound, was formed using the 'i device.

該アラキシン酸の単分子累積膜の形成方法は、下記のよ
うに行った。
The method for forming the monomolecular cumulative film of alaxic acid was performed as follows.

基板が水面と垂直になるようにして、基板を水中に沈め
た後、7ラキジン酸を、濃度?×10°3mol/文の
クロロホルム溶液にして水面上に滴下し単分子膜を水面
上に展開する。表面圧を30dyne/cmに設定し、
速度2 cm/minで基板を上下して27層に累積し
た単分子累積膜’(Y型膜)を作成゛した。
After submerging the substrate in water so that it is perpendicular to the water surface, add 7 rachidic acid at a concentration of ? A chloroform solution of ×10°3 mol/liter is dropped onto the water surface to spread a monomolecular film on the water surface. Set the surface pressure to 30 dyne/cm,
The substrate was moved up and down at a speed of 2 cm/min to create a monomolecular cumulative film (Y-type film) having 27 layers.

同様の方法により、1層、50層、200層、400層
の単分子累積膜を各々作成した各試料を得た。
By the same method, samples of monomolecular cumulative films of 1 layer, 50 layers, 200 layers, and 400 layers were obtained.

(2)光吸収層の形成方法 次に、前記(1)で1!1・た各試料のガラス基板上に
形成したB5の上に、光吸収性物質であるバナジウムフ
タロシアニンの堆積膜を形成した。
(2) Method for forming a light-absorbing layer Next, a deposited film of vanadium phthalocyanine, which is a light-absorbing substance, was formed on the B5 formed on the glass substrate of each sample prepared in step (1) above. .

形成方法はバナジウムフタロシアニン7部、バインダー
としてポリビニルアルコール1部、水40部を混合し、
さらにボールミルを用いて数時間、粉砕混合し、基板の
B層上に回転塗布してバインダー中に分散したバナジウ
ムフタロシアニン(7) 堆積膜を(膜厚0.015 
g)得た。
The formation method is to mix 7 parts of vanadium phthalocyanine, 1 part of polyvinyl alcohol as a binder, and 40 parts of water.
Further, the mixture was ground and mixed for several hours using a ball mill, and then spin-coated onto the B layer of the substrate to form a deposited film of vanadium phthalocyanine (7) dispersed in the binder (thickness: 0.015
g) Obtained.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成した光
吸収層の上に前述の単分子累積装置を用いて発色性化合
物であるクリスタルバイオレットラクトン誘導体の単分
子累積膜を形成した。
(3) Method for Forming Layer A Next, on the light absorption layer formed on the glass substrate of each sample in (2) above, a crystal violet lactone derivative, which is a color-forming compound, was deposited on the light absorption layer formed on the glass substrate of each sample using the single molecule accumulator described above. A monomolecular cumulative film was formed.

該クリスタルバイオレットラクトン誘導体の単分子累積
膜の形成方法は5.下記のように行った。
The method for forming a monomolecular cumulative film of the crystal violet lactone derivative is described in 5. It was done as follows.

B層及び光吸収層を形成した基板が水面と垂直になるよ
うにして、基板をPH4の酸性液中に沈めた後、クリス
タルバイオレットラクトン誘導体を濃度2 X 10’
 mol/uのクロロホルム溶液にして水面上に滴下し
単分子膜を水面上に展開する。表面圧を30dyne/
cmに設定し、速度2cm/+sinで基板を上下して
第2表に示す各層に累積した単分子累積膜(Y型膜)を
各試料に作成した。
After submerging the substrate in an acidic solution of PH4 so that the substrate on which the B layer and the light absorption layer were formed is perpendicular to the water surface, a crystal violet lactone derivative was added at a concentration of 2 x 10'.
A chloroform solution of mol/u is dropped onto the water surface to spread a monomolecular film on the water surface. Surface pressure 30dyne/
cm, and the substrate was moved up and down at a speed of 2 cm/+sin to create a monomolecular cumulative film (Y-type film) for each sample, which was accumulated in each layer shown in Table 2.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
比較例として従来の同様の構r&、(全てが単分子膜又
はその累v1膜を使用しないで構成)に係る光ディスク
を第5図に示す情報記憶装置を用いて以下の記録条件下
で記録した後、読取り再生を行うことにより両者の性能
比較を行った。
(4) Performance test An optical recording element according to the present invention manufactured by the above-mentioned method and an optical disc according to a conventional similar structure r&, (all constructed without using a monomolecular film or a layer thereof) as a comparative example was recorded under the following recording conditions using the information storage device shown in FIG. 5, and then read and reproduced to compare the performance of the two.

〈記録条件〉 半導体レーザ波長 830n層 レーザ出力  6〜9+oW 記録周波数  5 MHz 光ディスクの回転数 1.80Orpm以上の条件下で
読み出しをレーザ出力1+mWで行い、信号/雑音比を
求めた結果を第2表に示す。
<Recording conditions> Semiconductor laser wavelength 830n layer laser output 6 to 9+oW Recording frequency 5 MHz Optical disk rotation speed 1.80 Orpm or higher, readout was performed with a laser output of 1+mW, and the results of calculating the signal/noise ratio are shown in Table 2. Shown below.

第2表 註・・・本は比較例を示し、各層の形成は回転塗布法に
より行った。
Notes to Table 2: This book shows comparative examples, and each layer was formed by a spin coating method.

第2表の結果よりNo、l (A層及び奔委奉層が一単
分子膜からな名湯台)とNo、8とを比較すると、であ
るにもかかわらず、性能に差異が生じたのはN001の
方がピンホール等の欠陥が少ないためと思われる。
From the results in Table 2, when comparing No. 1 (a famous bathhouse where the A layer and the free layer are made of a single monomolecular film) and No. 8, there was a difference in performance despite the fact that This is probably because N001 has fewer defects such as pinholes.

同様に、No、2〜No、5(A層及び幕弊−一層が単
分子の累積膜からなる場合)とNo、7との比較では、
No、2〜No、5の方が信号/!I音比において優れ
ることが認められる。
Similarly, in comparing No. 2 to No. 5 (A layer and Makuei - when one layer consists of a monomolecular cumulative film) and No. 7,
No, 2 to No, 5 is the signal/! It is recognized that the I tone ratio is excellent.

[発明の効果] 以上説明した様に本発明に係わる光記録素子はA層及び
3層が単分子膜又はその累積膜からなる層、光吸収層は
堆積膜からなる層で構成されているので、以下に示すよ
うな優れた効果がある。
[Effects of the Invention] As explained above, in the optical recording element according to the present invention, the A layer and the third layer are composed of a monomolecular film or a cumulative film thereof, and the light absorption layer is composed of a layer composed of a deposited film. , it has the following excellent effects.

(1)従来の単分子膜又はその累積膜を使用していない
光記録素子と比較して信号/雑音比が高く、記録の信頼
性を向上させることができる。
(1) Compared to optical recording elements that do not use conventional monomolecular films or their cumulative films, the signal/noise ratio is higher, and the reliability of recording can be improved.

(2)光記録素子のピンホール等の物理的欠陥を大幅に
減少させることができる。
(2) Physical defects such as pinholes in optical recording elements can be significantly reduced.

(3)従来の光記録素子と比べて、より高密度記録が可
能である。
(3) Higher density recording is possible than with conventional optical recording elements.

(4)光記録素子の大面積化が可能である。(4) It is possible to increase the area of the optical recording element.

(5)感度が向上し、製作の際に材料の選択の巾が広く
製造が容易であり、又読み取りの際コントラストと非コ
ントラストの差がつきやすい等の光学物性上の効果があ
る。
(5) Sensitivity is improved, there is a wide range of materials to choose from during manufacturing, manufacturing is easy, and there are effects in terms of optical properties such as the difference between contrast and non-contrast being easily discernible during reading.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる光記録素子の1例を示す概略構
成断面図、第2図(a)〜第2図(C)は従来の光記録
素子の記録プロセスを示す説明図、第3図は単分子累M
n’2形成装置の概略構成断面図、第4図(a)〜第4
図(c)は単分子累積膜の作製工程図及び第5図は情報
記憶装置のブロック図である。
FIG. 1 is a schematic cross-sectional view showing an example of the optical recording element according to the present invention, FIGS. 2(a) to 2(C) are explanatory diagrams showing the recording process of a conventional optical recording element, and FIG. The figure shows a single molecule cumulative M
Schematic cross-sectional view of the n'2 forming device, FIGS. 4(a) to 4
Figure (c) is a manufacturing process diagram of a monomolecular cumulative film, and Figure 5 is a block diagram of an information storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層と、A層とB層との間に介在する光吸
収層とからなり、かつ (イ)前記A層は発色性化合物の単分子膜又はその累積
膜からなる層、 (ロ)前記B層は助色性化合物の単分子膜又はその累積
膜からなる層、 から構成されることを特徴とする光記録素子。
(1) A layer consisting of a normally colorless or light-colored color-forming compound, a B layer consisting of an auxochrome compound that develops color when in contact with the color-forming compound, and light absorption interposed between the A layer and the B layer. (a) the A layer is a monomolecular film of a color-forming compound or a cumulative film thereof; and (b) the B layer is a monomolecular film of an auxochrome compound or a cumulative film thereof. An optical recording element comprising: .
JP59159103A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137475A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159103A JPS6137475A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159103A JPS6137475A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137475A true JPS6137475A (en) 1986-02-22

Family

ID=15686302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159103A Pending JPS6137475A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137475A (en)

Similar Documents

Publication Publication Date Title
US4581317A (en) Optical recording element
JPS58224793A (en) Optical recording medium
US4538159A (en) Ceramic overcoated optical recording element
JPS6137475A (en) Optical recording element
JPS6163489A (en) Photo-recording element
JPS6163491A (en) Photo-recording element
US4681834A (en) Optical recording element
JPS6137476A (en) Optical recording element
JPS6137477A (en) Optical recording element
JPS6137482A (en) Optical recording element
JPS6137479A (en) Optical recording element
JPS6137487A (en) Optical recording element
JPS6137474A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPS6163939A (en) Information storage device
JPS6163483A (en) Optical recording element
JPS6137486A (en) Optical recording element
JPS6163487A (en) Optical recording element
JPS6137481A (en) Optical recording element
JPS6163481A (en) Optical recording element
JPS6137473A (en) Optical recording element
JPS6137489A (en) Optical recording element
JPS6137484A (en) Optical recording element
JPS6137480A (en) Optical recording element
JPH0477969B2 (en)