JPS6137481A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137481A
JPS6137481A JP59159109A JP15910984A JPS6137481A JP S6137481 A JPS6137481 A JP S6137481A JP 59159109 A JP59159109 A JP 59159109A JP 15910984 A JP15910984 A JP 15910984A JP S6137481 A JPS6137481 A JP S6137481A
Authority
JP
Japan
Prior art keywords
layer
film
light
color
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159109A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159109A priority Critical patent/JPS6137481A/en
Publication of JPS6137481A publication Critical patent/JPS6137481A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain highly reliable and densely recordable optical recording elements by laminating a layer A of color-forming compound and a layer B of assistant color-forming compound with a light-absorbing layer and making up the layer B of either a monomolecular film or an accumulated film of the former. CONSTITUTION:A layer-A 2 of color-forming compound and a layer-B 4 of assistant color-forming compound are laminated with a light-absorbing layer 3 provided on the layer-B 4. The layer-B 4 is a laminate of a monomolecular film or an accumulated film of the former, and the layer-A 2 and the light-absorbing layer 3 are laminates of laminated films. The light-absorbing layer 3 is supported on a substrate 1 and the substrate, light-absorbing layer, layer B and layer A are laminated in that order. Consequently, the titled optical recording element has higher packing density than the conventional element. The former also has a higher signal/noise ratio and subsequently a higher recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配量されたイ゛1機薄膜を利用した高信頼・高
密度記録の可能な光記録素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording element using an organic material, and in particular to a highly reliable and high-density recording device using a highly molecularly oriented monolayer thin film. The present invention relates to a possible optical recording element.

[従来の技術] 最近、オフィス・オートメーション(OA)ノ中心的記
録(憶)素子として光ディスクが脚光を集めている。そ
の理由は光ディスク一枚で、大量の文書、文献などを記
録(又は記憶)できるからであり、したがって該光ディ
スクを用いる情報記憶装置を導入するとオフィスにおけ
る文書、文献の整理、管理に一大変革をもたらすものと
期待されている。又、該光デイスク用記録材料としては
安価性、製作容易性、高密度記録性等の特徴を有する有
機材料が注目されている。
[Background Art] Recently, optical disks have been attracting attention as a central recording device for office automation (OA). The reason for this is that a single optical disc can record (or store) a large amount of documents, literature, etc. Therefore, introducing an information storage device using this optical disc will revolutionize the organization and management of documents and literature in offices. It is expected that it will bring In addition, organic materials, which have characteristics such as low cost, ease of manufacture, and high-density recording properties, are attracting attention as recording materials for optical discs.

この様な有機記録材を用いる従来技術の中で。Among the conventional techniques using such organic recording materials.

特に発色剤と期化剤の接触による発色反応を利用する二
成分系の光記録素子が報告されている(日経産業新聞 
昭和58年10JJ 18 B ) 。
In particular, a two-component optical recording element that utilizes a color-forming reaction caused by contact between a color former and a periodizing agent has been reported (Nikkei Sangyo Shimbun
1981 10JJ 18B).

従来の該光記録素子の1例を図面に基づいて説明すると
、第2図(a)に示す様に発色剤層7と期化剤層5とが
光吸収層8によって隔てられて基板l上に積層された構
成からなるものである。
An example of the conventional optical recording element will be explained based on the drawings. As shown in FIG. It consists of a laminated structure.

発色剤(ロイコ体)及び期化削は各々単独で存在すると
きは無色又は淡色である。
The coloring agent (leuco body) and the coloring agent are colorless or light-colored when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収層6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があく。
When recording on the recording element, a laser beam 8 is irradiated onto a desired position of the light absorption layer 6 as shown in FIG. 2(b).
The portion of the light-absorbing layer that is irradiated with the laser beam absorbs the laser beam, melts, and rips, leaving a small hole.

その結果、第2図(C)に示す様に光吸収層6によって
隔てられていた発色剤と期化剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射−(<、透過率等の変化を検出す
ることにより行われる。
As a result, as shown in FIG. 2(C), the coloring agent and the time-setting agent, which were separated by the light absorption layer 6, mix through the small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflection, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点] 上記の光記録素子に於いて、記録Ω高密度化を図るため
には光吸収層6が極力薄く、平坦で、かつIQ厚のむら
のないものが望ましい、しかしながら、従来の光記録素
子において、光吸収層は例えば真空蒸着法又は回転塗布
法などによって基板上に被nQされているため、厚さを
200〜500 A以下に薄くシようとすればピンホー
ルが多゛発じやすく、このピンホールの箇所で発色剤と
期化剤の2成分が接触して発色するため、信頼性に欠け
る欠点があった。その上、前記の従来の被膜方法で形成
される各層の膜内の分子分布配向がランダムであるため
、光照射に伴って膜内で光散乱が生じ、微視的にみた場
合、各光照射の度に生ずる化学反応の度合が異なってく
る。さらに、上述の被膜方法では光ディスクの基板を大
面積化すると、膜厚のむらが生じ、記録品質のむらが発
生する等の欠点があった。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording Ω density, it is desirable that the light absorption layer 6 be as thin as possible, flat, and without uneven IQ thickness. However, in conventional optical recording elements, the light absorption layer is coated on the substrate by, for example, a vacuum evaporation method or a spin coating method. Since the two components, the coloring agent and the preservative, come into contact with each other at these pinholes and develop color, there is a drawback of lack of reliability. Furthermore, since the molecular distribution and orientation within the film of each layer formed by the above-mentioned conventional coating method is random, light scattering occurs within the film with light irradiation, and when viewed microscopically, each light irradiation The degree of chemical reaction that occurs differs each time. Furthermore, the above-mentioned coating method has drawbacks such as unevenness in film thickness and uneven recording quality when the substrate of an optical disk has a large area.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむらもないことが望ま
しく、またできる限り膜厚が薄いことが、記録の高密度
化、高信頼化のために要望される0本発明はかかる要望
に鑑みてなされたもので、本発明の目的は高信頼・高雀
度記録が可能な光記録素子を提供することにある0本発
明の別の目的は製作容易で安価な光記録素子を提供する
ことにある0本発明のさらに別の目的は大面積の光記録
素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation within the film be uniform, that there are no pinholes, and that the film thickness is uniform, and that the film thickness be as thin as possible to achieve high recording density and high reliability. The present invention has been made in view of these demands, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-speed recording. Another object of the present invention is to provide an optical recording element that is easy to manufacture and inexpensive.A further object of the present invention is to provide an optical recording element with a large area.

[問題点を解決するための手段]及び[作用]即ち、本
発明は通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層とを積層し、さらに光吸収層を設けて
なり、かつ(イ) tiif記B層は助色性化合物の単
分子膜又はその累積膜からなる層、 から構成されることを特徴とする光記録素子である。
[Means for Solving the Problems] and [Operation] That is, the present invention consists of a layer A consisting of a color-forming compound that is usually colorless or light-colored, and a layer B consisting of an auxochrome compound that develops a color when it comes into contact with the color-forming compound. and (a) layer B is a layer consisting of a monomolecular film of an auxochrome compound or a cumulative film thereof. It is a recording element.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は通常無色ないし淡色の発色
性化合物からなるA層と、前記発色性化合物と接触して
発色せしめる助色性化合物とを積層し、さらに光吸収層
を設けた構成からなるものであり、該A層及びB層には
互に接触、混合することにより発色する物質を組合せて
用いることがノ、(本市に要請される。この様な関係に
あるA層の通常無色ないし淡色の発色性化合物及びB層
の前記発色性化合物と接触して発色せしめる助色性化合
物の具体例を示すと (イ) 酸性物質(B層)と該酸性物質に接触すること
によって発色する染料のロイコ体(色素前駆体)(A層
) (ロ)酸化剤(B層)と該酸化剤に接触することによっ
て発色する染料のロイコ体(A層)(ハ)還元剤(B層
)と該二元剤に接触することによって発色する染料のロ
イコ化(A層)(ニ)還元剤(B層)とステアリン酸f
J、2鉄のように還元されると発色する酸化剤(A層)
(ホ)酸化剤(B層)と没食子酸のように酸化されると
発色する還元剤(A層) 等が挙げられる。
The optical recording element according to the present invention has a structure in which a layer A consisting of a usually colorless or light-colored color-forming compound, an auxochromic compound that develops color when in contact with the color-forming compound are laminated, and a light-absorbing layer is further provided. The city is requested to use a combination of substances that develop color when they come into contact with and mix with each other in the A layer and the B layer. Specific examples of colorless to light-colored color-forming compounds and auxochromic compounds that develop color when they come into contact with the color-forming compound in layer B are as follows: (a) An acidic substance (layer B) that develops color when it comes into contact with the acidic substance. Leuco form of dye (dye precursor) (layer A) (b) Oxidizing agent (layer B) and leuco form of dye that develops color by contacting the oxidizing agent (layer A) (c) Reducing agent (layer B) ) and leucoization of the dye that develops color upon contact with the binary agent (layer A) (d) reducing agent (layer B) and stearic acid f
J, oxidizing agent that develops color when reduced like 2 iron (A layer)
(e) An oxidizing agent (layer B) and a reducing agent (layer A) that develops color when oxidized, such as gallic acid.

前記(イ)の場合をさらに詳しく例示すれば、染料のロ
イコ体と接触して反応し発色せしめるB層の酸性物質と
しては、ベンゼンスルホン酸等の芳香族スルホン酸化合
物、安υ、香酸等の芳香族カルボッ酸類、バルミチン酸
LL+5H3/eooH)、ステアリン酸(c+7H3
5coon) 、アラキシン酸(CnH3yCOOH)
等の高級脂肪酸カルボン酸類、p−t−ブチルフェノー
ル、α−ナフトール、β−ナフトール、フェノールフタ
レイン、ビスフェノールA、4−ヒドロキシジフェノキ
シド、4−ヒドロキシアセトフェノン等のフェノール性
化合物等が挙げられる。
To give a more detailed example of the case (a) above, the acidic substances in the B layer that react with the leuco form of the dye to develop color include aromatic sulfonic acid compounds such as benzenesulfonic acid, benzene, aromatic acid, etc. aromatic carboxylic acids, valmitic acid LL+5H3/eooH), stearic acid (c+7H3
5coon), araxic acid (CnH3yCOOH)
Examples thereof include higher fatty acid carboxylic acids such as pt-butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, 4-hydroxydiphenoxide, and 4-hydroxyacetophenone.

次に、前記酸性物質と接触して反応するA層の染料のロ
イコ体としては例えば、トリフェニルメタン系、フルオ
ラン系、フェノチアジン系、オーラミン系、スピロピラ
ン系等があり、それ等に含まれる具体的な化合物の詳細
を提示すると第1表の通りである。
Next, examples of the leuco dyes in the A layer that react with the acidic substance include triphenylmethane, fluoran, phenothiazine, auramine, and spiropyran. The details of the compounds are shown in Table 1.

本発明においてB層は中分子膜又はその累積1模からな
る層から形成されるために、前記の助色性化合物は分子
内の適当な部位に親木基、疎水基又はその両方の基を導
入した誘導体を用いる必要がある。
In the present invention, since layer B is formed from a medium molecular film or a layer consisting of a cumulative layer thereof, the auxochrome compound has a parent group, a hydrophobic group, or both groups at appropriate sites within the molecule. It is necessary to use the introduced derivative.

疎水ノ^及び親木基には一般に使用されるものであれば
如何なるものでも用いることができるが、特に好ましく
は疎水基としては炭素原子数5〜30の長鎖アルキルノ
^、親水ノ、(とじてはカルボキシル基及びその金属塩
(例えばカドミウム塩)が望ましい。
Any commonly used hydrophobic groups can be used as the hydrophobic groups, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms, hydrophilic groups, For example, carboxyl groups and metal salts thereof (eg cadmium salts) are preferable.

他方、A層は従来の被膜方法により形成される膜であれ
ば如何なる膜でもよく、それ等の中で例えば蒸着膜、塗
布膜、も浸mlり、ラミネート等の堆積膜からなる層が
好ましい。
On the other hand, the A layer may be any film formed by a conventional coating method, and among these, a layer made of a deposited film such as a vapor deposited film, a coating film, a immersion film, or a laminated film is preferable.

なお、A層及びBfiの膜厚は200人から1oILの
範囲が望ましく、好適には1,000 Aから1−の範
囲である。
Note that the thickness of the A layer and Bfi is preferably in the range of 200 to 1oIL, preferably in the range of 1,000A to 1-.

次に、本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収する光吸収色素であれば
如何なるものでもよく、例えば赤外線を吸収して溶融す
る溶融性光吸収色素、又は赤外線を吸収して昇華する昇
華性光吸収色素も用いることができるが、特に非溶融性
色素、非昇華性色素が好適である。
Next, the light-absorbing material used in the formation of the light-absorbing layer in the present invention may be any light-absorbing dye that absorbs infrared rays, such as a melting light-absorbing dye that melts by absorbing infrared rays, or Sublimable light-absorbing dyes that absorb infrared rays and sublimate can also be used, but non-melting dyes and non-sublimating dyes are particularly preferred.

該かる光吸収色素の一例をあげれば、銅フタロシアニン
、バナジウムフタロシアニン等の金属フタロシアニン、
フルオレスセイン等のキサンチン系色素等がある。
Examples of such light-absorbing dyes include metal phthalocyanines such as copper phthalocyanine and vanadium phthalocyanine;
There are xanthine dyes such as fluorescein.

該光吸収層は従来の被膜方法により形成される膜であれ
ば如何なる膜でもよく、それ等の中で例えば蒸着膜、塗
布膜、浸f?tll!2、ラミネート等の堆積膜からな
る層が好ましい。
The light absorbing layer may be any film formed by conventional coating methods, such as vapor deposited film, coating film, immersion film, etc. tll! 2. A layer consisting of a deposited film such as a laminate is preferred.

なお光吸収層の膜厚は!30人からt 、ooo人の範
囲が望ましく、好適には140Aから400人の範囲で
ある。
What is the thickness of the light absorption layer? A range of 30 to 2,000 people is desirable, preferably a range of 140A to 400 people.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の金属材料、好適に
は強化ガラス、更に好適にはアクリル(PMMA) 、
ポリカーボネート(pc) 、ポリプロピレン、ポリI
!4化ビニール(PVG ) 、ポリスチレン等のプラ
スチック材料、セラミック材料が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, metal materials such as aluminum, preferably tempered glass, more preferably acrylic (PMMA),
polycarbonate (pc), polypropylene, poly I
! Preferred are plastic materials such as polyvinyl chloride (PVG) and polystyrene, and ceramic materials.

本発明に係わる光記録素子はB層が助色性化合物の単分
子119又はその累積nりからなる層から構成されるこ
とを1つの特徴とするものである。
One feature of the optical recording element according to the present invention is that the B layer is composed of a single molecule 119 of an auxochromic compound or a cumulative number thereof.

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積膜を作成する方法としては、例えば1.La
ngmuirらの開発したラングミュア・プロジェット
法(La法)を用いる。ラングミュア・プロジェット法
は、例えば分子内に親木基と疎水基を有する構造の分子
において、両者のバランス(両親媒性のバランス)が適
度に保たれているとき、分子は水面上で親木基を下に向
けて単分子の層になることを利用して単分子膜または単
分子の累積膜を作成する方法である。水面上の単分子層
、 は二次元系の特徴をもつ0分子がまばらに散開して
いるときは、一分子当り面vIAと表面圧■との間に二
次元理想気体の式、 nA=kT が成り立ち、“°気体膜”となる、ここに、にはポルツ
マン定数、Tは絶対9度である。Aを十分小さくすれば
分子間相互作用が強まり二次元固体の°°凝縮膜(また
は固体膜)”になる、凝縮膜はプラスチック基板、ガラ
ス:J、ti板などの種々の材質や形状を有する担体の
表面へ一層ずつ移すことができる。
As a method for producing a monomolecular film or a cumulative film thereof having such high orderliness and orientation of molecules, for example, 1. La
The Langmuir-Prodgett method (La method) developed by Ngmuir et al. is used. The Langmuir-Prodgett method is based on the Langmuir-Prodgett method. For example, when a molecule has a parent tree group and a hydrophobic group in its molecule, and the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule will react to the parent tree on the water surface. This is a method of creating a monomolecular film or a monomolecular cumulative film by using the fact that the monomolecular layer is formed with the group facing downward. When the monomolecular layer on the water surface is sparsely dispersed with 0 molecules that have the characteristics of a two-dimensional system, the two-dimensional ideal gas equation between the surface vIA and the surface pressure ■ per molecule, nA = kT. holds true, resulting in a “°gas film”, where is Portzmann's constant and T is absolute 9 degrees. If A is made sufficiently small, the intermolecular interaction will become stronger, resulting in a two-dimensional solid condensed film (or solid film). Condensed films can be made of various materials and shapes, such as plastic substrates, glass: J, Ti plates, etc. It can be transferred layer by layer to the surface of the carrier.

次に本発明に使用する助色性化合物である親木基、疎水
基を併有する有機分子の単分子膜又はその累積膜を形成
する方法についてさらに詳述する。
Next, the method for forming a monomolecular film or a cumulative film of organic molecules having both a parent group and a hydrophobic group, which is an auxochrome compound used in the present invention, will be described in detail.

まず該有機分子をベンゼン、クロロ系ルム等の揮発性溶
剤に溶解し、シリンダ等でこれを第3図に概略した重分
−子累積11り形−成装置の水槽lO内の水相11上に
展開させる。
First, the organic molecule is dissolved in a volatile solvent such as benzene or chloro-based lumen, and the organic molecule is dissolved in a cylinder or the like onto the aqueous phase 11 in the water tank 10 of the heavy molecule accumulation 11 forming apparatus schematically shown in FIG. Let it develop.

該有機分子は、溶剤の揮発に伴って、親木基12を水相
に向け、疎水基13を気相に向けた状態で水相11上に
展開する。
As the solvent evaporates, the organic molecules develop on the water phase 11 with the parent tree groups 12 facing the water phase and the hydrophobic groups 13 facing the gas phase.

次にこの析出物(有機分子)が水相11上を自由に拡散
して広がりすぎないように仕切板(または浮子)14を
設けて展開面積を制限して11り物質の集合状態を制御
し、その集合状態に比例した表面圧■を得る。この仕切
板14を動かし、展開面積を縮少して膜物質の集合状態
を制御し、表面圧を徐々に上昇させ、累積膜の製造に適
する表面圧■を設定することができる。この表面圧を維
持しながら静かに清浄な基板14を垂直に上下させるこ
とにより単分子1121Bが基板上に移しとられる。単
分子膜1Bは以上で製造されるが、単分子層形成条件1
7は前記の操作を繰り返すことにより所望の累積数の単
分子層累積膜が形成される。
Next, to prevent the precipitates (organic molecules) from freely diffusing and spreading over the aqueous phase 11, a partition plate (or float) 14 is provided to limit the spread area and control the aggregation state of the substances. , obtain a surface pressure ■ proportional to its collective state. By moving the partition plate 14, the developed area can be reduced to control the aggregation state of the film material, and the surface pressure can be gradually increased to set the surface pressure (2) suitable for producing a cumulative film. By gently vertically moving the clean substrate 14 up and down while maintaining this surface pressure, the single molecules 1121B are transferred onto the substrate. Monomolecular film 1B is manufactured as described above, but monomolecular layer formation condition 1
In step 7, by repeating the above operations, a desired cumulative number of monomolecular layers are formed.

例えば表面が親木性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親木基が基板15
側に向いた単分子層18が基板15上に形成される。前
述のように基板15を上下させると、各工程ごとに1枚
ずつ単分子Hteが積み重なっていく、成膜分子の向き
が引上げ工程と浸せき工程で逆になるので、この方法に
よると各層間は有機分子の親木基と親木基、有機分子の
疎水基と疎水基が向かい合ういわゆるY型膜が形成され
る(第4図(a) ) 。
For example, when the substrate 15 whose surface is woody is pulled out of water in a direction across the water surface, the woody groups of the organic molecules are removed from the substrate 15.
A side-facing monolayer 18 is formed on the substrate 15 . When the substrate 15 is moved up and down as described above, monomolecular Hte is piled up one by one in each process.The direction of the film-forming molecules is reversed in the pulling process and the dipping process, so according to this method, the distance between each layer is A so-called Y-type film is formed in which the parent wood groups of the organic molecules and the parent wood groups and the hydrophobic groups of the organic molecules face each other (Fig. 4(a)).

Y型膜は有機分子の親水基同志、疎水基同志が向い合っ
ているので強固である。
The Y-type film is strong because the hydrophilic groups and hydrophobic groups of the organic molecules face each other.

それに対し、基板15を水中に引き下げるときにのみ、
基板面に該有機分子を移し取る方法もある。
In contrast, only when lowering the substrate 15 into the water,
There is also a method of transferring the organic molecules onto the substrate surface.

この方法では、累積しても、成膜分子の向きの交代はな
く全ての層において、疎水基が基板15側に向いたX型
膜が形成される(第4図(b) ) 、反対に全ての層
において親木基が基板15側に向いた累積膜はX型膜と
呼ばれる(第4図(C))。
In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and an X-shaped film is formed in which the hydrophobic groups face the substrate 15 in all layers (Fig. 4(b)). A cumulative film in which parent wood groups in all layers face the substrate 15 side is called an X-type film (FIG. 4(C)).

X型膜は基板15を水中から引上げるときにのみ、基板
面に有機分子を移し取ることによって得られる。
The X-type film is obtained by transferring organic molecules to the substrate surface only when the substrate 15 is lifted out of the water.

以上の方法によって基板上に形成される単分子膜及び単
分子層累積膜は高密度でしかも高度の秩序性・配向性を
有しており、これらの膜で記録層を構成することによっ
て、光熱的記録の可能な高密度で高解像度の記録機能を
有する記録素子を得ることができる。また、これら成膜
方法はその原理からも分る通り、非常に簡単な方法であ
り、上記のような優れた記録機能を有する記録素子を低
コストで提供することができる。
The monomolecular film and monomolecular layer cumulative film formed on the substrate by the above method have high density and a high degree of order and orientation, and by configuring the recording layer with these films, photothermal Accordingly, it is possible to obtain a recording element having a high-density and high-resolution recording function capable of performing digital recording. Further, as can be seen from the principles thereof, these film forming methods are very simple methods, and a recording element having the above-mentioned excellent recording function can be provided at low cost.

以上述べた、本発明における単分子■Qまたは単分子累
積膜を形成する基板は特に限定されないが、基板表面に
界面活性物質が付着していると、単分子層を水面から移
しとる時に、単分子膜が乱れ良好な単分子膜または単分
子層累積膜ができないので基板表面が清浄なものを使用
する必要がある。
The substrate on which the monomolecular Q or the monomolecular cumulative film in the present invention is formed as described above is not particularly limited, but if a surfactant is attached to the surface of the substrate, when the monomolecular layer is transferred from the water surface, Since the molecular film is disturbed and a good monomolecular film or monomolecular layer stack cannot be formed, it is necessary to use a substrate with a clean surface.

基板−ヒの単分子膜または単分子層累積膜は、十分に強
く固定されておリノ^板からの剥離、剥落を生じること
はほとんどないが、付着力を強化する目的で基板と単分
子膜またはCli分子層累積膜の間に接着層を設もする
こともできる。さらに単分子層形成条件例えば水相の水
素イオン濃度、イオン種、水温、担体上げ下げ速度ある
いは表面圧の選択等によって付着力を強化することもで
きる。
The monomolecular film or monomolecular layer cumulative film on the substrate is fixed strongly enough that it hardly peels off or peels off from the lino board. Alternatively, an adhesive layer may be provided between the Cli molecular layer stacked films. Furthermore, the adhesion force can be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure.

次に、A層又は光吸収層の堆積膜の形成方法は前記発色
性化合物又は光吸収性物質にバインダーと水を添加した
水温和物を、ボールミル等を用いて粉砕混合した後、基
板等の上に従来の通常の方法で塗着して行う。
Next, the method for forming the deposited film of layer A or light absorption layer is to grind and mix a water-friendly product obtained by adding a binder and water to the color-forming compound or light-absorbing substance using a ball mill, etc. This is done by applying it on top using the conventional method.

本発明に用いられる前記バインダーとしてはゼラチン、
でんぷんのごとき天然高分子物、硝酸繊維素、カルボキ
シメチルセルローズのごとき繊維素誘導体、塩化ゴム、
環化ゴムのごとき天然ゴム可塑物などの半合成高分子物
、ポリイソブチレン、ポリスチロール、テルペン樹脂、
ポリアクリル酸、ポリアクリル酸エステル、ポリメタア
クリル酸エステル、ポリアクリルニトリル、ポリアクリ
ルアミド、ポリ酢酸ビニル、ポリビニルアルコール、ポ
リビニルピロリドン、ポリアセタール樹脂、ポリ塩化ビ
ニル、ポリビニルピリジン、ポリビニルカルバゾール、
ポリブタジェン、ポリスチレン−ブタジェン、ブチルゴ
ム、ポリオキシメチレン、ポリエチレンイミン、ポリエ
チレンイミンハイドロクロライド、ポリ(2−アクリル
オキシエチルジメチルスルホニウムクロライド)などの
ごとき重合型合成高分子、フェノール樹脂、アミン樹脂
、トルエン樹脂、アルキンド樹脂、不飽和ポリエステル
樹脂、アリル樹脂、ポリカーボネート、ポリアマイド樹
脂、ポリエーテル樹脂、珪素樹脂、フラン樹脂、チオコ
ールゴムなどのごとき縮合重合型合成高分子、ポリウレ
タン、ポリ尿素、エポキシ樹脂などのごとき付加重合型
樹脂が挙げられる。
The binder used in the present invention includes gelatin,
Natural polymers such as starch, cellulose nitrate, cellulose derivatives such as carboxymethyl cellulose, chlorinated rubber,
Semi-synthetic polymers such as natural rubber plastics such as cyclized rubber, polyisobutylene, polystyrene, terpene resins,
Polyacrylic acid, polyacrylic ester, polymethacrylic ester, polyacrylonitrile, polyacrylamide, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, polyacetal resin, polyvinyl chloride, polyvinylpyridine, polyvinylcarbazole,
Polymerizable synthetic polymers such as polybutadiene, polystyrene-butadiene, butyl rubber, polyoxymethylene, polyethyleneimine, polyethyleneimine hydrochloride, poly(2-acryloxyethyldimethylsulfonium chloride), phenolic resin, amine resin, toluene resin, alkynd Condensation polymerization type synthetic polymers such as resins, unsaturated polyester resins, allyl resins, polycarbonates, polyamide resins, polyether resins, silicone resins, furan resins, thiokol rubber, etc., addition polymerization type resins such as polyurethane, polyurea, epoxy resins, etc. can be mentioned.

以上に説明した方法で製造される木発す1に係わる光記
録素子の構成の1例を示すと、第1図(a)に示す通り
、発色性化合物からなるA層2と助色性化合物からなる
8層4とを積層し、ざらに該B層4の上に光吸収層3を
設けてなり、8層4が単分子膜又はその累積膜、A層2
及び光吸収層3は堆積+1iからなるa屠体で、光吸収
層3を基板l上に支持し、基板/光吸収層/B層/A層
の順に積層してなるものである。この場合A層2と8層
4とを逆にして、基板/光吸収層/A層/B層の順に積
層してもよい。
An example of the structure of an optical recording element related to wood oxide 1 produced by the method described above is shown in FIG. The 8 layers 4 are laminated, and the light absorption layer 3 is provided roughly on the B layer 4, and the 8 layers 4 are a monomolecular film or a cumulative film thereof, and the A layer 2
The light-absorbing layer 3 is a carcass consisting of a deposit +1i, and the light-absorbing layer 3 is supported on a substrate l, and is laminated in the order of substrate/light-absorbing layer/B layer/A layer. In this case, the A layer 2 and the 8 layer 4 may be reversed and laminated in the order of substrate/light absorption layer/A layer/B layer.

さらに、他の例を示すと、第1図(b)に示す通り、A
層2と8層4とを積層し、ざらに該A層2の上に光吸収
層3を設けて積層体を形成し、8層4を基板l上に支持
し、基板/B層/A層/光吸収層の順に積層してなるも
のである。この場合、前記と同様にA層2と8層4とを
逆にして、基板/A層/B層/光吸収層の順に積層して
もよい。
Furthermore, to show another example, as shown in FIG. 1(b), A
Layers 2 and 8 layers 4 are laminated, a light absorption layer 3 is provided roughly on the A layer 2 to form a laminate, the 8 layers 4 are supported on a substrate l, and the substrate/B layer/A It is formed by laminating layers/light absorption layer in this order. In this case, similarly to the above, the A layer 2 and the 8-layer 4 may be reversed and laminated in the order of substrate/A layer/B layer/light absorption layer.

また、上記の第1図(a) 、 (b)に示すいずれの
構成においても前記の積層体を2設置上積重ねて基板に
支持してもよい。
Furthermore, in any of the configurations shown in FIGS. 1(a) and 1(b), two of the above-mentioned laminates may be stacked and supported on the substrate.

本発明に係わる光記録素子は発色性化合物からなるA 
11.と助色性化合物からなるB層とを密着せしめて構
成されているが、従来の技術ではこの様に構成すること
は不可能であるとされていた。しかしながら本発明にお
いてはB層が分子の高度の秩序性・配向性を有する単分
子nり及びその累積膜によって形成されているため、分
子内の非反応性部位を介して、反応性部位同志を隔てる
ことができるために上記の構成をとることが可能となっ
たのである。
The optical recording element according to the present invention comprises A made of a color-forming compound.
11. Although it is constructed by closely adhering the B layer made of an auxochrome compound, it has been thought that such a construction is impossible with conventional technology. However, in the present invention, since the B layer is formed of a single molecule having a high degree of order and orientation and its cumulative film, reactive sites can be linked together via non-reactive sites within the molecules. The above configuration was made possible because of the ability to separate them.

また、本発明に係わる光記録素子はA層とB層とを密着
させて積層し、さらに光吸収層を外側に設けて構成され
ているので、赤外線照射によって光吸収層が加熱され、
その熱伝導によってA層の発色性化合物とB層の助色性
化合物とが加熱接触して発色反応が進行し、所定の位置
に発色点を形成し情報を記録することができる。
Further, since the optical recording element according to the present invention is constructed by laminating the A layer and the B layer in close contact with each other and further providing a light absorption layer on the outside, the light absorption layer is heated by infrared irradiation.
Due to the heat conduction, the color-forming compound in the A layer and the auxochrome compound in the B layer come into contact with each other under heat, and a color-forming reaction progresses, forming a color-forming point at a predetermined position so that information can be recorded.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクから、情
報を書き込んだり或いは読取ったりするための光ピツク
アップの光学系を有する情報記憶装置の1例をfJS5
図に示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. An example of an information storage device having an optical pickup optical system for writing or reading information from the optical disc is fJS5.
As shown in the figure.

該情報記憶装置は、制御回路27と光ピツクアップ光学
系からなる書き込み手段と、本発明に係わる光記録素子
と、出力回路28と光ピツクアップ光学系からなる読取
り手段とによって構成される。
The information storage device is composed of a writing means consisting of a control circuit 27 and an optical pickup optical system, an optical recording element according to the present invention, and a reading means consisting of an output circuit 28 and an optical pickup optical system.

古き込みは次のようにして行う。制御回路27は半導体
レーザ2Bの発振を制御する。従って、入力情報は制御
回路27及び半導体レーザ2Gによって光信号に変換さ
れる。光信号29は第5図に示す光ピツクアップ光学系
を通って同期回転している光ディスク18の記Q層上に
結像され、上述の発色メカニズムにより発色記録される
The aging process is done as follows. The control circuit 27 controls the oscillation of the semiconductor laser 2B. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 2G. The optical signal 29 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer Q of the optical disk 18 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う、半導体レーザ26から発
′する低出力の連続発振光を読取り光として使う、低出
力であるから、読取り中に発色記録が行われることはな
いからである。または他の可視光用光源を読取り用光源
として用いてもよい。
Reading is carried out as follows. A low-output continuous wave light emitted from the semiconductor laser 26 is used as the reading light. Since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク18の基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアンプ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
−号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disk 18 and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pick amplifier optical system. By doing so, it is converted into an electrical signal and read out for reproduction.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の112厚は1 、000八〜2.000八
が好適である。その他必要に応じて誘電体ミラーでもよ
い。
The thickness of the metal reflective layer is preferably 1,000 to 2,000. In addition, a dielectric mirror may be used as necessary.

更に、A層、B層、光吸収層等を保護するために最外層
の表面に保護層を設けてもよい、そのような保護層用材
料としては5i07等の誘電体、プラスチック樹脂、他
の重合性1膜等が好適である。
Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the A layer, B layer, light absorption layer, etc. Materials for such a protective layer include dielectrics such as 5i07, plastic resins, and other materials. Polymerizable 1 film etc. are suitable.

[実施例] 以下、実施例を示し、本発明をさらに具体的に説明する
。尚、下記において特に記述のない限り「部」は「重量
部」を、1%」は「重量%」を表わすものとする。
[Example] Hereinafter, the present invention will be explained in more detail by showing examples. In the following, unless otherwise specified, "part" means "part by weight" and "1%" means "% by weight."

実施例1 (1)光吸収層の形成方法 厚さ10m■、直径18hmの円板上のガラス(ディス
ク)基板を充分に清浄にした0次に、光吸収性物質であ
るバナジウムフタロシアニン7部、バインダーとしてポ
リビニルアルコール1部、水40部を混合し、さらにボ
ールミルを用いて数時間、粉砕混合し、基板−Lに回転
塗布して、バインダー中に分散したバナジウムフタロシ
アニンの堆積膜(膜厚0.015 pL)を形成した各
試料を得た。
Example 1 (1) Method for forming a light-absorbing layer A glass (disc) substrate on a disk with a thickness of 10 m and a diameter of 18 hm was thoroughly cleaned, and then 7 parts of vanadium phthalocyanine, which is a light-absorbing substance, 1 part of polyvinyl alcohol and 40 parts of water are mixed as a binder, and the mixture is ground and mixed using a ball mill for several hours, and then spin-coated onto the substrate-L to form a deposited film of vanadium phthalocyanine dispersed in the binder (thickness: 0. 015 pL) were obtained.

(2)B層の形成方法 次に、前記(1)で(y)だ各試料のガラス基板−ヒに
形成した光吸収層の上に、前述の単分子累積装置を用い
て助色性化合物であるアラキシン酸の?n分子累積膜を
形成した。
(2) Method for Forming Layer B Next, on the light absorption layer formed on the glass substrate of each sample (y) in (1) above, an auxochrome compound was added using the monomolecular accumulator described above. Is araxic acid? A cumulative film of n molecules was formed.

該アラキシン酸の単分子累積膜の形成方法は、下記のよ
うに行った。
The method for forming the monomolecular cumulative film of alaxic acid was performed as follows.

光吸収層を形成した基板が水面と垂直になるようにして
、基板を水中に沈めた後、アラキシン酸ヲ濃度2 X 
10−3mol/ lのクロロホルム溶液にして水面上
に滴下し単分子膜を水面」二に展開する0表面圧を30
dyne/cmに設定し、速度2 cm/winで基板
を上下して第2表に示す各層に累積した単分子累積膜(
Y型膜)を各試料に作成した。
After submerging the substrate in water so that the substrate on which the light absorption layer was formed is perpendicular to the water surface, the concentration of alexic acid was 2X.
A chloroform solution of 10-3 mol/l was dropped onto the water surface and a monomolecular film was developed on the water surface at a surface pressure of 30
dyne/cm, and moved the substrate up and down at a speed of 2 cm/win to measure the monomolecular cumulative film (
A Y-type membrane) was prepared for each sample.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成したB
5の上に発色性化合物であるクリスタルバイオレットラ
クトンの堆積膜を形成した。
(3) Formation method of A layer Next, the B layer formed on the glass substrate of each sample in (2) above.
A deposited film of crystal violet lactone, which is a color-forming compound, was formed on top of No. 5.

形成方法はクリスタルバイオレットラクトン7部、バイ
ンダーとしてポリビニルアルコール1部、水100部を
混合し、さらにボールミルを用いて数時間、粉砕混合し
、基板のB層上に回転塗布して、バインダー中に分散し
たクリスタルバイオレットラクトンの堆積膜(11り厚
mu−)を得た。
The formation method is to mix 7 parts of crystal violet lactone, 1 part of polyvinyl alcohol as a binder, and 100 parts of water, then grind and mix for several hours using a ball mill, spin coat on the B layer of the substrate, and disperse in the binder. A deposited film (11 mm thick) of crystal violet lactone was obtained.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
比較例として従来の同様の構成(全てが単分子膜又はそ
の累積11りを使用しないで構成)に係る光ディスクを
第5図に示す情報記憶装置を用いて以下の記録条件下で
記録した後、読取り再生を行うことにより両者の性能比
軸を行った。
(4) Performance test An optical recording element according to the present invention manufactured by the above-mentioned method and a conventional optical disc having a similar structure (all constructed without using a monomolecular film or a cumulative layer thereof) were used as a comparative example. After recording under the following recording conditions using the information storage device shown in FIG. 5, the performance ratio between the two was compared by reading and reproducing.

く記録条件〉 半導体レーザ波長 830n+m レーザ出力  6〜9mW 記録周波数  5 MHz 光ディスクの回転数 1.80Orpm以上の条件下で
読み出しをレーザ出力1mWで行い、信号/雑音比を求
めた結果を第2表に示す。
Recording conditions> Semiconductor laser wavelength 830n+m Laser output 6-9mW Recording frequency 5MHz Optical disk rotation speed 1.80Orpm or higher, readout was performed with a laser output of 1mW, and the results of calculating the signal/noise ratio are shown in Table 2. show.

第2表の結果よりNo、l(B層が単分子膜からなる場
合)とN006とを比較すると、No、1の方が信号/
雑音比において顕著に優れることが認められる。 No
、1とNo、Bはほぼ同じ膜厚であるが、性能にこのよ
うな差異が生ずるのはNo、1の方がピンホール等の欠
陥が少ないためと思われる。
From the results in Table 2, when comparing No.1 (when the B layer is made of a monomolecular film) and No.006, No.1 has a better signal/
It is recognized that the noise ratio is significantly superior. No
, 1 and No. 1 and B have almost the same film thickness, but this difference in performance appears to be due to the fact that No. 1 has fewer defects such as pinholes than No. 1.

同様に、No、2〜No、5 (B層が単分子の累vx
ntxからなる場合)とNo、7との比較では、No、
2〜No、5の方が信号/雑音比において優れることが
認められる。
Similarly, No, 2 to No, 5 (B layer is monomolecular cumulative vx
ntx) and No.7, No.
It is recognized that Nos. 2 to 5 are better in signal/noise ratio.

[発明の効果] 以上説明した様に本発明に係わる光記録素子はB層が単
分子膜又はその累積膜からなる層、A層及び光吸収層は
堆積膜からなる層で構成されているので2以下に示すよ
うな優れた効果がある。
[Effects of the Invention] As explained above, in the optical recording element according to the present invention, the B layer is composed of a monomolecular film or a cumulative film thereof, and the A layer and the light absorption layer are composed of deposited films. 2. There are excellent effects as shown below.

(1)従来の単分子膜又はその累積膜を使用していない
光記録素子と比較して信号/雑音比が高く。
(1) The signal/noise ratio is higher than that of optical recording elements that do not use conventional monomolecular films or their cumulative films.

記録の信頼性を向上させることかで−きる。This can be done by improving the reliability of records.

(2)光記録素子のピンホール等の物理的欠陥を大幅に
減少させることができる。
(2) Physical defects such as pinholes in optical recording elements can be significantly reduced.

(3)従来の光記録素子と比べて、より高密度記録が可
能である。
(3) Higher density recording is possible than with conventional optical recording elements.

(4)光記録素子の大面積化が可能である。(4) It is possible to increase the area of the optical recording element.

(5)光吸収層がA層とB)3との間に介在しないため
に発色効率及び忠実性が向上する。
(5) Since the light absorption layer is not interposed between layer A and layer B) 3, coloring efficiency and fidelity are improved.

(6)光吸収層がA層とB層との間に介在しないために
実質記録層を薄くすることができ、より高密度記録が可
能である。
(6) Since the light absorption layer is not interposed between the A layer and the B layer, the recording layer can be made thinner, and higher density recording is possible.

(7)発色効率が良く、発色剤等としてすぐれているが
、単分子膜又はその累v1膜を形成しにくい材ネ′1、
又は単分子膜又はその累v1vを形成しやすい誘導体に
化学変化(合成)することが経費上困難な材料を堆積膜
に用いることができる利点がある。
(7) Materials that have good coloring efficiency and are excellent as coloring agents, etc., but are difficult to form monomolecular films or their cumulative V1 films;
Alternatively, there is an advantage that a material that is difficult to chemically change (synthesize) into a derivative that easily forms a monomolecular film or a monomolecular film or a monomolecular film thereof due to cost considerations can be used for the deposited film.

(8) m屠体の一部に堆Mi膜を用いているので、感
度が向上し、製作の際に材料の選択の巾が広く製造が容
易であり、又読み取りの際コントラストと非コントラス
トの差がつきやすい等の光学侃性上の効果がある。
(8) Since a deposited Mi film is used on a part of the carcass, sensitivity is improved, there is a wide range of material selection during manufacturing, and manufacturing is easy, and it is possible to distinguish between contrast and non-contrast when reading It has an effect on optical properties, such as making it easier to see differences.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及びf7’51図(b)は各々本発明に係
わる光記録素子の実施態様を示す概略構成断面図、第2
図(a)〜第2図(C)t±従来の光記録素子の記録プ
ロセスを示す説明図、第3図は単分子累積膜形成装置の
概略構成断面図、第4図(a)〜i4図(C)は単分子
累積膜の作製工程図及び第5図は情報記憶装置のブロッ
ク図である。
FIG. 1(a) and FIG.
Figures (a) to 2 (C) t± explanatory diagram showing the recording process of a conventional optical recording element, Figure 3 is a schematic cross-sectional view of the monomolecular cumulative film forming apparatus, and Figures 4 (a) to i4 Figure (C) is a manufacturing process diagram of a monomolecular cumulative film, and Figure 5 is a block diagram of an information storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層とを積層し、さらに光吸収層を設けて
なり、かつ(イ)前記B層は助色性化合物の単分子膜又
はその累積膜からなる層、 から構成されることを特徴とする光記録素子。
(1) Layer A consisting of a normally colorless or light-colored color-forming compound and layer B consisting of an auxochrome compound that develops color when in contact with the color-forming compound are laminated, and a light-absorbing layer is further provided, and (a) An optical recording element characterized in that the B layer is composed of a monomolecular film of an auxochromic compound or a layer consisting of a cumulative film thereof.
JP59159109A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137481A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159109A JPS6137481A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159109A JPS6137481A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137481A true JPS6137481A (en) 1986-02-22

Family

ID=15686437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159109A Pending JPS6137481A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137481A (en)

Similar Documents

Publication Publication Date Title
US6319581B1 (en) Optical recording medium
JPH0471717B2 (en)
US4845515A (en) Recording material utilizing multilayer Bi/Se film
JPH0574159B2 (en)
JPS6163489A (en) Photo-recording element
JPS6137481A (en) Optical recording element
JPS6163491A (en) Photo-recording element
JPS6137482A (en) Optical recording element
JPS6137479A (en) Optical recording element
JPS6163487A (en) Optical recording element
JPS6137487A (en) Optical recording element
JPS6137476A (en) Optical recording element
JPS6137480A (en) Optical recording element
JPS6137475A (en) Optical recording element
JPS6163481A (en) Optical recording element
JPS6137477A (en) Optical recording element
JPS6163483A (en) Optical recording element
JPS6163485A (en) Optical recording element
JPS6137489A (en) Optical recording element
JPS6163488A (en) Photo-recording element
JPS6163480A (en) Optical recording element
JPS6137486A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPH0477969B2 (en)
JPS6163939A (en) Information storage device