JPS6137480A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137480A
JPS6137480A JP59159108A JP15910884A JPS6137480A JP S6137480 A JPS6137480 A JP S6137480A JP 59159108 A JP59159108 A JP 59159108A JP 15910884 A JP15910884 A JP 15910884A JP S6137480 A JPS6137480 A JP S6137480A
Authority
JP
Japan
Prior art keywords
layer
film
light
substrate
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159108A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159108A priority Critical patent/JPS6137480A/en
Publication of JPS6137480A publication Critical patent/JPS6137480A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To obtain optical recording elements having high reliability and high packing density by laminating a layer A of color-forming compound and a layer B of assistant color-forming compound with a light-absorbing layer provided, the layer B and the light-absorbing layer being formed with either a monomolecular film or an accumulated film respectively. CONSTITUTION:A layer-A 2 of color-forming compound and a layer-B 4 of assistant color-forming compound are laminated and further a light-absorbing layer 3 is provided on said layer-B 4. The layer-B 4 and the light-absorbing layer 3 are laminates of monomolecular film or its accumulated film and the layer-A 2 is a laminate of laminated films. The light-absorbing layer 3 is supported on a substrate 1 and the substrate, light-absorbing layer, layer B and layer A are laminated in that order. Consequently, compared to the conventional light-absorbing element, the titled element has higher packing density and also higher signal/ noise ratio, thus enhancing recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配向された有機薄膜を利用した高信頼・高密度
記録の回部な光記録素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording device using an organic material, and in particular to a highly reliable and high-density recording optical device using a highly molecularly oriented organic thin film. This relates to recording elements.

[従来の技術] 最近、オフィス・オートメーション(OA)の中心的記
fi(憶)素子としに光ディスクが脚光を集めている。
[Prior Art] Recently, optical disks have been attracting attention as a central storage device for office automation (OA).

その理由は光ディスク一枚で、大量の文書、文献などを
記録(又は記憶)できるからであり、したがって該光デ
ィスクを用いる情報記憶装置を導入するとオフィスにお
ける文書、文献の整理、管理に一大変革をもたらすもの
と期待°されている。又、該光デイスク用記録材料とし
ては安価性、製作容易性、高密度記録性等の特徴を有す
る有機材料が注目されている。
The reason for this is that a single optical disc can record (or store) a large amount of documents, literature, etc. Therefore, introducing an information storage device using this optical disc will revolutionize the organization and management of documents and literature in offices. It is expected that this will bring about results. In addition, organic materials, which have characteristics such as low cost, ease of manufacture, and high-density recording properties, are attracting attention as recording materials for optical discs.

この様な有機記録材を用いる従来技術の中で、特に発色
剤と期化剤の接触による発色反応を利用する二成分系の
光記録素子が報告されている(日経産業新聞 昭和58
年lθ月1aO)−従来の該光記録素子の1例を図面に
基づいて説明すると、第2図(a)に示す様に発色剤層
7と期化剤層5とが光吸収層6によって隔てられて基板
l上に積層された構成からなるものである。
Among the conventional techniques using such organic recording materials, a two-component optical recording element that utilizes a coloring reaction caused by contact between a coloring agent and a periodizing agent has been reported (Nikkei Sangyo Shimbun, 1972).
1aO) - An example of the conventional optical recording element will be explained based on a drawing. As shown in FIG. It consists of a structure in which they are separated and stacked on a substrate l.

発色剤(ロイコ体)及び期化剤は各々単独で存在すると
きは無色又は淡色である。
The coloring agent (leuco body) and the stabilizing agent are colorless or light-colored when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収層6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があく。
When recording on the recording element, a laser beam 8 is irradiated onto a desired position of the light absorption layer 6 as shown in FIG. 2(b).
The portion of the light-absorbing layer that is irradiated with the laser beam absorbs the laser beam, melts, and rips, leaving a small hole.

その結果、第2図(c)に示す様に光吸収層6によって
隔てられていた発色剤と期化剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射率、透過率等の変化を検出するこ
とにより行われる。
As a result, as shown in FIG. 2(c), the coloring agent and the time-setting agent, which were separated by the light absorption layer 6, mix through the small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflectance, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点] 上記の光記録素子に於いて、記録の高密度化を図るため
には光吸収層6が極力薄く、平坦で、かつ膜厚のむらの
ないものが望ましい、しかしながら、従来の光記録素子
において、光吸収層は例えば真空蒸着法又は回転塗布法
などによって基板上に被膜されているため、厚さを20
0〜soo A以下に薄くしようとすればピンホールが
多発しやすく、このピンホールの箇所で発色剤と期化剤
の2成分が接触して発色するため、信頼性に欠ける欠点
があった。その上、前記の従来の被膜方法で形成される
各層の膜内の分子分布配向がランダムであるため、光照
射に伴って膜内で光散乱が生じ、微視的にみた場合、各
光照射の度に生ずる化学反応の度合が異なってくる。さ
らに、上述の被膜方法では光ディスクの基板を大面積化
すると、膜厚のむらが生じ、記録品質のむらが発生する
等の欠点があった。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording density, it is desirable that the light absorption layer 6 be as thin as possible, flat, and without unevenness in film thickness. However, in conventional optical recording elements, the light absorption layer is coated on the substrate by, for example, a vacuum evaporation method or a spin coating method, so the thickness is reduced to 20%.
If an attempt is made to make the film thinner than 0 to soo A, pinholes are likely to occur frequently, and the two components, the coloring agent and the stabilizing agent, come into contact with each other at these pinholes and develop color, resulting in a drawback of lack of reliability. Furthermore, since the molecular distribution and orientation within the film of each layer formed by the above-mentioned conventional coating method is random, light scattering occurs within the film with light irradiation, and when viewed microscopically, each light irradiation The degree of chemical reaction that occurs differs each time. Furthermore, the above-mentioned coating method has drawbacks such as unevenness in film thickness and uneven recording quality when the substrate of an optical disk has a large area.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむらもないことが望ま
しく、またできる限り膜厚が薄いことが、記録の高密度
化、高信頼化のために要望される0本発明はかかる要望
に鑑みてなされたもので1本発明の目的は高信頼・高密
度記録が可能な光記録素子を提供することにある0本発
明の別の目的は製作容易で安価な光記録素子を提供する
ことにある0本発明のさらに別の目的は大面積の光記録
素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation within the film be uniform, that there are no pinholes, and that the film thickness is uniform, and that the film thickness be as thin as possible to achieve high recording density and high reliability. The present invention has been made in view of these demands, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-density recording. It is an object of the present invention to provide an optical recording element that is easy to manufacture and inexpensive.A further object of the present invention is to provide an optical recording element with a large area.

[問題点を解決するための手段]及び[作用]即ち、本
発明は通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層とを積層し、さらに光吸収層を設けて
なり、かつ(イ)前記B層は助色性化合物の単分子膜又
はその累積膜からなる層、 (ロ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層、 から構成されることを特徴とする光記録素子である。
[Means for Solving the Problems] and [Operation] That is, the present invention consists of a layer A consisting of a color-forming compound that is usually colorless or light-colored, and a layer B consisting of an auxochrome compound that develops a color when it comes into contact with the color-forming compound. (a) the layer B is a monomolecular film of an auxochromic compound or a cumulative film thereof; and (b) the light absorption layer is light-absorbing. An optical recording element characterized by comprising a layer consisting of a monomolecular film of a substance or a cumulative film thereof.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は通常無色ないし淡色の発色
性化合物からなるA層と、前記発色性化合物と接触して
発色せしめる助色性化合物とを積層し、さらに光吸収層
を設けた構成からなる。ものであり、該A層及びB層に
は互に接触、混合することにより発色する物質を組合せ
て用いることが基本的に要請される。この様な関係にあ
るA層の通常無色ないし淡色の発色性化合物及びB層の
前記発色性化合物と接触して発色せしめる助色性化合物
の具体例を示すと (イ) 酸性物質(B層)と該酸性物質に接触すること
によって発色する染料のロイコ体(色素前駆体)(A層
) (ロ)酸化剤(B層)と該酸化剤に接触することによっ
て発色する染料のロイコ体CA層)(ハ)還元剤(B層
)と該還元剤に接触することによって発色する染料のロ
イコ体(A層)(ニ)還元剤(B層)とステアリン酸第
2鉄のように還元されると発色する酸化剤(A層)(ホ
)酸化剤(B層)と没食子酸のように酸化されると発色
する還元剤(A層) 等が挙げられる−0   − 前記(イ)の場合をさらに詳しく例示すれば。
The optical recording element according to the present invention has a structure in which a layer A consisting of a usually colorless or light-colored color-forming compound, an auxochromic compound that develops color when in contact with the color-forming compound are laminated, and a light-absorbing layer is further provided. Become. Basically, it is required to use a combination of substances that develop color when brought into contact with and mixed with each other in the A layer and the B layer. Specific examples of the normally colorless to light-colored color-forming compound in layer A and the auxochrome compound that develops color when they come into contact with the color-forming compound in layer B, which have such a relationship, are as follows: (a) Acidic substance (layer B) and a leuco form of a dye (dye precursor) that develops color when it comes into contact with the acidic substance (layer A) (b) An oxidizing agent (layer B) and a leuco form of a dye that develops a color when it comes into contact with the oxidizing agent CA layer ) (c) Reducing agent (layer B) and a leuco form of dye that develops color when it comes into contact with the reducing agent (layer A) (d) Reducing agent (layer B) and is reduced like ferric stearate Examples include an oxidizing agent (layer A) that develops a color, (e) an oxidizing agent (layer B), and a reducing agent (layer A) that develops a color when oxidized, such as gallic acid. Let me give you a more detailed example.

染料のロイコ体と接触して反応し発色せしめるB層の酸
性物質としては、ベンゼンスルホン醜等の芳香族スルホ
ン酸化合物、安息香酸等の芳香族カルボン酸類、パルミ
チン酩(C+5Hit C00)I)、ステアリン酸C
C+7 Ha5 GODH)、アラキシン酸(c、?)
!、デcoon)等の高級脂肪酸カルボン酸類、p−t
−ブチルフェノール、α−ナフトール、β−ナフトール
、フェノールフタレイン、ビスフェノールA、 4−ヒ
ドロキシジフェノキシド、4−ヒドロキシアセトフェノ
ン等のフェノール性化合物等が挙げられる。
Acidic substances in the B layer that react with the leuco form of the dye and develop color include aromatic sulfonic acid compounds such as benzenesulfone, aromatic carboxylic acids such as benzoic acid, palmitic acid (C+5Hit C00) I), and stearin. acid C
C+7 Ha5 GODH), Araxic acid (c,?)
! , decoon), higher fatty acid carboxylic acids, p-t
Examples include phenolic compounds such as -butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, 4-hydroxydiphenoxide, and 4-hydroxyacetophenone.

次に、前記酸性物質と接触して反応するADの染料のロ
イコ体としては例えば、トリフェニルメタン系、フルオ
ラン系、フェノチアジン系、オーラミン系、スピロピラ
ン系等があり、それ等に含まれる具体的な化合物の詳細
を提示すると第1表の通りである。
Next, examples of the leuco type of AD dye that reacts with the acidic substance include triphenylmethane type, fluoran type, phenothiazine type, auramine type, spiropyran type, etc. Details of the compounds are shown in Table 1.

本発明においてB層は単分子膜又はその累積膜からなる
層から形成されるために、前記の助色性化合物は分子内
の適当な部位に親木基、疎水基又はその両方の基を導入
した誘導体を用いる必要がある。
In the present invention, since layer B is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the above-mentioned auxochrome compound introduces a parent group, a hydrophobic group, or both groups at appropriate sites within the molecule. It is necessary to use derivatives that are

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属塩(例えば
カドミウムfn )が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the parent group, carboxyl groups and metal salts thereof (eg, cadmium fn) are preferable.

他方、Amは従来の被膜方法により形成される膜であれ
ば如何なる膜でもよく、それ等の中で例えば蒸着膜、塗
布膜、浸Vt膜、ラミネート等の堆積膜からなる層が好
ましい。
On the other hand, Am may be any film formed by a conventional coating method, and among these, a layer made of a deposited film such as a vapor deposited film, a coating film, a immersed Vt film, or a laminate is preferable.

なお、A層及びB層の膜厚は200Aからl0JLの範
囲が望ましく、好適には1.00OAからILの範囲で
ある。
Note that the thickness of the A layer and the B layer is preferably in the range of 200A to 10JL, preferably in the range of 1.00OA to IL.

次に、本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収する光吸収色素であれば
如何なるものでもよく、例えば赤外線を吸収して溶融す
る溶融性光吸収色素、又は赤外線を吸収して昇華する昇
華性光吸収色素も用いることができるが、特に非溶融性
色素、非昇華性色素が好適である。
Next, the light-absorbing material used in the formation of the light-absorbing layer in the present invention may be any light-absorbing dye that absorbs infrared rays, such as a melting light-absorbing dye that melts by absorbing infrared rays, or Sublimable light-absorbing dyes that absorb infrared rays and sublimate can also be used, but non-melting dyes and non-sublimating dyes are particularly preferred.

該かる光吸収色素の一例をあげれば、銅フタロシアニン
、バナジウムフタロシアニン等の金属フタロシアニン、
フルオレスセイン等のキサンチン系色素等がある。
Examples of such light-absorbing dyes include metal phthalocyanines such as copper phthalocyanine and vanadium phthalocyanine;
There are xanthine dyes such as fluorescein.

該光吸収層は単分子膜又はその累積膜からなる層から形
成されるために、前記の光吸収性物質は分子内の適当な
部位に親木基、疎水基又はその両方の基を導入した誘導
体を用いる必要がある。
Since the light-absorbing layer is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the light-absorbing substance has a parent group, a hydrophobic group, or both groups introduced at appropriate sites within the molecule. It is necessary to use derivatives.

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the parent group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

なお光吸収層の膜厚は30Aから1,000人の範囲が
望ましく、好適には50人から200人の範囲である。
The thickness of the light absorption layer is desirably in the range of 30A to 1,000A, preferably in the range of 50 to 200A.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の金属材料、好適に
は強化ガラス、更に好適にはアクリル(PMMA) 、
ボリカーポネー) (1’C) 、ポリプロピレン、ポ
リ塩化ビニール(pvc ) 、ポリスチレン等のプラ
スチック材料、セラミック材料が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, metal materials such as aluminum, preferably tempered glass, more preferably acrylic (PMMA),
Preferred are plastic materials such as polycarbonate (1'C), polypropylene, polyvinyl chloride (PVC), and polystyrene, and ceramic materials.

本発明に係わる光記録素子はB層は助色性化合物の単分
子膜又はその累v1膜からなる層及び光吸収層は光吸収
性物質の単分子膜又はその累積膜からなる層から構成さ
れることを1つの特徴とするものである。
In the optical recording element according to the present invention, the B layer is composed of a monomolecular film of an auxochrome compound or a cumulative film thereof, and the light absorbing layer is composed of a monomolecular film of a light absorbing substance or a cumulative film thereof. One of its characteristics is that

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積膜を作成する方法としては、例えば1.La
ngmuirらの開発したラングミュア・プロジェット
法(LB法)を用いる。ラングミュア・プロジェット法
は、例えば分子内に親水基と疎水基を有する構造の分子
において、両者のバランス(両親媒性のバランス)が適
度に保たれているとき、分子は水面上で親木基を下に向
けて単分子の層になることを利用して単分子膜または単
分子の累積膜を作成する方法である。水面上の単分子層
は二次元系の特徴をもつ0分子がまばらに散開している
ときは、一分子当り面積Aと表面圧■との間に二次元理
想気体の式、 rlA= kT が成り立ち、′気体膜”となる、ここに、kはポルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり二次元固体の°゛凝縮l19(ま
たは固体膜)°°になる。凝縮膜はプラスチック基板、
ガラス基板などの種々の材質や形状を有する担・体の表
面へ一層ずつ移すことができる。
As a method for producing a monomolecular film or a cumulative film thereof having such high orderliness and orientation of molecules, for example, 1. La
The Langmuir-Prodgett method (LB method) developed by Ngmuir et al. is used. The Langmuir-Prodgett method uses, for example, a molecule with a structure that has a hydrophilic group and a hydrophobic group within the molecule, and when the balance between the two (balance of amphiphilicity) is maintained at an appropriate level, the molecule has a parent group on the water surface. This is a method of creating a monomolecular film or a cumulative film of monomolecular molecules by using the fact that the film turns downward into a monomolecular layer. When the monomolecular layer on the water surface has the characteristics of a two-dimensional system and zero molecules are sparsely dispersed, the two-dimensional ideal gas equation, rlA=kT, is established between the area per molecule A and the surface pressure ■. where k is Portzmann's constant and T is the absolute temperature.If A is made sufficiently small, the intermolecular interaction becomes strong, resulting in a two-dimensional solid condensation l19 (or solid film). °.The condensation film is a plastic substrate,
It can be transferred layer by layer onto the surface of carriers/bodies having various materials and shapes, such as glass substrates.

次に本発明に使用する助色性化合物又は光吸収性物質で
ある親木基、疎水ノ、(を併有する有機分子の単分子膜
又はその累JA膜を形成する方法についてさらに詳述す
る。
Next, a method for forming a monomolecular film of an organic molecule or a composite JA film thereof having a parent group, a hydrophobic group, or a parent group, which is an auxochrome compound or a light-absorbing substance used in the present invention, will be described in more detail.

まず該有機分子をベンゼン、クロロホルム等の揮発性溶
剤に溶解し、シリンダ等でこれを第3図に概略した単分
子層i?[膜形成装置の水槽io内の水相11上に展開
させる。
First, the organic molecule is dissolved in a volatile solvent such as benzene or chloroform, and then formed into a monomolecular layer i? [Developed on the aqueous phase 11 in the water tank io of the film forming apparatus.

該有機分子は、溶剤の揮発に伴って、親木基12を水相
に向け、ψに水基13を気相に向けた状態で水相11上
に展開する。
As the solvent evaporates, the organic molecules develop on the aqueous phase 11 with the parent tree groups 12 facing the water phase and the water groups 13 facing ψ toward the gas phase.

次にこの析出物(有機分子)が水相11上を自由に拡散
して広がり子ぎないように仕切板(または浮子) 14
を設けて展開面積を制限して膜物質の集合状態を制御し
、その集合状態に比例した表面圧■を得る。この仕切板
14を動かし、展開面積を縮少して膜物質の集合状態を
制御し1表面圧を徐々に上昇させ、累積膜の製造に適す
る表面圧■を設定することができる。この表面圧を維持
しながら静かに清浄な基板14を垂直に上下させること
により単分子Fileが基板上に移しとられる。単分子
膜16は以上で製造されるが、単分子層累積11917
は前記の操作を繰り返すことにより所望の累積数の単分
子層膜taWiが形成される。
Next, a partition plate (or float) 14 is installed to prevent this precipitate (organic molecules) from freely diffusing and spreading on the aqueous phase 11.
is provided to limit the developed area and control the state of aggregation of the membrane material, thereby obtaining a surface pressure (2) proportional to the state of aggregation. The partition plate 14 is moved to reduce the developed area, control the aggregation state of the film material, gradually increase the surface pressure 1, and set the surface pressure suitable for producing a cumulative film. By gently moving the clean substrate 14 vertically up and down while maintaining this surface pressure, the monomolecular file is transferred onto the substrate. The monomolecular film 16 is manufactured as above, and the monomolecular layer cumulative 11917
By repeating the above operations, a desired cumulative number of monolayer films taWi are formed.

例えば表面が親水性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親木基が基板15
側に向いた単分子層16が基板15上に形成される。前
述のように基板15を上下させると、各工程ごとに1枚
ずつ単分子層18が積み重なっていく、成膜分子の向き
が引上げ工程と浸せき工程で逆になるので、この方法に
よると各層間は有機分子の親木基と親水基、有機分子の
疎水基と疎水基が向かい合ういわゆるY型膜が形成され
る(第4図(,11) ) 。
For example, when a substrate 15 with a hydrophilic surface is pulled out of water in a direction transverse to the water surface, parent wood groups of the organic molecules are removed from the substrate 15.
A side-facing monolayer 16 is formed on the substrate 15 . When the substrate 15 is moved up and down as described above, the monomolecular layer 18 is stacked one by one in each step. Since the direction of the film-forming molecules is reversed in the pulling step and the dipping step, this method In this case, a so-called Y-type film is formed in which the parent wood group and the hydrophilic group of the organic molecule and the hydrophobic group and the hydrophobic group of the organic molecule face each other (Fig. 4 (, 11)).

Y型膜は有機分子の親水基同志、疎水基同志が向い合っ
ているので強固である。
The Y-type film is strong because the hydrophilic groups and hydrophobic groups of the organic molecules face each other.

それに対し、基板15を水中に引き下げるときにのみ、
基板面に該有機分子を移し取る方法もある。
In contrast, only when lowering the substrate 15 into the water,
There is also a method of transferring the organic molecules onto the substrate surface.

この方法では、累積しても、成膜分子の向きの交代はな
く全ての層において、疎水基が基板15側に向いたx)
!Xl膜カ形成サレす(tJS4図(b) ) 、 反
対に全ての層において親木基が基板15側に向いた累v
1膜はZ型膜と呼ばれる(第4図(C) ) 。
In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and the hydrophobic groups in all layers face the substrate 15 x)
! When the Xl film is formed (Fig. tJS4 (b)), on the other hand, in all layers, the parent base is oriented toward the substrate 15 side.
One film is called a Z-type film (Fig. 4(C)).

Z型nQは基板15を水中から引上げるときにのみ、基
板面に有機分子を移し取ることによって得られる。
Z-type nQ is obtained by transferring organic molecules to the substrate surface only when the substrate 15 is pulled out of water.

以上の方法によって基板上に形成される単分子膜及び単
分子層累積膜は高密度でしかも高度の秩序性・配向性を
有しており、これらの膜で記録層を構成することによっ
て、光熱的記録の可能な高密度で高解像度の記録機能を
有する記録素子を得ることができる。また、これら成膜
方法はその原理からも分る通り、非常に簡単な方法であ
り、上記のような優れた記録機能を有する記録素子を低
コストで提供することができる。
The monomolecular film and monomolecular layer cumulative film formed on the substrate by the above method have high density and a high degree of order and orientation, and by configuring the recording layer with these films, photothermal Accordingly, it is possible to obtain a recording element having a high-density and high-resolution recording function capable of performing digital recording. Further, as can be seen from the principles thereof, these film forming methods are very simple methods, and a recording element having the above-mentioned excellent recording function can be provided at low cost.

以上述べた、本発明における単分子膜または単分子累′
!Ii膜を形成する基板は特に限定されないが、基板表
面に界面活性物質が付着していると、単分子層を水面か
ら移しとる時に、単分子膜が乱れ良好な単分子膜または
単分子層累積膜ができないので基板表面が清浄なものを
使用する必要がある。
The monomolecular film or monomolecular layer in the present invention described above
! The substrate on which the Ii film is formed is not particularly limited, but if a surfactant is attached to the surface of the substrate, the monomolecular layer will be disturbed when the monomolecular layer is transferred from the water surface, resulting in a good monomolecular film or monomolecular layer accumulation. Since no film is formed, it is necessary to use a substrate with a clean surface.

基板上の単分子膜または単分子層累積膜は、十分に強く
固定されており基板からの剥離、剥落を生じることはほ
とんどないが、付着力を強化する目的で基板と単分子膜
または単分子層累積膜の間に接着層を設けることも、で
きる、さらに単分子層形成条件例えば水相の水素イオン
濃度、イオン種、水温、担体上げ下げ速度あるいは表面
圧の選択等によって付着力を強化することもできる。
The monomolecular film or monomolecular layer accumulation film on the substrate is sufficiently strongly fixed and rarely peels or peels off from the substrate. It is also possible to provide an adhesive layer between the stacked layers, and the adhesion force can be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure. You can also do it.

次に、A層の堆積膜の形成方法は前記発色性化合物にバ
インダーと水を添加した水混和物を、ボールミル等を用
いて粉砕混合した後、基板等の上に従来の通常の方法で
塗着して行う。
Next, the method for forming the deposited film of layer A is to pulverize and mix a water mixture obtained by adding a binder and water to the color-forming compound using a ball mill, etc., and then coat it on a substrate etc. by a conventional method. Wear it and do it.

未発ry1に用いられる前記バインダーとしてはゼラチ
ン、でんぷんのごとき天然高分子物、硝酸繊維素、カル
ボキシメチルセルローズのごとき繊維素話導体、塩化ゴ
ム、環化ゴムのごとき天然ゴム可塑物などの半合成高分
子−物、ポリイソブチレン、ポリスチロール、テルペン
樹脂、ポリアクリル酸、ポリアクリル酸エステル、ポリ
メタアクリル酸エステル、ポリアクリルニトリル、ポリ
アクリルアミド、ポリ酢酸ビニル、ポリビニルアルコー
ル、ポリビニルピロリドン、ポリアセタール樹脂、ポリ
塩化ビニル、ポリビニルピリジン、ポリビニルカルバゾ
ール、ポリブタジェン、ポリスチレン−ブタジェン、ブ
チルゴム、ポリオキシメチレン、ポリエチレンイミン、
ポリエチレンイミンハイドロクロライド、ポリ(2−ア
クリルオキシエチルジメチルスルホニウムクロライド)
などのごとき重合型合成高分子、フェノール樹脂、アミ
ン樹脂、トルエン樹脂、アルキッド樹脂、不飽和ポリエ
ステル樹脂、アリル樹脂、ポリカーボネート、ポリアマ
イド樹脂、ポリエーテル樹脂、珪素樹脂、フラン樹脂、
チオコールゴムなどのごとき縮合重合型合成高分子、ポ
リウレタン、ポリ尿素、エポキシ樹脂などのごとき付加
重合型樹脂が挙げられる。
The binder used in unreleased RY1 includes natural polymers such as gelatin and starch, cellulose nitrate, cellulose conductors such as carboxymethyl cellulose, and semisynthetic materials such as natural rubber plastics such as chlorinated rubber and cyclized rubber. Polymers, polyisobutylene, polystyrene, terpene resin, polyacrylic acid, polyacrylic ester, polymethacrylic ester, polyacrylonitrile, polyacrylamide, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, polyacetal resin, poly Vinyl chloride, polyvinylpyridine, polyvinylcarbazole, polybutadiene, polystyrene-butadiene, butyl rubber, polyoxymethylene, polyethyleneimine,
Polyethyleneimine hydrochloride, poly(2-acryloxyethyldimethylsulfonium chloride)
Polymerizable synthetic polymers such as phenolic resins, amine resins, toluene resins, alkyd resins, unsaturated polyester resins, allyl resins, polycarbonates, polyamide resins, polyether resins, silicon resins, furan resins,
Examples include condensation polymerization type synthetic polymers such as thiocol rubber, and addition polymerization type resins such as polyurethane, polyurea, and epoxy resins.

以上に説明した方法で製造される本発明に係わる光記録
素子の構成の1例を示すと、第1図(a)に示す通り、
発色性化合物からなるA層2と助色性化合物からなる8
層4とを積層し、ざらに該B層4の上に光吸収層3を設
けてなり、8層4及び光吸収層3は単分子膜又はその累
積膜、A層2は堆積膜からなる積層体で、光吸収層3を
基板1上に支持し、基板/光吸収層/B層/A層の順に
積層してなるものである。この場合A層2と8層4とを
逆にして、基板/光吸収層/A層/Beの順に積層して
もよい。
An example of the structure of the optical recording element according to the present invention manufactured by the method described above is as shown in FIG. 1(a).
A layer 2 consisting of a color-forming compound and layer 8 consisting of an auxochrome compound
8 layers 4 and the light absorption layer 3 are provided on the B layer 4, the 8 layers 4 and the light absorption layer 3 are monomolecular films or their cumulative films, and the A layer 2 is a deposited film. It is a laminate, in which a light absorption layer 3 is supported on a substrate 1 and laminated in the order of substrate/light absorption layer/B layer/A layer. In this case, the A layer 2 and the 8 layer 4 may be reversed and laminated in the order of substrate/light absorption layer/A layer/Be.

さらに、他の例を示すと、第1図(b)に示す通り、A
層2と8層4とを積層し、ざらに該A層2の上に光吸収
層3を設けて積層体を形成し、8層4を基板l上に支持
し、基板/B層/A層/光吸収層の順に積層してなるも
のである。この場合、前記と同様にA層2と8層4とを
逆にして、基板/A層/B層/光吸収層の順に積層して
もよい。
Furthermore, to show another example, as shown in FIG. 1(b), A
Layers 2 and 8 layers 4 are laminated, a light absorption layer 3 is provided roughly on the A layer 2 to form a laminate, the 8 layers 4 are supported on a substrate l, and the substrate/B layer/A It is formed by laminating layers/light absorption layer in this order. In this case, similarly to the above, the A layer 2 and the 8-layer 4 may be reversed and laminated in the order of substrate/A layer/B layer/light absorption layer.

また、上記の第1図(a) 、 (b)に示すいずれの
構成においても前記の積層体を2段以上積重ねて基板に
支持してもよい。
Furthermore, in any of the configurations shown in FIGS. 1(a) and 1(b), two or more of the laminates may be stacked and supported on the substrate.

本発明に係わる光記録素子は発色性化合物からなるA層
と助色性化合物からなるBMとを密着せしめて構成され
ているが、従来の技術ではこの様に構成することは不可
能であるとされていた。しかしながら本発明においては
B層が分子の高度の秩序性・配向性を有する単分子膜及
びその累積膜によって形成されているため、分子内の非
反応性部位を介して1反応性部位同志を隔てることがで
きるために上記の構成をとることが可能となったのであ
る。
The optical recording element according to the present invention is composed of a layer A made of a color-forming compound and a BM made of an auxochrome compound, which are brought into close contact with each other, but it is impossible to make such a structure with conventional technology. It had been. However, in the present invention, since the B layer is formed of a monomolecular film with a high degree of molecular order and orientation and a cumulative film thereof, one reactive site is separated from another through a non-reactive site within the molecule. This made it possible to adopt the above configuration.

また、本発明に係わる光記録素子はA層とB層とを密着
させて積層し、さらに光吸収層を外側に設けて構成され
ているので、赤外線照射によって光吸収層が加熱され、
その熱伝導によってA層の発色性化合物とB層の助色性
化合物とが加熱接触して発色反応が進行し、所定の位置
に発色点を形成し情報を記録することができる。
Further, since the optical recording element according to the present invention is constructed by laminating the A layer and the B layer in close contact with each other and further providing a light absorption layer on the outside, the light absorption layer is heated by infrared irradiation.
Due to the heat conduction, the color-forming compound in the A layer and the auxochrome compound in the B layer come into contact with each other under heat, and a color-forming reaction progresses, forming a color-forming point at a predetermined position so that information can be recorded.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクかり、情
+M yL占き込んだり或いは読取ったりするための光
ピツクアップの光学系を有する情報記tα装置の1例を
第5図に示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. FIG. 5 shows an example of an information recording device having an optical pickup optical system for reading or reading information from the optical disc.

該情報記憶装置は、制御回路27と光ピツクアップ光学
系からなる書き込み手段と、本発明に係わる光記録素子
と、出力回路28と光ピツクアップ光学系からなる読取
り手段とによって・構成される。
The information storage device is composed of a writing means consisting of a control circuit 27 and an optical pickup optical system, an optical recording element according to the present invention, and a reading means consisting of an output circuit 28 and an optical pickup optical system.

書き込みは次のようにして行う、制御回路27は半導体
レーザ2Bの発振を制御する。従って、入力情報は制御
回路27及び半導体レーザ26によって光信号に変換さ
れる。光信号29は第5図に示す光ピツクアップ光学系
を通って同期回転している光ディスク18の記録層上に
結像され、上述の発色メカニズムにより発色記録される
Writing is performed as follows. The control circuit 27 controls the oscillation of the semiconductor laser 2B. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 26. The optical signal 29 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer of the optical disk 18 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う、半導体レーザ26から発
する低出力の連続発振光を読取り光として使う、低出力
であるから、読取り中に発色記録が行われることは−な
いからである。または他の可視光用光源を読取り用光源
として用いてもよい。
Reading is performed in the following manner. A low-output continuous wave light emitted from the semiconductor laser 26 is used as the reading light. Since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク18の基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアップ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disk 18 and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pickup optical system. This converts the signal into an electrical signal and reproduces and reads it.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の膜厚は1.000 A〜2,000 Aが
好適である。その他必要に応じて誘電体ミラーでもよい
The thickness of the metal reflective layer is preferably 1.000 A to 2,000 A. In addition, a dielectric mirror may be used as necessary.

更に、A層、B層、光吸収層等を保護するために最外層
の表面に保護層を設けてもよい、そのような保護層用材
料としては5i02等の誘電体、プラスチック樹脂、他
の重合性LBlliJ等が好適である。
Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the A layer, B layer, light absorption layer, etc. Materials for such a protective layer include dielectrics such as 5i02, plastic resins, and other materials. Polymerizable LBlliJ and the like are preferred.

[実施例] 以下、実施例を示し1本発明をさらに具体的に説明する
。尚、下記において特に記述のない限り「部」は「ff
i量部」を、「%」は「重量%」を表わすものとする。
[Example] Hereinafter, the present invention will be explained in more detail by showing examples. In addition, unless otherwise specified below, "department" is "ff".
"i amount part" and "%" represent "weight %".

合成例1(光吸収性物質の合成例) バナジウムフタロシアニン1゛p゛の    ・尿素1
0部と10〜15%りん酸水溶液1部を混合溶解した後
、さらに無水フタル酸2部、  VOC文2(バナジル
j1り10部及び 式(1) %式% で表わされる無水フタルシアニンの誘導体8部を加え、
1()0℃にて5時間加熱した。冷却した後。
Synthesis example 1 (synthesis example of light-absorbing substance) Vanadium phthalocyanine 1゛p゛・Urea 1
After mixing and dissolving 0 part and 1 part of a 10-15% phosphoric acid aqueous solution, further add 2 parts of phthalic anhydride, 10 parts of vanadyl j1 and a derivative of phthalcyanine anhydride represented by formula (1) % formula % Add 8 parts,
1() Heated at 0°C for 5 hours. After cooling.

2%希NaOH水溶液100部を加え、加水分解した後
、クロマトグラフィにより分離し、 式(II) [式■中、Rは を表わす]で示される目的物質(バナジウムフタロシア
ニン誘導体)0.1部を得た。
100 parts of a 2% dilute NaOH aqueous solution was added, hydrolyzed, and separated by chromatography to obtain 0.1 part of the target substance (vanadium phthalocyanine derivative) represented by formula (II) [in formula (■), R represents]. Ta.

実施例1 (1)光吸収層の形成方法 厚さ10■腸、直径18h膿の円板上のガラス(ディス
ク)a!ISi板を充分に清浄にした0次に前述の単分
子累積装置を用いて光吸収性物質であるバナジウムフタ
ロシアニン誘導体の単分子累積装置を形成した。
Example 1 (1) Method for forming a light-absorbing layer Glass (disc) on a disk of pus with a thickness of 10 ■ intestine and a diameter of 18 h a! A single molecule accumulator of a vanadium phthalocyanine derivative, which is a light-absorbing substance, was formed using the above-mentioned single molecule accumulator with an ISi plate sufficiently cleaned.

該バナジウムフタロシアニン誘導体の単分子累積膜の形
成方法は、下記のように行った。
The monomolecular cumulative film of the vanadium phthalocyanine derivative was formed as follows.

基板が水面と垂直になるようにして、基板を水中に沈め
た後、バナジウムフタロシアニン誘導体を、濃度2×1
0°’mol/Jlのクロロホルム溶液にして水面上に
滴下し単分子nI2を水面上に展開する0表面圧を30
dyne/cmに設定し、速度2 cm/minで基板
を上下して2層に累積した単分子累積膜(Y型II!2
)を作成した。
After submerging the substrate in water so that it is perpendicular to the water surface, add vanadium phthalocyanine derivative to a concentration of 2×1.
A chloroform solution of 0°' mol/Jl is dropped onto the water surface to develop a single molecule nI2 on the water surface. The surface pressure is set to 30
dyne/cm, and the substrate was moved up and down at a speed of 2 cm/min to form a two-layer monomolecular cumulative film (Y-type II!2).
)It was created.

同様の方法により、tH14層、6層、8層の単分子累
積膜を各々作成した各試料を得た。
By the same method, samples were obtained in which monomolecular cumulative films of 14, 6, and 8 layers of tH were respectively created.

但し、一層(単分子膜)のみの作成は、まず上述の方法
により一水面上に単分子nりを展開した後。
However, to create only one layer (monolayer), first spread a monolayer on one water surface using the method described above.

次に基板を水中に沈めるときに付着させることにより得
た。(X型) (2)B層の形成方法 次に、前記(1)で得た各試料のガラス基板上に形成し
た光吸収層の上に、前述の単分子累積装置を用いて助色
性化合物であるアラキシン酸の単分子累積膜を形成した
Next, it was obtained by attaching the substrate while submerging it in water. (X type) (2) Method for forming layer B Next, on the light absorption layer formed on the glass substrate of each sample obtained in (1) above, use the monomolecular accumulator described above to form an auxochrome layer. A monomolecular cumulative film of the compound araxic acid was formed.

該アラキシン酸の単分子累積11々の形成方法は、下記
のように行った。
The method for forming the monomolecular stacks 11 of araxic acid was performed as follows.

光吸収層を形成した基板が水面と垂直になるようにして
、基板を水中に沈めた後、アラキシン酸を濃度2 X 
10’ mol/uのクロロホルム溶液にして水面上に
滴下し単分子膜を水面上に展開する0表面圧を30d7
ne/cmに設定し、速度2 cm/sinで基板′を
上下して第2表に示す各層に累積した単分子累積膜(Y
型膜)を各試料に作成した。
After submerging the substrate in water so that the substrate on which the light absorption layer was formed is perpendicular to the water surface, araxic acid was added at a concentration of 2X.
A chloroform solution of 10' mol/u is dropped onto the water surface and a monomolecular film is spread on the water surface at a surface pressure of 30 d7.
The monomolecular cumulative film (Y
A mold film) was prepared for each sample.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成したB
層の上に発色性化合物であるクリスタルバイオレットラ
クトンの堆積膜を形成した。
(3) Formation method of A layer Next, the B layer formed on the glass substrate of each sample in (2) above.
A deposited film of crystal violet lactone, a color-forming compound, was formed on the layer.

形成方法はクリスタルバイオレットラクトン7部、バイ
ンダーとしてポリビニルアルコール1部、水100部を
混合し、さらにボールミルを用いて数時間、粉砕混合し
、基板のB層上に回転塗布して、バインダー中に分散し
たクリスタルバイオレットラクトンの堆積膜(IV2.
厚IIL)を得た。
The formation method is to mix 7 parts of crystal violet lactone, 1 part of polyvinyl alcohol as a binder, and 100 parts of water, then grind and mix for several hours using a ball mill, spin coat on the B layer of the substrate, and disperse in the binder. Deposited film of crystal violet lactone (IV2.
Thickness IIL) was obtained.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
比較例として従来の同様の構成(全てが単分子膜又はそ
の累積膜を使用しないで構成)に係る光ディスクを第5
図に示す情報記憶装置を用いて以下の記録条件下で記録
した後、読取り再生を行うことにより両者の性情比較を
行った。
(4) Performance test The optical recording element according to the present invention manufactured by the above-mentioned method and a conventional optical disk having a similar structure (all of which are constructed without using a monomolecular film or a cumulative film thereof) were used as a comparative example.
After recording under the following recording conditions using the information storage device shown in the figure, the characteristics of the two were compared by reading and reproducing.

〈記録条件) 半導体レーザ波長 830nm レーザ出力  6〜9IIIw 記録周波flI5MHz 光ディスクの回転数 1.80Orpm以上の条件下で
読み出しをレーザ出力1mWで行い、信号/雑音比を求
めた結果を第2表に示す。
<Recording conditions) Semiconductor laser wavelength: 830 nm Laser output: 6 to 9IIIw Recording frequency: flI5 MHz Optical disk rotation speed: 1.80 Orpm or higher, reading was performed with a laser output of 1 mW, and the signal/noise ratio was determined. Table 2 shows the results of reading. .

:jS2表 註・・・掌は比較例を示し、各層の形成は回転塗布法に
より行った。
:jS2 Table Note: The palm shows a comparative example, and each layer was formed by a spin coating method.

第2表の結果よりNo、1(B層及び光吸収層が単分子
Bqからなる場合)とN086とを比較すると、No、
 1の方が信号/雑音比において顕著に優れることが認
められる。 No、1とNo、8はほぼ同じ膜厚である
が、性能にこのような差異が生ずるのはNo、1の方が
ピンホール等の欠陥が少なく、かつ分子配向性が秩序正
しく保たれているためと思われる。
From the results in Table 2, comparing No. 1 (when the B layer and light absorption layer are composed of monomolecular Bq) and No. 086, No.
It is recognized that No. 1 is significantly superior in signal/noise ratio. No. 1 and No. 8 have almost the same film thickness, but this difference in performance occurs because No. 1 has fewer defects such as pinholes and the molecular orientation is maintained in an orderly manner. This seems to be because there are.

同様に、N002〜No、5(B層及び光吸収層が単分
子の累積膜からなる場合)とNo、7との比較では、N
o、2〜No、5の方が信号/雑音比において優れるこ
とが認められる。
Similarly, in the comparison between No. 002 to No. 5 (when the B layer and the light absorption layer are composed of monomolecular cumulative films) and No. 7, N
It is recognized that No. o, 2 to No. 5 are superior in signal/noise ratio.

[発明の効果] 以上説明した様に本発明に係わる光記録素子はB層及び
光吸収層が単分子膜又はその累積膜からなる層、A層は
堆積膜からなる層で構成されているので、以下に示すよ
うな優れた効果がある。
[Effects of the Invention] As explained above, in the optical recording element according to the present invention, the B layer and the light absorption layer are composed of a monomolecular film or a cumulative film thereof, and the A layer is composed of a deposited film. , it has the following excellent effects.

(1)従来の単分子膜又はその累積膜を使用していない
光記録素子と比較して信号/雑音比が高く。
(1) The signal/noise ratio is higher than that of optical recording elements that do not use conventional monomolecular films or their cumulative films.

記録の信頼性を向上させることができる。The reliability of recording can be improved.

(2)光記録素子のピンホール等の物理的欠陥を大幅に
減少させることができる。
(2) Physical defects such as pinholes in optical recording elements can be significantly reduced.

(3)従来の光記録素子と比べて、より高密度記録が可
能である。
(3) Higher density recording is possible than with conventional optical recording elements.

(4)光記録素子の大面積化が可能である。(4) It is possible to increase the area of the optical recording element.

(5)光吸収層がA層とB層との間に介在しないために
発色効率及び忠実性が向上する。
(5) Since the light absorption layer is not interposed between the A layer and the B layer, coloring efficiency and fidelity are improved.

(6)光吸収層がA層とB層との間に介在しないために
実質記・鎧層を薄くすることができ、より高密度記録が
可俺である。
(6) Since the light absorption layer is not interposed between the A layer and the B layer, the actual recording/armor layer can be made thinner, and higher density recording is possible.

(7)発色効率が良く、発色剤等としてすぐれているが
、単分子膜又はその累積膜を形成しにくい材料、又は単
分子膜又はその累積膜を形成しやすい誘導体に化学変化
(合成)することが経費上困難な材料を堆mFJに用い
ることができる利点がある。
(7) Chemically changing (synthesizing) a material that has good coloring efficiency and is excellent as a coloring agent, etc., but is difficult to form a monomolecular film or its cumulative film, or a derivative that easily forms a monomolecular film or its cumulative film. There is an advantage that materials that are difficult to manufacture due to cost can be used for the composite FJ.

(8)積層体の一部に堆積膜を用いているので、感度が
向上し、製作の際に材料の選択の巾が広く製造が容易で
あり、又読み取りの際コントラストと非コントラストの
差がつきやすい等の光学物性上の効果がある。
(8) Since a deposited film is used in a part of the laminate, sensitivity is improved, there is a wide range of material selection during manufacturing, and manufacturing is easy, and the difference between contrast and non-contrast during reading is improved. It has effects on optical properties such as easy adhesion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び第1図(b)は各々本発明に係わる光
記録素子の実施態様を示す概略構成断面図、第2図(a
)〜第2図(C)は従来の光記録素子の記録プロセスを
示す説明図、第3図は単分子累積膜形成装置の概略構成
断面図、第4図(a)〜第4図(C)は単分子膜81膜
の作製工程図及び第5図は情報記憶装置のブロック図で
ある。
FIG. 1(a) and FIG. 1(b) are a schematic cross-sectional view showing an embodiment of an optical recording element according to the present invention, and FIG.
) to FIG. 2(C) are explanatory diagrams showing the recording process of a conventional optical recording element, FIG. 3 is a schematic cross-sectional view of a monomolecular cumulative film forming apparatus, and FIG. ) is a manufacturing process diagram of the monomolecular film 81, and FIG. 5 is a block diagram of the information storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層とを積層し、さらに光吸収層を設けて
なり、かつ(イ)前記B層は助色性化合物の単分子膜又
はその累積膜からなる層、 (ロ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層 から構成されることを特徴とする光記録素子。
(1) Layer A consisting of a normally colorless or light-colored color-forming compound and layer B consisting of an auxochrome compound that develops color when in contact with the color-forming compound are laminated, and a light-absorbing layer is further provided, and (a) The B layer is a monomolecular film of an auxochrome compound or a cumulative film thereof; (b) The light-absorbing layer is a monomolecular film of a light-absorbing substance or a cumulative film thereof. An optical recording element characterized by:
JP59159108A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137480A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159108A JPS6137480A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159108A JPS6137480A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137480A true JPS6137480A (en) 1986-02-22

Family

ID=15686416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159108A Pending JPS6137480A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429300U (en) * 1987-08-13 1989-02-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429300U (en) * 1987-08-13 1989-02-21

Similar Documents

Publication Publication Date Title
JPH0415112B2 (en)
JPS6357286A (en) Information recording medium
US5026623A (en) Optical recording medium
JPS6137480A (en) Optical recording element
JPS6163489A (en) Photo-recording element
JPS6163491A (en) Photo-recording element
JPS6137482A (en) Optical recording element
JPS6137477A (en) Optical recording element
JPS6137479A (en) Optical recording element
JPS6163487A (en) Optical recording element
JPS6137489A (en) Optical recording element
JPS6137486A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPS6163480A (en) Optical recording element
JPS6137485A (en) Optical recording element
JPS6163484A (en) Optical recording element
JPS6137476A (en) Optical recording element
JPS6163485A (en) Optical recording element
JPS6137487A (en) Optical recording element
JPS6163478A (en) Optical recording element
JPH0477969B2 (en)
JPS6163490A (en) Photo-recording element
JPS6137474A (en) Optical recording element
JPS6163939A (en) Information storage device
JPS6163479A (en) Optical recording element