JPH0471717B2 - - Google Patents

Info

Publication number
JPH0471717B2
JPH0471717B2 JP20992981A JP20992981A JPH0471717B2 JP H0471717 B2 JPH0471717 B2 JP H0471717B2 JP 20992981 A JP20992981 A JP 20992981A JP 20992981 A JP20992981 A JP 20992981A JP H0471717 B2 JPH0471717 B2 JP H0471717B2
Authority
JP
Japan
Prior art keywords
recording
dye
film
reflectance
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20992981A
Other languages
Japanese (ja)
Other versions
JPS58112790A (en
Inventor
Makoto Kunikane
Michiharu Abe
Masaaki Umehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP56209929A priority Critical patent/JPS58112790A/en
Priority to US06/452,238 priority patent/US4460665A/en
Publication of JPS58112790A publication Critical patent/JPS58112790A/en
Publication of JPH0471717B2 publication Critical patent/JPH0471717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2475Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes merocyanine
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2472Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機色素薄膜層を有する反射型光情報
記録部材に関する。 従来、レーザ書込みのための多くの光学的情報
記録媒体が発展してきた。その代表的なものとし
ては、金属、半金属および非金属の蒸着膜による
記録媒体ならびに銀乾板の加熱によつて反射膜を
形成させた記録媒体がある。このような記録媒体
は、前記蒸着膜に書き込みレーザスポツトを照射
し、その熱的な作用により、その部分の膜を溶
融・除去させたり変形させたりすることにより記
録が行なわれる。記録が行なわれた記録媒体は、
読み取りレーザで走査することにより、前記膜の
溶融・除去の有無あるいは変形の有無により、反
射光、透過光、散乱光の強弱変化を発生させる。
この強弱変化を光検出器にて検出することにより
記録された情報が再生される。 しかしながら、金属、半金属および非金属の蒸
着膜による記録媒体は連続体制よりもむしろバツ
チ体制による真空成形法によつて一般的に製造さ
れる故に高価でありさらに多くのバツチが必要と
されることから製品を大量生産するための品質の
均一性を達成するのが困難である。また、銀乾板
の加熱によつて反射膜を形成させる方法は塗布方
式であるので量産性はよいが、銀粒子の分散系の
ためS/N比が低いという問題がある。 また、「書き込み後の直接読取り」能力のある
いわゆる「DRAW(direct read after write)」
媒体に対しては (1) 記録読取りのさい±1μの焦点制御およびト
ラツキング制御が必要となるため反射率が高い
ことおよび (2) 使用レーザに対して吸収が強いことの条件が
必要とされている。 かかる条件に適合する材料としてこれまで主とし
て金属が検討されてきた。 しかしながら、金属の使用には上述したような
問題が内在しているばかりでなく、金属膜は記録
膜としては一般的に過度に反射率が高く、例えば
金属の中では反射率が低いテルルの膜でも反射率
は約50%以上あり、従つて記録光が有効に吸収さ
れず、さらに熱伝導度が高いために、通常金属膜
は記録感度および記録分解能が低いという問題を
有している。さらに、金属故に易酸化性、大量使
用時における環境汚染という欠点を有している。 他方、有機色素を用いた記録媒体も種々提案さ
れている。 特開昭54−5442号公報には有機物の蒸着膜を記
録層として用いた光情報記録媒体が提案されてい
るが、該蒸着膜は通常反射率が5%以下と低く、
また量産性に劣り、実用に供しないものである。 また、特開昭56−156941号公報には、基板/記
録層/透明層/反射層の積層構造で記録層にシア
ニン色素を用い、基板側から記録再生光を照射す
ることが開示されているが、こうした構造のもの
は記録感度がわるいという欠点を有するものであ
る。 さらに、第27回応用物理学関係連合講演会予稿
集1p―p―9(1980)には、色素/透明層/反射
層/基板の構成の反射防止構造のサンプルについ
て、光有効利用による高感度化について報告され
ているが、こうした構造のものを、レーザ記録体
として用いる場合、色素膜側からレーザ光を照射
して、記録再生を行なうことになるが、このまま
の構造では色素膜上にごみ等が付着して記録エラ
ーが生じ、それを防止するため保護膜を設けると
感度が低下することになる。 前記予稿集には、約1μmの厚さのシアニン色素
を示唆する色素膜をガラス基板上に形成したもの
が上記の反射膜との積層構成のものに比して再生
信号出力が低く、感度も低い旨説明されている
が、厚さが約1μmであることはバインダーと混合
して作成したものとみられ、このような構成の色
素膜の反射率は通常低いものである。 そこで、本発明者は記録膜の材料としてブロン
ズ光沢を有する有機色素を使用した記録部材を特
願昭56−97086号(特開昭57−212639号)の発明
で提案した。ところが、ブロンズ光沢を有する有
機色素としてメロシアニン色素を選択して使用す
ると上記(1)および(2)の条件を満足するばかりでな
く、半導体レーザの使用に適した記録部材が得ら
れることを知り、本発明を完成するに至つた。 すなわち本発明によれば、メロシアニン色素を
含有し、樹脂成分を含有しないブロンズ光沢のあ
る色素薄膜層を有することを特徴とする反射型光
情報記録部材が提供される。 本発明の光情報記録部材は基本的には基板上に
ブロンズ光沢のある色素薄膜層を設けたものであ
るが、該色素薄膜層の上または下には目的に応じ
て保護層など他の層を設けたり、該色素薄膜層に
必要に応じて安定剤などの添加剤を加えることが
できる。 ここで「ブロンズ光沢」とは、「実験化学講座
(続)11、電子スペクトル」(丸善株式会社、昭和
40年7月15日発行)第144頁第1〜7行、あるい
は「Reviews of Modern Physics」vol.32,No.
2,April,1960,第466〜476頁に記載されてい
るように、色素薄膜が特定の光波長域で示す金属
様の反射であり、本発明のような光情報記録媒体
を用いた場合には実際の書き込み、読み出しの使
用レーザ波長に対して反射率20%以上のものが適
しておりそして30%のものが好ましい。この反射
率は薄膜の膜面から入射した光量に対する反射す
る光量の比率を意味し、この反射光には薄膜によ
る干渉現象に多重反射も含むものである。 ブロンズ光沢は金属の反射と異なり特有の着色
を持つているが、この色の吸収波長領域に合致し
た波長の記録再生用のレーザ光を選択すれば、当
然のことながら該レーザ光の波長に対しては色素
の吸収近傍において高い反射率を持たせることが
できるので、情報読出光量を多くすることができ
読出信号のC/NあるいはS/Nを向上させるこ
とができる。従つて使用レーザには、本発明の色
素薄膜が高い反射率を示す波長域内に発振波長を
有するものを選択することが好ましい。 本発明の色素薄膜の「薄膜」とは、反射率が20
%以上になる程度の膜厚であることを意味する。
本発明おいては100Å桁レベルのきわめて薄い膜
でさえも反射率が20%以上にすることができ、き
わめて薄いので記録感度も記録分解能も高いもの
である。 なお、本発明において用いる色素薄膜において
は樹脂などの樹脂成分を含有させていないので、
その厚さには膜形成上限界があり、厚くしてもせ
いぜい0.5μm程度である。膜中に樹脂成分を含有
させると20%以上の反射率を得難く、厚くなるの
で記録感度が低くなる傾向になる。 本発明に用いる色素薄膜は、その層単独で反射
率を吸収率のバランスがとれた光学特性を有する
ため、記録レーザ光を吸収すると、その熱作用に
より溶融、分解、変形等の状態変化を十分起す程
度の記録感度を有し、また再生レーザ光を照射す
るとその層単独で、信号検出に十分な量の反射光
が得られるものである。 本発明に用いる色素薄膜は、このように記録再
生に必要十分な反射率を示すと共に、有機材料よ
りなるものであるため熱伝導率が金属ほど高くな
いので、記録感度および記録分解能が共に高いも
のである。 本発明において使用される基板材料は当業者に
は既知のものであり、使用レーザ光に対して透明
または不透明のいずれでもよい。ただし、基板側
からレーザ光で書き込み記録を行なう場合は、書
き込みレーザ光に対して透明でなければならな
い。一方、基板と反対側すなわち記録層の表面か
ら書き込み記録を行なう場合は、書き込みレーザ
光に対して透明である必要はない。 基板材料の材質としては、ガラス、石英、セラ
ミツク、プラスチツクス、紙、板状または箔状の
金属などの一般に使用されている記録材料の支持
体でよい。特に、プラスチツクスが安定性、記録
感度向上、平面性、軽量、加工性などの点から好
適である。代表的なプラスチツクスとしては塩化
ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、メ
タクリル樹脂、ポリエステル樹脂、ニトロセルロ
ース樹脂、ポリエチレン樹脂、ポリプロピレン樹
脂、ポリアミド樹脂、ポリスチレン樹脂、ポリカ
ーボネート樹脂、エポキシ樹脂などがあげられ
る。 本発明において使用されるメロシアニン色素は
通常ハロゲン化銀の分光増感色素として通常知ら
れているものであり、メチン鎖の一方に
The present invention relates to a reflective optical information recording member having an organic dye thin film layer. In the past, many optical information storage media for laser writing have been developed. Typical examples include recording media with vapor-deposited films of metals, semimetals, and non-metals, and recording media with reflective films formed by heating a silver dry plate. In such a recording medium, recording is performed by irradiating the vapor deposited film with a writing laser spot and melting, removing, or deforming the film in that area due to the thermal effect. The recording medium on which the recording was made is
By scanning with a reading laser, changes in intensity of reflected light, transmitted light, and scattered light are generated depending on whether the film is melted, removed, or deformed.
The recorded information is reproduced by detecting this change in intensity with a photodetector. However, recording media with deposited films of metals, semimetals, and non-metals are generally manufactured by vacuum forming processes in batches rather than in continuous production, and are therefore expensive and require a large number of batches. It is difficult to achieve quality uniformity for mass producing products from Furthermore, the method of forming a reflective film by heating a silver dry plate is a coating method and is good for mass production, but has the problem of a low S/N ratio due to the dispersion of silver particles. In addition, so-called "DRAW (direct read after write)" which has "direct read after write" capability
The following conditions are required for the medium: (1) focus control and tracking control of ±1μ are required during recording and reading, and (2) high reflectivity for the laser used. There is. Until now, metals have mainly been considered as materials that meet these conditions. However, not only does the use of metal have inherent problems as mentioned above, but metal films generally have excessively high reflectance as recording films; for example, tellurium films, which have low reflectance among metals, However, since the reflectance is about 50% or more, recording light is not effectively absorbed, and furthermore, the thermal conductivity is high, metal films usually have the problem of low recording sensitivity and recording resolution. Furthermore, since it is a metal, it has the disadvantage of being easily oxidized and causing environmental pollution when used in large quantities. On the other hand, various recording media using organic dyes have also been proposed. JP-A-54-5442 proposes an optical information recording medium using a vapor-deposited organic film as a recording layer, but the vapor-deposited film usually has a low reflectance of 5% or less.
Furthermore, it is not suitable for mass production and cannot be put to practical use. Furthermore, JP-A No. 56-156941 discloses that a cyanine dye is used in the recording layer in a laminated structure of substrate/recording layer/transparent layer/reflection layer, and recording and reproducing light is irradiated from the substrate side. However, such a structure has the disadvantage of poor recording sensitivity. Furthermore, in the proceedings of the 27th Applied Physics Conference Proceedings 1p-9 (1980), there is a sample of an anti-reflection structure with the composition of dye/transparent layer/reflective layer/substrate that has high sensitivity due to effective use of light. However, when a device with such a structure is used as a laser recording medium, recording and playback must be performed by irradiating laser light from the dye film side, but if the structure is left as it is, there will be dust on the dye film. If a protective film is provided to prevent this, the sensitivity will decrease. The above-mentioned proceedings report that a dye film with a thickness of about 1 μm suggesting a cyanine dye was formed on a glass substrate, but compared to a layered structure with a reflective film described above, the reproduced signal output was lower and the sensitivity was lower. Although it is explained that the reflectance is low, the fact that the thickness is about 1 μm suggests that it was created by mixing with a binder, and the reflectance of a pigment film with such a structure is usually low. Therefore, the present inventor proposed a recording member using an organic dye having bronze luster as a recording film material in Japanese Patent Application No. 56-97086 (Japanese Patent Application Laid-Open No. 57-212639). However, we learned that if a merocyanine dye is selected and used as an organic dye with bronze luster, it not only satisfies the conditions (1) and (2) above, but also provides a recording member suitable for use with a semiconductor laser. The present invention has now been completed. That is, according to the present invention, there is provided a reflective optical information recording member characterized by having a dye thin film layer containing a merocyanine dye and not containing a resin component and having a bronze luster. The optical information recording member of the present invention basically has a pigment thin film layer with a bronze luster on a substrate, but other layers such as a protective layer may be placed above or below the pigment thin film layer depending on the purpose. or additives such as stabilizers may be added to the dye thin film layer as necessary. Here, "bronze luster" refers to "Experimental Chemistry Course (Continued) 11, Electronic Spectrum" (Maruzen Co., Ltd., Showa
(Published on July 15, 1940) Page 144, lines 1 to 7, or "Reviews of Modern Physics" vol. 32, No.
2, April, 1960, pp. 466-476, the pigment thin film exhibits metal-like reflection in a specific wavelength range, and when an optical information recording medium such as the present invention is used, A reflectance of 20% or more is suitable for the laser wavelength actually used for writing and reading, and a reflectance of 30% is preferable. This reflectance means the ratio of the amount of reflected light to the amount of light incident from the surface of the thin film, and this reflected light includes interference phenomena due to the thin film and multiple reflections. Bronze luster has a unique coloring unlike the reflection of metal, but if you select a laser beam for recording and playback with a wavelength that matches the absorption wavelength region of this color, it will naturally be different from the wavelength of the laser beam. Since it is possible to provide a high reflectance in the vicinity of absorption of the dye, the amount of information reading light can be increased and the C/N or S/N of the read signal can be improved. Therefore, it is preferable to select a laser to be used that has an oscillation wavelength within the wavelength range in which the dye thin film of the present invention exhibits a high reflectance. The "thin film" of the dye thin film of the present invention means that the reflectance is 20
% or more.
In the present invention, even an extremely thin film on the order of 100 Å can have a reflectance of 20% or more, and because it is extremely thin, the recording sensitivity and recording resolution are high. In addition, since the dye thin film used in the present invention does not contain a resin component such as a resin,
There is a limit to its thickness in terms of film formation, and even if it is thick, it is about 0.5 μm at most. When a resin component is included in the film, it is difficult to obtain a reflectance of 20% or more, and the film becomes thick, which tends to lower recording sensitivity. The dye thin film used in the present invention has optical properties with a well-balanced reflectance and absorptivity in its layer alone, so when it absorbs recording laser light, it is sufficiently protected against state changes such as melting, decomposition, and deformation due to its thermal action. It has recording sensitivity to the extent that it causes a signal to be detected, and when irradiated with a reproduction laser beam, a sufficient amount of reflected light for signal detection can be obtained from that layer alone. The dye thin film used in the present invention exhibits sufficient reflectance for recording and reproduction as described above, and since it is made of an organic material, its thermal conductivity is not as high as that of metal, so it has high recording sensitivity and recording resolution. It is. The substrate materials used in the present invention are known to those skilled in the art and can be either transparent or opaque to the laser light used. However, when writing and recording is performed using a laser beam from the substrate side, it must be transparent to the writing laser beam. On the other hand, when writing and recording is performed from the side opposite to the substrate, that is, from the surface of the recording layer, it is not necessary to be transparent to the writing laser beam. The substrate material may be a commonly used recording material support such as glass, quartz, ceramic, plastic, paper, plate-shaped or foil-shaped metal. In particular, plastics are preferred from the viewpoints of stability, improved recording sensitivity, flatness, light weight, workability, etc. Typical plastics include vinyl chloride resin, vinyl acetate resin, acrylic resin, methacrylic resin, polyester resin, nitrocellulose resin, polyethylene resin, polypropylene resin, polyamide resin, polystyrene resin, polycarbonate resin, and epoxy resin. The merocyanine dye used in the present invention is commonly known as a silver halide spectral sensitizing dye, and has one side of the methine chain.

【式】の基を有するものである。かかる 色素には一般に周知のものが数多くあるがその例
として下記文献に記載されているメロシアニン色
素をあげることができる。米国特許第1846301号、
同第1846302号、同第1942854号、同第1990507号、
同第2112140号、同第2165338号、同第2193747号、
同第2739964号、同第2493748号、同第2503776号、
同第2519001号、同第2666761号、同第2734900号、
同第2739149号および英国特許第450958号ならび
に米国特許第3690891号明細書。 これらの公報明細書には、化学構造式の一部を
構成する複素環がチアゾール系、オキサゾール
系、インドレニン系、キノリン系、チアゾール
系、セレナゾール系のようなメロシアニン色素が
示されてある。 本発明においては、形成した膜がブロンズ光沢
になるような既知のメロシアニン色素が選択使用
される。 本発明におけるブロンズ光沢のある色素薄膜層
は例えばメロシアニン色素を有機溶媒に溶解した
溶液を基板上に塗布することによつて形成するこ
とができる。有機溶媒としては例えばメタノー
ル、メチレンジクロライドなどあるいは混合溶媒
を使用できる。塗布はスプレー、ローラーコーテ
イング、デイツピングおよびスピンニングなどの
慣用のコーテイング法によつて行なわれる。その
他反射率が20%以上の膜を形成できるのであれ
ば、蒸着法、スパツタリング法等の真空プロセス
スも適用可能である。但し、高反射率の超薄膜を
得るには、塗布法、特にスピンコーテイング法が
好ましい。 本発明の光情報記録部材に適用されるレーザ光
は色素の吸収波長に応じて選択する必要がある。
従つて、それぞれの色素に応じて、N2、He―
Cd、Ar、He―Ne、ルビー、色素および半導体
の各レーザなどが適宜選択される。特に半導体レ
ーザが使用可能であるので、低価格となりかつ装
置のコンパクト化がはかれる。 次に本発明をさらに詳細に説明するために実施
例をあげるがこれに限定されるものではない。 実施例 以下の表に示した条件を用いて本発明の光情報
記録部材を作製して情報の記録を行なつた。すな
わち、所定の色素を所定の溶媒を用いて溶液を得
た(実施例1では飽和溶液であり、実施例2にお
ける溶液は色素0.1gを溶媒10mlに溶解して得た溶
液である)。各溶液をいつたん0.4μのメンブラン
フイルターで濾過した後この溶液を基板上にデイ
ツピング法(デイツピング速度1.3cm/秒)によ
つて所定の膜厚で塗布し赤外ランプで乾燥したと
ころブロンズ光沢を示す光情報記録部材が得られ
た。かくして得られた記録部材に所定の条件でレ
ーザ光を照射したところ均一かつ明瞭な形状を示
す情報(穴)を記録することができた。以下の表
において、半導体レーザによる書き込み条件とし
て波長820nm、ビーム径0.84μm、記録面でのパ
ワーは1.8mwおよび書き込み時間1μ秒を使用し
かつ基板面側から書き込み、そしてHe―Neレー
ザによる書き込み条件として波長632.8nm、ビー
ム径2.4μm、記録面でのパワーは8mwおよび書き
込み時間0.6μ秒を使用しかつ色素膜面から書き込
んだ。C/N測定は0.5MHzで1Fバンド幅30KHz
で行なつた。 上記実施例で使用した色素の反射率を第1図に
示す。なおこの実施例において示される反射率
は、色素膜面の基板側とは反対側の面に光を入射
させて測定したものである。
It has a group of [Formula]. There are many commonly known such dyes, and examples include merocyanine dyes described in the following literature. U.S. Patent No. 1846301,
Same No. 1846302, No. 1942854, No. 1990507,
Same No. 2112140, Same No. 2165338, Same No. 2193747,
Same No. 2739964, Same No. 2493748, Same No. 2503776,
Same No. 2519001, Same No. 2666761, Same No. 2734900,
No. 2739149 and British Patent No. 450958 and US Patent No. 3690891. These publications disclose merocyanine dyes in which the heterocycle that constitutes a part of the chemical structural formula is thiazole-based, oxazole-based, indolenine-based, quinoline-based, thiazole-based, or selenazole-based. In the present invention, known merocyanine dyes that give the formed film a bronze luster are selected and used. The dye thin film layer with bronze luster in the present invention can be formed, for example, by applying a solution of a merocyanine dye dissolved in an organic solvent onto a substrate. As the organic solvent, for example, methanol, methylene dichloride, etc. or a mixed solvent can be used. Application is carried out by conventional coating methods such as spraying, roller coating, dipping and spinning. Other vacuum processes such as vapor deposition and sputtering are also applicable as long as they can form a film with a reflectance of 20% or more. However, in order to obtain an ultra-thin film with high reflectance, a coating method, particularly a spin coating method, is preferable. The laser beam applied to the optical information recording member of the present invention must be selected depending on the absorption wavelength of the dye.
Therefore, depending on each dye, N 2 , He-
Cd, Ar, He--Ne, ruby, dye and semiconductor lasers are selected as appropriate. In particular, since a semiconductor laser can be used, the cost can be reduced and the device can be made more compact. Next, examples will be given to explain the present invention in more detail, but the present invention is not limited thereto. Examples Optical information recording members of the present invention were prepared and information was recorded using the conditions shown in the table below. That is, a solution of a predetermined dye was obtained using a predetermined solvent (a saturated solution was obtained in Example 1, and a solution obtained by dissolving 0.1 g of a dye in 10 ml of a solvent was obtained in Example 2). After each solution was filtered through a 0.4μ membrane filter, the solution was coated onto a substrate at a prescribed film thickness using the dipping method (dipping speed: 1.3cm/sec) and dried with an infrared lamp, giving it a bronze luster. The optical information recording member shown was obtained. When the thus obtained recording member was irradiated with laser light under predetermined conditions, information (holes) showing a uniform and clear shape could be recorded. In the table below, the writing conditions using a semiconductor laser are as follows: wavelength 820 nm, beam diameter 0.84 μm, power at the recording surface is 1.8 mw, writing time 1 μs, and writing is performed from the substrate surface side, and writing conditions using a He-Ne laser. The wavelength was 632.8 nm, the beam diameter was 2.4 μm, the power at the recording surface was 8 mW, and the writing time was 0.6 μs, and writing was performed from the dye film surface. C/N measurement is 0.5MHz and 1F bandwidth is 30KHz
I did it at FIG. 1 shows the reflectance of the dye used in the above examples. Note that the reflectance shown in this example was measured by making light incident on the surface of the dye film on the side opposite to the substrate side.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

添付図面において、第1図は本発明で使用する
色素の反射率を示す図である。図中、曲線〜
は各実施例に対応する。
In the accompanying drawings, FIG. 1 is a diagram showing the reflectance of the dye used in the present invention. In the figure, the curve ~
corresponds to each example.

Claims (1)

【特許請求の範囲】[Claims] 1 メロシアニン色素を含有し、樹脂成分を含有
しないブロンズ光沢のある色素薄膜層を有するこ
とを特徴とする、反射型光情報記録部材。
1. A reflective optical information recording member characterized by having a pigment thin film layer with a bronze luster that contains a merocyanine pigment and does not contain a resin component.
JP56209929A 1981-12-28 1981-12-28 Optical information recording medium Granted JPS58112790A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56209929A JPS58112790A (en) 1981-12-28 1981-12-28 Optical information recording medium
US06/452,238 US4460665A (en) 1981-12-28 1982-12-22 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209929A JPS58112790A (en) 1981-12-28 1981-12-28 Optical information recording medium

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP57212663A Division JPS58114989A (en) 1981-12-28 1982-12-06 Light information recording member
JP1171246A Division JPH0264933A (en) 1989-07-04 1989-07-04 Optical information recording method

Publications (2)

Publication Number Publication Date
JPS58112790A JPS58112790A (en) 1983-07-05
JPH0471717B2 true JPH0471717B2 (en) 1992-11-16

Family

ID=16580989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209929A Granted JPS58112790A (en) 1981-12-28 1981-12-28 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS58112790A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512416A (en) * 1982-07-30 1996-04-30 Tdk Corporation Optical recording medium
JPS60103532A (en) * 1983-11-09 1985-06-07 Pioneer Electronic Corp Information recording carrier
US4656121A (en) * 1984-02-06 1987-04-07 Ricoh Co., Ltd. Optical information recording medium
JPS60257290A (en) * 1984-06-04 1985-12-19 Ricoh Co Ltd Optical information recording medium
JPS6144689A (en) * 1984-08-10 1986-03-04 Ricoh Co Ltd Board for optical information memorizing medium
JPS61205187A (en) * 1985-03-08 1986-09-11 Matsushita Electric Ind Co Ltd Photo-recording medium and method
EP0204876B1 (en) * 1985-04-08 1992-01-22 Celanese Corporation Optical data storage medium having a highly reflective organic information layer
US4908294A (en) * 1986-02-13 1990-03-13 Olympus Optical Co., Ltd. Optical information recording medium
JPH0730300B2 (en) * 1988-04-01 1995-04-05 三井東圧化学株式会社 Alkyl phthalocyanine near infrared absorber and display / recording material using the same
US5166359A (en) * 1988-04-21 1992-11-24 Basf Aktiengesellschaft Azulenemethine dyes and an optical recording medium containing the novel dyes
DE3936051A1 (en) * 1989-10-28 1991-05-02 Basf Ag CHINOXALINE PENTAMETHINE DYES AND OPTICAL RECORDING MEDIUM, CONTAINING THE NEW DYES
US6737143B2 (en) 2001-06-14 2004-05-18 Ricoh Company Ltd. Optical recording medium, optical recording method and optical recording device
JP4137691B2 (en) 2003-04-30 2008-08-20 株式会社リコー Optical recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616948A (en) * 1979-07-23 1981-02-18 Nippon Telegr & Teleph Corp <Ntt> Optical memory medium
JPS5625243A (en) * 1979-08-09 1981-03-11 Nippon Telegr & Teleph Corp <Ntt> Optical memory medium
JPS56153543A (en) * 1980-04-26 1981-11-27 Nippon Telegr & Teleph Corp <Ntt> Light storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616948A (en) * 1979-07-23 1981-02-18 Nippon Telegr & Teleph Corp <Ntt> Optical memory medium
JPS5625243A (en) * 1979-08-09 1981-03-11 Nippon Telegr & Teleph Corp <Ntt> Optical memory medium
JPS56153543A (en) * 1980-04-26 1981-11-27 Nippon Telegr & Teleph Corp <Ntt> Light storage medium

Also Published As

Publication number Publication date
JPS58112790A (en) 1983-07-05

Similar Documents

Publication Publication Date Title
JPH0613238B2 (en) Optical information recording medium
JPH0827983B2 (en) Optical information recording medium
JPS58112793A (en) Optical information recording medium
JPH0415115B2 (en)
JPH0415112B2 (en)
JPH0471717B2 (en)
JPS60230891A (en) Optical information-recording medium
US4871649A (en) Optical recording medium and optical recording method using the same
JPH0574159B2 (en)
US4538159A (en) Ceramic overcoated optical recording element
KR20010006105A (en) Optical recording medium
JPH0526670B2 (en)
JPS61277492A (en) Optical information-recording medium
JPS61268487A (en) Photo-recording medium
JPS6357288A (en) Optical recording medium
JPH0740377B2 (en) Optical recording medium
JPH0459153B2 (en)
JP2697770B2 (en) Optical recording and reproduction method
JPH0119355B2 (en)
JPH0648045A (en) Optical recording medium
JP2529133B2 (en) Information recording medium
JP2510171B2 (en) Method for manufacturing organic multilayer optical recording medium
JPS6092893A (en) Optical recording medium
JPH0442199B2 (en)
KR100227084B1 (en) Optical recording medium