JPS6137484A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137484A
JPS6137484A JP59159112A JP15911284A JPS6137484A JP S6137484 A JPS6137484 A JP S6137484A JP 59159112 A JP59159112 A JP 59159112A JP 15911284 A JP15911284 A JP 15911284A JP S6137484 A JPS6137484 A JP S6137484A
Authority
JP
Japan
Prior art keywords
layer
light
film
substrate
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159112A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159112A priority Critical patent/JPS6137484A/en
Publication of JPS6137484A publication Critical patent/JPS6137484A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To obtain highly reliable and densely recordable optical recording elements by providing a layer A of pale leuco dye, a layer B of phenol compound which develops the color of said leuco dye and a light-absorbing layer existing between the layer A and the layer B, and making up both layer A and light- absorbing layer of either a monomolecular film or an accumulated film of the former respectively. CONSTITUTION:An optical recording element is composed of a layer-A 2 of leuco dye, a layer-B 4 of phenol compound and a light-absorbing material existing between the layer A and the layer B. The layer A and the light-absorbing layer 3 are laminates of either a monomolecular film or an accumulated film of the former. The layer B is a laminate of laminated films. The layer-B 4 is supported on a substrate 1 and the substrate, layer B, light-absorbing layer and layer A are laminated in that order. Consequently, the titled optical recording element has higher packing density and also higher signal/noise ratio than the conventional element, thus improving recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配向された有機薄膜を利用した高信頼・高密度
記録の可能な光記録素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording element using an organic material, and in particular to an optical recording device capable of highly reliable and high-density recording using a highly molecularly oriented organic thin film. It is related to the element.

[従来の技術] 最近、オフィス・オートメーション(OA)の中心的存
在として光ディスクが脚光を集めている。
[Background Art] Recently, optical disks have been attracting attention as a central player in office automation (OA).

その理由は光ディスク一枚で、大量の文書、文献などを
記録(又は記憶)できるからであり、したがって該光デ
ィスクを用いる情報記憶装置を導入するとオフィスにお
ける文書、文献の整理、管理に一大変革をもたらすもの
である。又、該光デイスク用記録素子としては安価性、
製作容易性、高密度記録性等の特徴を有する有機材料か
らなる素子が注目されている。
The reason for this is that a single optical disc can record (or store) a large amount of documents, literature, etc. Therefore, introducing an information storage device using this optical disc will revolutionize the organization and management of documents and literature in offices. It is something that brings. In addition, the recording element for the optical disk is inexpensive;
2. Description of the Related Art Elements made of organic materials that have features such as ease of manufacture and high-density recording are attracting attention.

この様な有機記録材を用いる従来技術の中で、特に発色
剤と期化剤の接触による発色反応を利用する二成分系の
一光記録素子が報告されている(日経産業新聞 昭和5
8年10月18日)。
Among the conventional techniques using such organic recording materials, a two-component one-light recording element that utilizes a coloring reaction caused by contact between a coloring agent and a periodizing agent has been reported (Nikkei Sangyo Shimbun, 1932).
(October 18, 2008).

従来の該光記録素子の1例を図面に基づいて説明すると
、ffs 2 IN (a)に示す様に発色剤層7と期
化剤層5とが光吸収層6によって隔てられて基板1上に
積層された構成からなるものである。
An example of the conventional optical recording element will be explained based on a drawing.As shown in ffs 2 IN (a), a color forming agent layer 7 and a moderating agent layer 5 are separated by a light absorbing layer 6 and are formed on a substrate 1. It consists of a laminated structure.

発色剤(ロイコ体)及び期化剤は各々単独で存在すると
きは無色又は淡色である。
The coloring agent (leuco body) and the stabilizing agent are colorless or light-colored when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収N6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があく。
When recording on the recording element, as shown in FIG. 2(b), when a laser beam 8 is irradiated to a desired position of the light absorption N6,
The portion of the light-absorbing layer that is irradiated with the laser beam absorbs the laser beam, melts, and rips, leaving a small hole.

その結果、第2図(c)に示す様に光吸収層6によって
隔てられていた発色剤と期化剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射率、透過率等゛の変化を検出する
ことにより行われる。
As a result, as shown in FIG. 2(c), the coloring agent and the time-setting agent, which were separated by the light absorption layer 6, mix through these small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflectance, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点] 上記の光記録素子に於いて、記録の高密度化を図るため
には光吸収層6が極力薄く、平坦で、かつ膜厚のむらの
ないものが望ましい、しかしながら、従来の光記録素子
において、光吸収層は例えば真空蒸着法又は回転塗布法
などによって基板上に被膜されているため、厚さを20
0〜500 A以下に薄くしようとすればピンホールが
多発しゃすく、このピンホールの箇所で発色剤と期化剤
の2成分が接触して発色するため、信頼性に欠ける欠点
があった。その上、前記の従来の被膜方法で形成される
各層の膜内の分子分布配向がランダムであるため、光照
射に伴って膜内で光散乱が生じ。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording density, it is desirable that the light absorption layer 6 be as thin as possible, flat, and without unevenness in film thickness. However, in conventional optical recording elements, the light absorption layer is coated on the substrate by, for example, a vacuum evaporation method or a spin coating method, so the thickness is reduced to 20%.
If an attempt was made to reduce the thickness to 0 to 500 A or less, pinholes would occur frequently, and the two components, the coloring agent and the time-setting agent, would come into contact with each other at these pinholes and develop color, resulting in a lack of reliability. Furthermore, since the molecular distribution and orientation within the film of each layer formed by the above-mentioned conventional coating method is random, light scattering occurs within the film upon irradiation with light.

微視的にみた場合、各光照射の度に生ずる化学反応の度
合が異なってくる。さらに、上述の被膜方法では光ディ
スクの基板を大面積化すると、膜厚のむらが生じ、記録
品質のむらが発生する等の欠点があった。
When viewed microscopically, the degree of chemical reaction that occurs each time the light is irradiated differs. Furthermore, the above-mentioned coating method has drawbacks such as unevenness in film thickness and uneven recording quality when the substrate of an optical disk has a large area.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむら−もないことが望
ましく、またできる限り膜厚が薄いことが、記録の高密
度化、高信頼化のために要望される0本発明はかかる要
望に鑑みてなされたもので、本発明の目的は高信頼・高
密度記録が可能な光記録素子を提供することにある0本
発明の別の目的は製作容易で安価な光記録素子を提供す
ることにある0本発明のさらに別の目的は大面積の光記
録素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation in the film be uniform, that there are no pinholes or uneven film thickness, and that the film thickness be as thin as possible to achieve high recording density and high performance. The present invention has been made in view of the demand for reliability, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-density recording. Another object of the present invention is to provide an optical recording element that is easy to manufacture and inexpensive.A further object of the present invention is to provide an optical recording element with a large area.

[問題点を解決するための手段]及び[作用]即ち、本
発明は通常無色ないし淡色の染料のロイコ体からなるA
層と、前記染料のロイコ体と接触して発色せしめるフェ
ノール性化合物からなるB層と、A層とB層との間に介
在する光吸収層とからなり、かつ (イ)前記A層は染料のロイコ体の単分子膜又はその累
積膜からなる層、 (ロ)前記光吸収層は光吸収性物質の単分子膜又はその
累v1il!からなる層 から構成されることを特徴とする光記録素子である。
[Means for Solving the Problems] and [Operation] That is, the present invention is directed to A, which is composed of a leuco form of a normally colorless or light-colored dye.
a layer B consisting of a phenolic compound that develops color when in contact with the leuco form of the dye; and a light absorption layer interposed between the layer A and the layer B, and (a) the layer A is made of a dye. (b) The light-absorbing layer is a monomolecular film of a light-absorbing substance or a cumulative film thereof; This is an optical recording element characterized in that it is composed of a layer consisting of.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は2成分系の発色反応を利用
するものであり、詳しくは染料のロイコ体と該染料のロ
イコ体と接触して発色せしめるフェノール性化合物との
発色反応を利用するものである。
The optical recording element according to the present invention utilizes a two-component coloring reaction, and more specifically, it utilizes a coloring reaction between a leuco dye and a phenolic compound that develops a color when it comes into contact with the leuco dye. It is.

したがって、本発明に係わる光記録素子は通常無色ない
し淡色の染料のロイコ体からなるA層と、前記染料のロ
イコ体と接触して発色せしめるフェノール性化合物から
なるB層と、AHとB層との間に介在し、光を吸収して
発熱し自身が溶融ないし昇華する光吸収層とから基本的
に構成されるものである。
Therefore, the optical recording element according to the present invention has a layer A consisting of a leuco form of a normally colorless or light-colored dye, a layer B consisting of a phenolic compound that develops color when in contact with the leuco form of the dye, and an AH and a layer B. It basically consists of a light absorbing layer that is interposed between the layers and absorbs light, generates heat, and melts or sublimates itself.

本発明に用いられるA層の通常無色ないし淡色の染料の
ロイコ体としては例えばトリフェニルメタン系、フルオ
ラン系、フェノチアジン系、オーラミン系、スピロピラ
ン系等があり、それ等に含まれる具体的な化合物の詳細
を掲示すると第1表の通りである。
Examples of the leuco type of the usually colorless to light-colored dye of the A layer used in the present invention include triphenylmethane type, fluoran type, phenothiazine type, auramine type, spiropyran type, etc., and specific compounds contained in them include The details are listed in Table 1.

本発明においてA層は単分子膜又はその累積膜からなる
層から形成されるために、前記の染料のロイコ体は分子
内の適当な部位に親木基、a*基又はその両方の基を導
入した誘導体を用いる必要がある。
In the present invention, since the A layer is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the leuco form of the dye described above has parent wood groups, a* groups, or both groups at appropriate sites within the molecule. It is necessary to use the introduced derivative.

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the parent group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

次に、前記染料のロイコ体と接触して発色せしめるB層
のフェノール性化合物としては、例えばp−t−ブチル
フェノール、α−ナフトール、β−ナフトール、フェノ
ールフタレイン、ビスフェノールA、4−ヒドロキシシ
フエノキシト、4−ヒドロキシアセトフェノン、3.5
−キシレノール、チモール、ヒドロキノン、4−ターシ
ャリ−ブチルフェノール、α−ナフトール、4−ヒドロ
オキシフェノキシド、β−ナフトール、メチル−4−ヒ
ドロオキシベンゾエート、カテコール、4−ヒドロオキ
シアセトフェノン、レゾルシン、4−ターシャリ−オク
チルカテコール、4.4’−セカンダ1y−ブチリデン
ジフェノール、2.2′−ジヒドロキシジフェニル、2
.2’−メチレンビス(4−メチル−6−ターシャリ−
ブチルフェノール)、2.2’−ビス(4′−オキジフ
ェニル)プロパン、4.4′−イソプロピリデンビス(
2−ターシャリ−ブチルフェノール)、4.4’−セカ
ンダリ−ブチリデンジフェノール、ピロガロール、フロ
ログルシン、フロログルシンカルボン酸等が挙げられる
Next, examples of the phenolic compounds in the B layer that develop color upon contact with the leuco form of the dye include pt-butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, and 4-hydroxycyphenophenol. cyto, 4-hydroxyacetophenone, 3.5
-xylenol, thymol, hydroquinone, 4-tert-butylphenol, α-naphthol, 4-hydroxyphenoxide, β-naphthol, methyl-4-hydroxybenzoate, catechol, 4-hydroxyacetophenone, resorcinol, 4-tert-octyl Catechol, 4,4'-sec-1y-butylidene diphenol, 2,2'-dihydroxydiphenyl, 2
.. 2'-methylenebis(4-methyl-6-tert-
butylphenol), 2,2'-bis(4'-oxydiphenyl)propane, 4,4'-isopropylidene bis(
2-tert-butylphenol), 4,4'-secondary-butylidene diphenol, pyrogallol, phloroglucin, phloroglucin carboxylic acid, and the like.

本発明において、B層は従来の被膜方法により形成され
るnQであれば如何なる膜でもよく、それ等の中で例え
ば蒸着膜、塗−布膜、浸漬膜、ラミネート等の堆積膜か
らなる層が好ましい。
In the present invention, the B layer may be any nQ film formed by a conventional coating method, and among these, for example, a layer consisting of a deposited film such as a vapor deposited film, a coated film, a dipping film, a laminate, etc. preferable.

なお、A層及びB層の膜厚は200人からlogの範囲
が望ましく、好適には1,000 AからIgの範囲で
ある。
The thickness of the A layer and the B layer is desirably in the range of 200 A to Ig, and preferably in the range of 1,000 A to Ig.

次に、本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収して溶融する溶融性光吸
収色素、又は赤外線を吸収して昇華する昇華性光吸収色
素が好適である。
Next, as the light-absorbing substance used for forming the light-absorbing layer in the present invention, a meltable light-absorbing dye that absorbs infrared rays and melts, or a sublimable light-absorbing dye that absorbs infrared rays and sublimates is suitable. .

該かる光吸収色素の一例をあげれば、銅フロシアニン、
バナジウムフタロシアニン等の金属フタロシアニン、含
金属アゾ染料、酸性アゾ染料、フルオレスセイン等のキ
サンチン系色素等がある。
Examples of such light-absorbing dyes include copper phlocyanine,
Examples include metal phthalocyanines such as vanadium phthalocyanine, metal-containing azo dyes, acidic azo dyes, and xanthine dyes such as fluorescein.

該光吸収層は単分子膜又はその累積膜からなる層から形
成されるために、前記の光吸収性物質は分子内の適当な
部位に親木基、疎水基又はその両方の基を導入した誘導
体を用いる必要がある。
Since the light-absorbing layer is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the light-absorbing substance has a parent group, a hydrophobic group, or both groups introduced at appropriate sites within the molecule. It is necessary to use derivatives.

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜3゜の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属IM(例え
ばカドミウム塩)が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 3 degrees of carbon atoms;
The parent group is preferably a carboxyl group and its metal IM (eg, cadmium salt).

なお光吸収層の膜厚は30Aから1.00OAの範囲が
望ましく、好適には50人から200人の範囲である。
The thickness of the light absorption layer is preferably in the range of 30A to 1.00OA, preferably in the range of 50 to 200A.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の金属材料、好適に
は強化ガラス、及びアクリル(PMMA) 、ポリカー
ボネート(PC)、ポリプロピレン、ポリ塩化ビニール
(pvc ) 、ポリスチレン等のプラスチック材料、
セラミック材料等が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, metal materials such as aluminum, preferably reinforced glass, and plastic materials such as acrylic (PMMA), polycarbonate (PC), polypropylene, polyvinyl chloride (PVC), polystyrene, etc.
Ceramic materials and the like are preferred.

本発明に係わる光記録素子はA層は染料のロイコ体の単
分子膜又はその累積膜からなる層及び光吸収層は光吸収
性物質の単分子膜又はその累積膜からなる層から構成さ
れることを1つの特徴とするものである。
In the optical recording element according to the present invention, the A layer is composed of a monomolecular film of a leuco dye or a cumulative film thereof, and the light absorption layer is composed of a monomolecular film of a light absorbing substance or a cumulative film thereof. This is one of its characteristics.

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積膜を作成する方法としては。
A method for producing a monomolecular film or a cumulative film thereof having such high molecular order and orientation is as follows.

例えば1.Langmuirらの開発したラングミュア
・プロジェット法(La法)を用いる。ラングミュア・
プロジェット法は、例えば分子内に親木基と疎水基を有
する構造の分子において、両者のバランス(両親媒性の
バランス)が適度に保たれているとき、分子は水面上で
親木基を下に向けて単分子の層になることを利用して単
分子膜または単分子の累積膜を作成する方法である。水
面上の単分子層は二次元系の特徴をもつ0分子がまばら
に散開しているときは、一分子当り面積Aと表面圧■と
の間に二次元理想気体の式。
For example 1. The Langmuir-Prodgett method (La method) developed by Langmuir et al. is used. langmuir
For example, in the Prodget method, when a molecule has a parent wood group and a hydrophobic group within the molecule, and the balance between the two (amphipathic balance) is maintained appropriately, the molecule will hold the parent wood group on the water surface. This is a method of creating a monomolecular film or a cumulative film of monomolecular molecules by utilizing the fact that the monomolecular layer forms downward. The monomolecular layer on the water surface has the characteristics of a two-dimensional system.0 When the molecules are sparsely dispersed, the equation for a two-dimensional ideal gas exists between the area per molecule A and the surface pressure ■.

nA=kT が成り立ち、゛気体膜”となる、ここに、kはポルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり二次元固体の“a縮11り(また
は固体膜)″になる。凝縮膜はプラスチック基板、ガラ
ス基板などの種々の材質や形状を有する担体の表面へ一
層ずつ移すことができる。
nA=kT holds true, resulting in a "gas film", where k is Portzmann's constant and T is the absolute temperature.If A is made sufficiently small, the intermolecular interaction becomes strong and the "a contraction" of a two-dimensional solid ( The condensed film can be transferred layer by layer onto the surface of carriers having various materials and shapes, such as plastic substrates and glass substrates.

次に本発明に使用する染料のロイコ体又は光吸収性物質
である親木基、疎水基を併有する有機分子の単分子膜又
はその累積膜を形成する方法についてさらに詳述する。
Next, the method for forming a monomolecular film or a cumulative film thereof of an organic molecule having a leuco form of a dye or a light-absorbing substance which is a parent wood group and a hydrophobic group used in the present invention will be described in more detail.

まず該有機分子をベンゼン、クロロホルム等の揮発性溶
剤に溶解し、シリンダ等でこれを第3図に概略した単分
子累積膜形成装置の水槽10内の水相11上に展開させ
る。
First, the organic molecule is dissolved in a volatile solvent such as benzene, chloroform, etc., and spread on the aqueous phase 11 in the water tank 10 of the monomolecular cumulative film forming apparatus schematically shown in FIG. 3 using a cylinder or the like.

該有機分子は、溶剤の揮発に伴って、−親水基12を水
相に向彷、疎水基13を気相に向けた状態で水相11上
に展開する。
As the solvent evaporates, the organic molecule develops on the aqueous phase 11 with the -hydrophilic group 12 directed toward the aqueous phase and the hydrophobic group 13 directed toward the gas phase.

次にこの析出物(有機分子)が水相11上を自由に拡散
して広がりすぎないように仕切板(または浮子) 14
を設けて展開面積を制限して膜物質の集合状態を制す1
し、その集合状態に比例した表面圧nを得る。この仕切
板14を動かし、展開面積を縮少して膜物質の集合状態
を制御し1表面圧を徐々に上昇させ、累積膜の製造に適
する表面圧■を設定することができる。この表面圧を維
持しながら静かに清浄な基板14を垂直に上下させるこ
とにより単分子膜1Bが一基板上に移しとられる。単分
子膜1Bは以上で製造されるが、単分子層累v1膜17
は前記の操作を繰り返すことにより所望の累植数の単分
子層累積膜が形成される。
Next, a partition plate (or float) 14 is installed to prevent this precipitate (organic molecules) from freely diffusing and spreading too much on the aqueous phase 11.
1 to control the aggregation state of membrane materials by limiting the development area by setting
Then, a surface pressure n proportional to the aggregate state is obtained. The partition plate 14 is moved to reduce the developed area, control the aggregation state of the film material, gradually increase the surface pressure 1, and set the surface pressure suitable for producing a cumulative film. By gently vertically moving the clean substrate 14 up and down while maintaining this surface pressure, the monomolecular film 1B is transferred onto one substrate. The monomolecular film 1B is manufactured in the above manner, but the monomolecular layer stack v1 film 17
By repeating the above operations, a monomolecular layer cumulative film having a desired number of layers is formed.

例えば表面が親木性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親木基が基板I5
側に向いた単分子層I6が基板15上に形成される。前
述のようにノ^板15を上下させると、各工程ごとに1
枚ずつ単分子層16が積み重なっていく、或nジ分子の
向きが引上げ工程と浸せき工程で逆になるので、この方
法によると各層間は有機分子の親木基と親木基、有機分
子の疎水基と疎水基が向かい合ういわゆるY型膜が形成
される(第4図(a) ) 。
For example, when the substrate 15 whose surface is woody is pulled out of water in a direction across the water surface, the woody groups of the organic molecules are transferred to the substrate I5.
A side-facing monolayer I6 is formed on the substrate 15. As mentioned above, when the plate 15 is moved up and down, 1
The monomolecular layers 16 are stacked one by one, and the direction of the dimolecules is reversed in the pulling process and dipping process, so in this method, between each layer, the parent wood group of the organic molecule and the parent wood group of the organic molecule, A so-called Y-shaped film is formed in which the hydrophobic groups face each other (Fig. 4(a)).

Y型膜は有機分子の親木基同志、疎水基同志が向い合っ
ているので強固である。
The Y-type film is strong because the parent groups and hydrophobic groups of organic molecules face each other.

それに対し、基板15を水中に引き下げるときにのみ、
基板面に該有機分子を移し取る方法もある。
In contrast, only when lowering the substrate 15 into the water,
There is also a method of transferring the organic molecules onto the substrate surface.

この方法では、累積しても、成JIQ分子の向きの交代
はなく全ての層において、疎水基が基板15側に向いた
X型膜が形成される(第4図(b) ) 、反対に全て
の層において親木基が基板15側に向いた累積膜はZ型
膜と呼ばれる(第4図(c) ) 。
In this method, there is no change in the direction of the formed JIQ molecules even if they are accumulated, and an X-shaped film is formed in which the hydrophobic groups face the substrate 15 in all layers (Fig. 4(b)). A cumulative film in which all the layers have parent wood groups facing the substrate 15 side is called a Z-type film (FIG. 4(c)).

Z型膜は基板15を水中から引上げるときにのみ、基板
面に有機分子を移し取ることによって得られる。
The Z-type film is obtained by transferring organic molecules onto the surface of the substrate only when the substrate 15 is lifted out of the water.

以上の方法によって基−板上に形成される単分子膜及び
単分子層累積膜は高密度でしかも高度の秩序性・配向性
を有しており、これらの膜で記録層を構成することによ
って、光熱的記録の可使な高密度で高解像度の記録a濠
を有する記録素子を得ることができる。また、これら成
膜方法はその原理からも分る通り、非常に簡単な方法で
あり、上記のような優れた記録機能を有する記録素子を
低コストで提供することができる。
The monomolecular film and monomolecular layer stack formed on the substrate by the above method have high density and a high degree of order and orientation. , a recording element having a high-density and high-resolution recording a-moat usable for photothermal recording can be obtained. Further, as can be seen from the principles thereof, these film forming methods are very simple methods, and a recording element having the above-mentioned excellent recording function can be provided at low cost.

以上述べた、本発明における単分子膜または単分子累積
膜を形成する基板は特に限定されないが、基板表面に界
面活性物質が付着していると、単分子層を水面から移し
とる時に、単分子膜が乱れ良好な単分子膜または単分子
層累積膜ができないので基板表面が清浄なものを使用す
る必要がある。
The substrate on which the monomolecular film or monomolecular cumulative film in the present invention is formed as described above is not particularly limited, but if a surfactant is attached to the surface of the substrate, when the monomolecular layer is transferred from the water surface, the monomolecular Since the film is disturbed and a good monomolecular film or monomolecular layer stack cannot be formed, it is necessary to use a substrate with a clean surface.

基板上の単分子膜または単分子層累積膜は、十分に強く
固定されており基板からの剥離、剥落を生じることはほ
とんどないが、付着力を強化する目的で基板と単分子膜
または単分子層累積膜の間に接着層を設けることもでき
る。さらに単分子層形成条件例えば水相の水素イオン濃
度、イオン種、水温、担体上げ下げ速度あるいは表面圧
の選択等によって付着力を強化することもできる。
The monomolecular film or monomolecular layer accumulation film on the substrate is sufficiently strongly fixed and rarely peels or peels off from the substrate. An adhesive layer can also be provided between the layer stacks. Furthermore, the adhesion force can be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure.

次に、B層の堆積膜の形成方法は前記フェノール性化合
物にバインダーと水を添加した水混和物を、ボールミル
等を用いて粉砕混合した後、基板等の上に従来の通常の
方法で塗着して行う。
Next, the method for forming the deposited film of Layer B is to grind and mix a water mixture obtained by adding a binder and water to the phenolic compound using a ball mill, etc., and then coat it on a substrate etc. using a conventional method. Wear it and do it.

本発明に用いられる前記バインダーとしてはゼラチン、
でんぷんのごとき天然高分子物、硝酸繊維素、カルボキ
シメチルセルローズのごとき繊維素誘導体5塩化ゴム、
環化ゴムのごとき天然ゴム可塑物などの半合成高分子物
、ポリイソブチレン、ポリスチロール、テルペン樹脂、
ポリアクリル酸、ポリアクリルSエステル、ポリメタア
クリル酸エステル、ポリアクリルニトリル、ポリアクリ
ルアミド、ポリ酢酸ビニル、ポリビニルアルコール、ポ
リビニルピロリドン、ポリアセタール樹脂、ポリ塩化ビ
ニル、ポリビニルピリジン、ポリビニルカルバゾール、
ポリブタジェン、ポリスチレン−ブタジェン、ブチルゴ
ム、ポリオキシメチレン、ポリエチレンイミン、ポリエ
チレンイミンハイドロクロライド、ポリ(2−アクリル
オキシエチルジメチルスルホニウムクロライド)などの
ごとき重合型合成高分子、フェノール樹脂、アミノ樹脂
、トルエン樹脂、アルキッド樹脂、不飽和ポリエステル
樹脂、アリル樹脂、ポリカーボネート、ポリアマイド樹
脂、ポリエーテル樹脂、珪素樹脂、フラン樹脂、チオコ
ールゴムなどのごとき縮合重合型合成高分子、ポリウレ
タン、ポリ尿素、エポキシ樹脂などのごとき付加重合型
樹脂が挙げられる。
The binder used in the present invention includes gelatin,
Natural polymers such as starch, cellulose nitrate, cellulose derivatives such as carboxymethyl cellulose, pentachloride rubber,
Semi-synthetic polymers such as natural rubber plastics such as cyclized rubber, polyisobutylene, polystyrene, terpene resins,
Polyacrylic acid, polyacrylic S ester, polymethacrylic ester, polyacrylonitrile, polyacrylamide, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, polyacetal resin, polyvinyl chloride, polyvinylpyridine, polyvinylcarbazole,
Polymerizable synthetic polymers such as polybutadiene, polystyrene-butadiene, butyl rubber, polyoxymethylene, polyethyleneimine, polyethyleneimine hydrochloride, poly(2-acryloxyethyldimethylsulfonium chloride), phenolic resins, amino resins, toluene resins, alkyds Condensation polymerization type synthetic polymers such as resins, unsaturated polyester resins, allyl resins, polycarbonates, polyamide resins, polyether resins, silicone resins, furan resins, thiokol rubber, etc., addition polymerization type resins such as polyurethane, polyurea, epoxy resins, etc. can be mentioned.

以上に説明した方法で製造される本発明に係わる光記録
素子の一構成の1例を示すと、第1図に示す通り、染料
のロイコ体からなるA層2、フェノール性化合物からな
る8層4及びA層とB層の間に介在する光吸収性物質か
らなる光吸収層3からなり、A層2及び光吸収層3は単
分子膜又はその累積膜、8層4は堆積膜からなる積層体
で、B層4を基板l上に支持し、基板/B層/光吸収層
/A層の順に積層してなるものである。
An example of the structure of the optical recording element according to the present invention manufactured by the method described above is shown in FIG. 1, as shown in FIG. 4 and a light absorbing layer 3 made of a light absorbing substance interposed between the A layer and the B layer, the A layer 2 and the light absorbing layer 3 are monomolecular films or their cumulative films, and the 8 layer 4 is a deposited film. It is a laminate, in which a B layer 4 is supported on a substrate 1, and the substrate/B layer/light absorption layer/A layer are laminated in this order.

さらに、他の例として前記積層体のA層を基板上に支持
し、基板/A層/光吸収層/B層の順に積層してもよく
、又前記積層体を2段以上積重ねて最下層のA層又はB
層を基板上に支持してもよい。
Furthermore, as another example, the A layer of the laminate may be supported on a substrate, and the laminate may be laminated in the order of substrate/A layer/light absorption layer/B layer, or the laminate may be stacked in two or more stages to form the bottom layer. A layer or B
The layer may be supported on a substrate.

本発明に係わる光記録素子はA層とB層とを光吸収層に
よって隔離して構成されているので、赤外線照射によっ
て光吸収層を溶融ないし昇華せしめて所望の位置に孔を
あけることにより、A層の発色性化合物とB層の期化性
化合物が接触して発色反応が進行し、該位置に発色点を
形成し情報を記録することができる。
Since the optical recording element according to the present invention is constructed by separating the A layer and the B layer by a light absorption layer, by melting or sublimating the light absorption layer by infrared irradiation and making holes at desired positions, The color-forming compound in layer A and the time-setting compound in layer B come into contact and a color reaction progresses, forming a color point at the position and recording information.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクから、情
報を書き込んだり或いは読取ったりするための光ピツク
アップの光学系を有する情報記憶装置の1例を第5図に
示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. FIG. 5 shows an example of an information storage device having an optical pickup optical system for writing or reading information from the optical disc.

該情報記憶装置は、制御回路27と光ピツクアップ光学
系からなる書き込み手段と、本発明に係わる光記録素子
と、出力回路28と光ピツクアップ光学系からなる読取
り手段とによって構成される。
The information storage device is composed of a writing means consisting of a control circuit 27 and an optical pickup optical system, an optical recording element according to the present invention, and a reading means consisting of an output circuit 28 and an optical pickup optical system.

書き込みは次のようにして行う、制御回路27は半導体
レーザ2Bの発振を制御する。従って、入力情報は制御
回路27及び半導体レーザ26によって光信号に変換さ
れる。光信号28は第5図に示す光ピツクアップ光学系
を通って同期回転している光ディスク18の記録層上に
結像され、上述の発色メカニズムにより発色記録される
Writing is performed as follows. The control circuit 27 controls the oscillation of the semiconductor laser 2B. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 26. The optical signal 28 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer of the optical disc 18 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う、半導体レーザ26から発
する低出力の連続発振光を読取り光として使う、低出力
であるから、読取り中に発色記録が行われることはない
からである。または他の可視光用光源を読取り用光源と
して用いてもよい。
Reading is performed as follows. Low-output continuous wave light emitted from the semiconductor laser 26 is used as the reading light. Since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク18の基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアップ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disk 18 and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pickup optical system. This converts the signal into an electrical signal and reproduces and reads it.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の膜厚は1,000 A〜2,000 Aが
好適である。その他必要に応じて誘電体ミラーでもよい
The thickness of the metal reflective layer is preferably 1,000 A to 2,000 A. In addition, a dielectric mirror may be used as necessary.

更に、A層、B層、光吸収層等を保護するために最外層
の表面に保護層を設けてもよい、そのような保護層用材
料としては5i02等の誘電体、プラスチック樹脂、他
の重合性LB膜等が好適である。
Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the A layer, B layer, light absorption layer, etc. Materials for such a protective layer include dielectrics such as 5i02, plastic resins, and other materials. A polymerizable LB film or the like is suitable.

[実施例コ 以下、実施例を示し、本発明をさらに具体的に説明する
。尚、下記において特に記述のない限り、 「部」は「
重争部」を、「%」は「重力1%」を表わすものとする
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, unless otherwise stated below, "Department" means "
"Gravity part" and "%" represent "gravity 1%".

合成例1(光吸収性物質の合成例) ハナシ  ムフタロシアニン1゛  へ尿素10部と1
0〜15%りん酸水溶液1部を混合溶解した後、さらに
無水フタル酸2部、’  V2C文。
Synthesis example 1 (synthesis example of light-absorbing substance) Muftalocyanine 1゛ Heurea 10 parts and 1
After mixing and dissolving 1 part of 0-15% phosphoric acid aqueous solution, 2 parts of phthalic anhydride and 'V2C statement.

(/ヘナジル塩)10部及び 式(1) で表わされる無水フタルシアニンの訪導体8部を加え、
100℃にて5時間加熱した。冷却した後、2%′R3
NaOH水溶液100部を−加え、加水分解した後、ク
ロマトグラフィにより分離し、 式(II) K“ NN △7(・  XA −R [式■中、Rは C−0−(:、LHう C:)I(CHL)、 CH。
(/henadyl salt) 10 parts and 8 parts of anhydrous phthalcyanine conductor represented by formula (1) were added,
It was heated at 100°C for 5 hours. After cooling, 2%'R3
100 parts of NaOH aqueous solution was added, hydrolyzed, and separated by chromatography to form the formula (II) K" NN △7(・)I(CHL), CH.

を表わす]で示される目的物質(/<ナジウムフタロシ
アニン誘導体)0.1部を得た。
0.1 part of the target substance (/<nadium phthalocyanine derivative) represented by ] was obtained.

合成例2(染料のロイコ体の合成例) LL口」ヱ並土ムニヒじユヱl引ロゴ]」式(III) で示される躊−アミノ安息香酸誘導体1部と、式1) で示されるミヒラージヒドロ−111部をo Nノ(ニ
トロベンゼン)溶媒中番と混合し、触%SOH(パラト
ルエンスルーホン 奴としてC)I、     。
Synthesis Example 2 (Synthesis example of leuco form of dye) One part of the aminobenzoic acid derivative represented by the formula (III) and the leuco-aminobenzoic acid derivative represented by the formula (1) Mix 111 parts of Michlage dihydro-1 with oN (nitrobenzene) solvent and add % SOH (as para-toluene sulfonate) I.

酸)1部を加えて、8時間還流し、 式(Vl (CH2)、70H3゜ で示されるトリフェニルメタン誘導体を生成した。Add 1 part of acid) and reflux for 8 hours. Formula (Vl (CH2), 70H3° A triphenylmethane derivative represented by was produced.

次に該生成物のトリフェニルメタン誘導体を2酸化鉛(
1部)存在下硫酸中で3時間加熱した後、 式(Vl) (C:Hz)z7 CH3 で示されるクソスタJシバ・・イオレゾムラクトン誘導
体を得た。
Next, the triphenylmethane derivative of the product was converted into lead dioxide (
After heating in sulfuric acid for 3 hours in the presence of part 1), a Xosta J Shiba-iorezomulactone derivative of the formula (Vl) (C:Hz)z7CH3 was obtained.

次いで、これに苛性ソーダ水溶液を加え、環化すること
により、 式(■) ■ (CH,)、7CH。
Next, by adding a caustic soda aqueous solution to this and cyclizing it, the formula (■) ■ (CH,), 7CH was obtained.

で示されるクリスタルバイオレットラクトン誘導体0.
2部を得た。
A crystal violet lactone derivative represented by 0.
Got 2 copies.

実施例1 (1) B層の形成方法 厚さ10mm、直径180nmの円板上のガラス(ディ
ス、り)基板を充分に清浄にした0次にフェノール性化
合物であるフェノールフタレイン7部、バインダーとし
てポリビニールアルコール1部、水40部を混合し、さ
らにボールミルを用いて数時間、粉砕混合し、基板上に
回転塗布して、パイングー中に分散したフェノールフタ
レインの堆積膜(IIQ厚1ル)を形成した各試料を得
た。
Example 1 (1) Method for Forming Layer B A well-cleaned glass (disc) substrate on a disk with a thickness of 10 mm and a diameter of 180 nm was prepared by adding 7 parts of phenolphthalein, a zero-order phenolic compound, and a binder. 1 part of polyvinyl alcohol and 40 parts of water were mixed together using a ball mill for several hours, and the mixture was spin-coated onto a substrate to form a deposited film of phenolphthalein dispersed in pine goo (IIQ thickness of 1 lumen). ) were obtained.

(2)光吸収層の形成方法 次に、前記(1)で得た各試料のガラス基板上に形成し
たB層の上に、前述の単分子累積装置を用いて光吸収性
物−質であるバナジウムフタロシアニノ誘導体の単分子
累積膜を形成した。
(2) Method of forming a light-absorbing layer Next, a light-absorbing substance is coated on the B layer formed on the glass substrate of each sample obtained in (1) above using the monomolecular accumulator described above. A monomolecular cumulative film of a certain vanadium phthalocyanino derivative was formed.

該バナジウムフタロシアニン5f5導体の単分子累積膜
の形成方法は、下記のように行った。
The monomolecular cumulative film of the vanadium phthalocyanine 5f5 conductor was formed as follows.

B層を形成したノ、(板が水面と垂直になるようにして
、基板を水中に沈めた後、バナジウムフタロシアニン誘
導体を濃度2×10°3mol/9.のクロロホルム溶
液にして水面上に滴下し単分子膜を水面上に展開する0
表面圧を30dyne/amに設定し、速度2 cm/
minで基板を上下して第2表に示す各層に累積した単
分子累積11!J(Y型膜)を各試料に作成した。
After layer B was formed, the substrate was submerged in water so that the plate was perpendicular to the water surface, and then a vanadium phthalocyanine derivative was made into a chloroform solution with a concentration of 2 × 10° 3 mol/9.0% and dropped onto the water surface. 0 Spreading a monomolecular film on the water surface
The surface pressure was set to 30 dyne/am, and the speed was 2 cm/
Single molecules accumulated in each layer shown in Table 2 by moving the substrate up and down at min 11! J (Y type membrane) was prepared for each sample.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成した光
吸収層の上に前述の単分子累積装置を用いて染料のロイ
コ体であるクリスタルバイオレットラクトン誘導体の単
分子累積膜を形成した。
(3) Method for Forming Layer A Next, crystal violet lactone derivative, which is a leuco form of dye, was deposited on the light absorption layer formed on the glass substrate of each sample in (2) above using the single molecule accumulator described above. A monomolecular cumulative film was formed.

該クリスタルバイオレットラクトン誘導体の単分子累積
膜の形成方法は、下記のように行った。
The method for forming a monomolecular cumulative film of the crystal violet lactone derivative was performed as follows.

B層及び光吸収層を形成したノ^板が水面と垂直になる
ようにして、基板をpH4の酸性液中に沈めた後、クリ
スタルバイオレットラクトン誘導体を濃度2 X 10
” mol/4のクロロホルム溶液にして水面上に滴下
し単分子膜を水面上に展開する0表面圧を30dyne
/c+wに設定し、速度2 cm/m:nで基板を上下
して第2表に示す各層に累積した単分子累積膜(Y型膜
)を各試料に作成した。
After submerging the substrate in an acidic solution of pH 4 so that the plate on which the B layer and light absorption layer were formed is perpendicular to the water surface, crystal violet lactone derivative was added at a concentration of 2 x 10.
” Make a chloroform solution of mol/4 and drop it onto the water surface to spread a monomolecular film on the water surface.
/c+w, and the substrate was moved up and down at a speed of 2 cm/m:n to create a monomolecular cumulative film (Y-type film) for each sample, which was accumulated in each layer shown in Table 2.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
、比較例として従来の同様の構成(全てが単分子Hi又
はその累積膜を使用しないで構成)に係る光ディスクを
第5図に示す情報記憶装置を用いて以下の記録条件下で
記録した後、読取り再生を行うことにより両者の性能比
較を行った。
(4) Performance test The optical recording element according to the present invention manufactured by the above-mentioned method and the conventional optical disc having the same structure (all constructed without using monomolecular Hi or its cumulative film) were used as a comparative example. After recording under the following recording conditions using the information storage device shown in FIG. 5, performance was compared between the two by reading and reproducing.

〈記録条件〉 半導体レーザ波長 830na+ レーザ出力  6〜91 記録周波数  5 MHz 光ディスクの回転数 1.80Orpm以上の条件下で
読み出しをレーザ出力1+nWで行い、信号/雑音比を
求めた結果を第2表に示す。
<Recording conditions> Semiconductor laser wavelength: 830 na + Laser output: 6 to 91 Recording frequency: 5 MHz Optical disk rotation speed: 1.80 Orpm or higher, readout was performed with a laser output of 1 + nW, and the signal/noise ratio was determined. Table 2 shows the results. show.

第2表 計・・・才は比較例を示し、各層の形成は回転塗布法に
より行った。
The second table shows comparative examples, and each layer was formed by a spin coating method.

第2表の結果よりNo、1(A層及び光吸収層が単分子
膜からなる場合)とNo、8とを比較すると、No、1
の方が信号/l音比において顕著に優れることが認めら
れる。 No、1とN016はほぼ回じ膜厚であるが、
性能にこのような差異が生ずるのはN001の方がピン
ホール等の欠陥が少ないためと思われる。
Comparing No. 1 (when the A layer and light absorption layer are made of monomolecular film) and No. 8 from the results in Table 2, No. 1
It is recognized that the signal/lone ratio is significantly better. No. 1 and No. 016 have approximately the same thickness as the turning film, but
This difference in performance appears to be due to the fact that N001 has fewer defects such as pinholes.

同様に、No、2〜No、5(A層及び光吸収層が単分
子の累積膜からなる場合)とNO67との比較では、N
o、2〜No、5の方が信号/雑音比において優れるこ
とが認められる。
Similarly, in comparing No. 2 to No. 5 (when the A layer and the light absorption layer are composed of monomolecular cumulative films) and No. 67, N.
It is recognized that No. o, 2 to No. 5 are superior in signal/noise ratio.

[発明の効果] 以上説明した様に本発明に係わる光記録素子はA層及び
光吸収層が単分子膜又はその累積膜からなる層、B層は
堆積膜からなる層で構成されているので、以下に示すよ
うな優れた効果がある。
[Effects of the Invention] As explained above, in the optical recording element according to the present invention, the A layer and the light absorption layer are composed of a monomolecular film or a cumulative film thereof, and the B layer is composed of a deposited film. , it has the following excellent effects.

(1)従来の単分子膜又はその累aF!を使用していな
い光記録素子と比較して信号/雑音比が高く、記録の信
頼性を向上させることができる。
(1) Conventional monolayer or its cumulative aF! The signal/noise ratio is higher than that of an optical recording element that does not use an optical recording element, and recording reliability can be improved.

(2)光記録素子のピンホール等の物理的欠陥を大幅に
減少させることができる。
(2) Physical defects such as pinholes in optical recording elements can be significantly reduced.

(3)従来の光記録素子と比べて、より高密度記録が可
能である。− (4)光記録素子の大面積化が可能である。
(3) Higher density recording is possible than with conventional optical recording elements. - (4) It is possible to increase the area of the optical recording element.

(5)フェノール性化合物の中で期化剤としてすぐれて
いるが、Qi分子11り又はその累積層を形成しにくい
材料、又は単分子11り又はその累積層を形成しやすい
誘導体に化学変化(合成)することが経費上困難な材料
を堆積膜に用いることができる利点がある。
(5) Among phenolic compounds, chemical changes (chemical changes) to materials that are excellent as seasoning agents, but which are difficult to form Qi molecules or their cumulative layers, or to derivatives that are easy to form single molecules or their cumulative layers ( This has the advantage that materials that are economically difficult to synthesize can be used in the deposited film.

(6)積層体の一部に堆積11りを用いているので、感
度が向上し、製作の際に材料の選択のIllが広く製造
が容易であり、又読み取りの際コン;・ラストと非コン
トラストの差がつきやすい等の光学物性上の効果がある
(6) Since the deposited material is used in a part of the laminate, the sensitivity is improved, there is a wide range of material selection during manufacturing, and manufacturing is easy. It has effects on optical properties such as easy contrast differences.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光記録素子の1例を示す概略構
成断面図、第2図(a)〜第2図(c)は従来の光記録
素子の記録プロセスを示す説明図、第3図は単分子累積
膜形成装置の概略構成断面図、f?14図(a)〜第4
図(c)は単分子累積膜の作製工程図及び第5図は情報
記憶装置のブロック図である。
FIG. 1 is a schematic cross-sectional view showing an example of the optical recording element according to the present invention, FIGS. 2(a) to 2(c) are explanatory diagrams showing the recording process of a conventional optical recording element, and FIG. The figure is a schematic cross-sectional view of the monomolecular cumulative film forming apparatus, f? Figure 14 (a) - 4th
Figure (c) is a manufacturing process diagram of a monomolecular cumulative film, and Figure 5 is a block diagram of an information storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の染料のロイコ体からなるA
層と、前記染料のロイコ体と接触して発色せしめるフェ
ノール性化合物からなるB層と、A層とB層との間に介
在する光吸収層とからなり、かつ (イ)前記A層は染料のロイコ体の単分子膜又はその累
積膜からなる層、 (ロ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層 から構成されることを特徴とする光記録素子。
(1) A usually consists of a leuco form of a colorless or light-colored dye
a layer B consisting of a phenolic compound that develops color when in contact with the leuco form of the dye; and a light absorption layer interposed between the layer A and the layer B, and (a) the layer A is made of a dye. (b) an optical recording element characterized in that the light-absorbing layer is composed of a monomolecular film of a light-absorbing substance or a layer consisting of a cumulative film thereof; .
JP59159112A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137484A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159112A JPS6137484A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159112A JPS6137484A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137484A true JPS6137484A (en) 1986-02-22

Family

ID=15686502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159112A Pending JPS6137484A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137484A (en)

Similar Documents

Publication Publication Date Title
US4581317A (en) Optical recording element
US4547444A (en) Recording element for optical data storage
JPS58224793A (en) Optical recording medium
JPS6163489A (en) Photo-recording element
JPS6137484A (en) Optical recording element
JPS61235188A (en) Optical data memory medium with high reflectivity organic information layer
JPS6163491A (en) Photo-recording element
US4681834A (en) Optical recording element
JPS6137477A (en) Optical recording element
JPS6137476A (en) Optical recording element
JPS6137479A (en) Optical recording element
JPS6137482A (en) Optical recording element
JPS6137487A (en) Optical recording element
JPS6137486A (en) Optical recording element
JPS6137489A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPS6137485A (en) Optical recording element
JPS6163487A (en) Optical recording element
JPS6163939A (en) Information storage device
JPS6137475A (en) Optical recording element
JPS6137474A (en) Optical recording element
JPS6163482A (en) Optical recording element
JPS6137478A (en) Optical recording element
JPS6137480A (en) Optical recording element
JPS6163484A (en) Optical recording element