JPS6137473A - Optical recording element - Google Patents

Optical recording element

Info

Publication number
JPS6137473A
JPS6137473A JP59159101A JP15910184A JPS6137473A JP S6137473 A JPS6137473 A JP S6137473A JP 59159101 A JP59159101 A JP 59159101A JP 15910184 A JP15910184 A JP 15910184A JP S6137473 A JPS6137473 A JP S6137473A
Authority
JP
Japan
Prior art keywords
layer
film
light
color
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59159101A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Harunori Kawada
河田 春紀
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Noritaka Mochizuki
望月 則孝
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59159101A priority Critical patent/JPS6137473A/en
Publication of JPS6137473A publication Critical patent/JPS6137473A/en
Priority to US07/233,902 priority patent/US4933221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain optical recording elements capable of highly reliable higher density recording by providing a layer A of color-forming compound, a layer B of assistant color-forming compound and a light-absorbing layer 3 of light- absorbing material which exists between the layer A and the layer B, and making up each layer of either a monomolecular film or an accumulated film. CONSTITUTION:The titled optical recording element is composed of a layer-A 2 of color-forming compound, a layer-B 4 of assistant color-forming compound and a light-absorbing layer 3 of light-absorbing material which exists between the layers A and B. All these layers are laminates of monomolecular film or its accumulated film and the layer-B 4 is supported on a substrate 1. The substrate, layer B, light-absorbing layer and layer A are laminated in that order. Consequently, compared to the conventional optical recording element, the titled element has higher packing density and has a higher signal/noise ratio, thus enhancing recording reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機材料を利用した光記録素子に関し、特に高
度に分子配向された有4!!薄膜を利用した高信頼・高
密度記録の可能な光記録素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical recording element using an organic material, and particularly to an optical recording element using an organic material with highly molecular orientation. ! The present invention relates to an optical recording element that uses a thin film and is capable of highly reliable and high-density recording.

[従来の技術]− at、オフィス・オートメーション(OA)の中心的記
録(憶)素子として光ディスクが脚光を集めている。そ
の理由は光ディスク一枚で、大量の文書、文献などを記
録(又は記憶)できるからであり、したがって該光ディ
スクを用いる情報記憶装置を導入するとオフィスにおけ
る文書、文献−の整理、管理に一大変革をもたらすもの
と期待されている。又、該光デイスク用記録材料として
は安価性、製作容易性、高密度記録性等の特徴を有する
有機材料が注目されて−いる。
[Prior Art] Optical disks are attracting attention as a central recording device for office automation (OA). The reason for this is that a single optical disc can record (or store) a large amount of documents, literature, etc. Therefore, introducing an information storage device that uses this optical disc will revolutionize the organization and management of documents and literature in offices. It is expected that this will bring about Furthermore, as recording materials for optical disks, organic materials, which have characteristics such as low cost, ease of manufacture, and high-density recording, are attracting attention.

この様な有機記録材、を用いる従来技術の中で。Among the conventional techniques using such organic recording materials.

特に発色剤と助色剤の接触による発色反応を利用する二
成分系の光記録素子が報告されている(日経産業新聞 
昭和58年10月18日)。
In particular, a two-component optical recording element that utilizes a color reaction caused by contact between a color former and an auxiliary colorant has been reported (Nikkei Sangyo Shimbun
(October 18, 1982).

該光記録素子の1例を図面に基づいて説明すると、第2
図(a)に示す様に発色剤層7と助色剤層5とが光吸収
層6によって隔てられて基板l上に積層された構成から
なるものである。
An example of the optical recording element will be described based on the drawings.
As shown in Figure (a), the color forming agent layer 7 and the auxiliary color agent layer 5 are separated by a light absorbing layer 6 and are laminated on a substrate l.

発色剤(ロイコ体)及び助色剤は各々単独で存在すると
きは無色又は淡色である。
The coloring agent (leuco compound) and auxiliary colorant are colorless or light-colored when each exists alone.

該記録素子に記録を行うときは、第2図(b)に示す様
に光吸収層6の所望の位置にレーザ光8を照射すると、
光吸収層のレーザ光を照射された部分はレーザ光を吸収
して溶融し破れて小さな穴があく。
When recording on the recording element, a laser beam 8 is irradiated onto a desired position of the light absorption layer 6 as shown in FIG. 2(b).
The portion of the light-absorbing layer that is irradiated with the laser beam absorbs the laser beam, melts, and rips, leaving a small hole.

その結果、第2図(C)に示す様に光吸収層6によって
隔てられていた発色剤と助色剤がこの小さな穴を通じて
混ざり合い発色する。情報はこの発色点9の形で記録な
いし記憶され、読み出しは別の光源で該記録素子上を走
査し発色点による反射率、透過率等の変化を検出するこ
とにより行われる。
As a result, as shown in FIG. 2(C), the color forming agent and the auxiliary color agent, which were separated by the light absorbing layer 6, mix through the small holes and develop a color. Information is recorded or stored in the form of coloring points 9, and reading is performed by scanning the recording element with another light source and detecting changes in reflectance, transmittance, etc. due to the coloring points.

[発明が解決しようとする問題点] 上記の光記録素子に於いて、記録の高密度化を図るため
には光吸収層6が極力薄く、平坦で、かつ膜厚のむらの
ないものが望ましい、しかしながら、従来の光記録素子
において、光吸収層は例えば真空蒸着法又は回転塗布法
などによって基板上に被膜されているため、厚さを20
0〜500Å以下に薄くシようとすればピンホールが多
発しやすく、このピンホールの箇所で発色剤と助色剤の
2成分が接触して発色するため、信頼性に欠ける欠点が
あった。その上、前記の従来の被膜方法で形成される各
層のnり内の分子分布配向がランダムであるため、光照
射に伴って校内で光散乱が生じ、微視的にみた場合、各
光照射の度に生ずる化学反応の度合が異なってくる。さ
らに、上述の被膜方法では光ディスクの基板を大面積化
すると、膜厚のむもが生じ、記録品質のむもが発生する
等の欠点があった。
[Problems to be Solved by the Invention] In the above-mentioned optical recording element, in order to achieve high recording density, it is desirable that the light absorption layer 6 be as thin as possible, flat, and without unevenness in film thickness. However, in conventional optical recording elements, the light absorption layer is coated on the substrate by, for example, a vacuum evaporation method or a spin coating method, so the thickness is reduced to 20%.
When trying to print thinly to 0 to 500 Å or less, pinholes tend to occur frequently, and the two components, the color former and the auxiliary color, come into contact at these pinholes and develop color, resulting in a drawback of lack of reliability. In addition, because the molecular distribution orientation within the n range of each layer formed by the conventional coating method described above is random, light scattering occurs within the school due to light irradiation, and when viewed microscopically, each light irradiation The degree of chemical reaction that occurs differs each time. Furthermore, the above-mentioned coating method has disadvantages in that when the substrate of an optical disk is made to have a large area, the film thickness becomes unstable and the recording quality suffers.

したがって、光記録素子としては、膜内の分子分布・配
向が一様で、ピンホールも膜厚のむらもないことが望ま
しく、またできる限り膜厚が薄いことが、記録の高密度
化、高信頼化のために要望される0本発明はかかる要望
に鑑みてなされたもので、本発明の目的は高信頼・高密
度記録が可能な光記録素子を提供することにある0本発
明の別とにある0本発明のさらに別の目的は大面積の光
記録素子を提供することにある。
Therefore, as an optical recording element, it is desirable that the molecular distribution and orientation within the film be uniform, that there are no pinholes, and that the film thickness is uniform, and that the film thickness be as thin as possible to achieve high recording density and high reliability. The present invention has been made in view of these demands, and an object of the present invention is to provide an optical recording element capable of highly reliable and high-density recording. Yet another object of the present invention is to provide a large area optical recording element.

[問題点を解決するための手段]及び[作用]即ち、本
発明は通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層と、A層とB層との間に介在する光吸
収層とからなり、かつ (イ)前記A層は発色性化合物の単分子膜又はその累積
膜からなる層、 (ロ)前記Bfiは助色性化合物の単分子膜又はその累
積膜からなる層、 (ハ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層、 から構成されることを特徴とする光記録素子である。
[Means for Solving the Problems] and [Operation] That is, the present invention consists of a layer A consisting of a color-forming compound that is usually colorless or light-colored, and a layer B consisting of an auxochrome compound that develops a color when it comes into contact with the color-forming compound. and a light absorption layer interposed between the A layer and the B layer, and (a) the A layer is a monomolecular film of a color-forming compound or a cumulative film thereof, and (b) the Bfi is A layer consisting of a monomolecular film of an auxochromic compound or a cumulative film thereof; (c) the light-absorbing layer is a layer comprising a monomolecular film of a light-absorbing substance or a cumulative film thereof; It is a recording element.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる光記録素子は通常無色ないし淡色の発色
性化合物からなるA層と、前記発色性化合物と接触して
発色せしめる助色性化合物からなるB5との間に、光吸
収層を介在せしめた構成か−らなるものであり、該A層
及びB層には互に接触、混合することにより発色する物
質を組合せて用いることが基本的に要請される。この様
な関係にあるA層の通常無色ないし淡色の発色性化合物
及びB層の前記発色性化合物と接触して発色せしめる肋
色性化合物の具体例を示すと (イ) 酸性物質(B層)と該酸性物質に接触すること
によって発色する染料のロイコ体(色素前駆体)(A層
) (ロ)酸化剤(B層)と該酸化剤に接触することによっ
て発色する染料の一ロイコ体(A層)(ハ)還元剤(B
層)、と該還元剤に接触することによって発色する染料
のロイコ体(A層)(ニ)還元剤(B層)とステアリン
酸r52鉄のように還元されると発色する酸化剤(A層
)(ホ)酸化剤(B層)と没食子酸のように酸化される
と発色する還元剤(A層) 等が挙げられる。
The optical recording element according to the present invention has a light-absorbing layer interposed between the layer A, which is usually made of a colorless or light-colored color-forming compound, and the layer B5, which is made of an auxochrome compound that develops color when it comes into contact with the color-forming compound. Basically, the A layer and the B layer are required to use a combination of substances that develop color when brought into contact with each other and mixed together. Specific examples of the normally colorless to light-colored color-forming compound in layer A and the subchromic compound that develops color when it comes into contact with the color-forming compound in layer B, which have this relationship, are as follows: (a) Acidic substance (layer B) and a leuco form of a dye (dye precursor) that develops color when it comes into contact with the acidic substance (layer A) (b) An oxidizing agent (layer B) and a leuco form of a dye that develops a color when it comes into contact with the oxidizing agent ( A layer) (c) Reducing agent (B
layer), and the leuco form of the dye that develops color when it comes into contact with the reducing agent (layer A), (d) reducing agent (layer B), and an oxidizing agent that develops color when reduced, such as r52 iron stearate (layer A). ) (e) An oxidizing agent (layer B) and a reducing agent (layer A) that develops color when oxidized, such as gallic acid.

前記(イ)の場合をさらに詳しく例示すれば、染料のロ
イコ体と接触して反応し発色せしめるB層の酸性物質と
しては、ベンゼンスルホン酸等の芳香族スルホン酸化合
物、安息香酸等の芳香族カルボン酸類、パルミチン酸(
CI5H31COOH)、ステアリン酸(C17H35
Cool)、アラキシン酸CCx?H,yy C00H
)等の高級脂肪酸カルボン酸類、p−t−ブチルフェノ
ール、α−ナフトール、β−ナフトール、フェノールフ
タレイン、ビスフェノールA、 4−ヒドロキシジフェ
ノキシド、4−ヒドロキシアセトフェノン等のフェノー
ル性化合物等が挙げられる。
To give a more detailed example of the case (a) above, the acidic substance in layer B that reacts with the leuco form of the dye to develop color is an aromatic sulfonic acid compound such as benzenesulfonic acid, or an aromatic compound such as benzoic acid. Carboxylic acids, palmitic acid (
CI5H31COOH), stearic acid (C17H35
Cool), Araxic acid CCx? H,yy C00H
), phenolic compounds such as pt-butylphenol, α-naphthol, β-naphthol, phenolphthalein, bisphenol A, 4-hydroxydiphenoxide, and 4-hydroxyacetophenone.

次に、前記酸性物質と接触して反応するA層の染料のロ
イコ体としては例えば、トリフェニルメタン系、フルオ
ラン系、フェノチアジン系、オーラミン系、スピロピラ
ン系等があり、それ等に含まれる具体的な化合物の詳細
を提示すると第1表の通りである。
Next, examples of the leuco dyes in the A layer that react with the acidic substance include triphenylmethane, fluoran, phenothiazine, auramine, and spiropyran. The details of the compounds are shown in Table 1.

本発明においてA層及びB層はいずれも単分子膜又はそ
の累積IIIからなる層から形成されるために、前記の
発色性化合物及び助色性化合物はいずれも分子内の適当
な部位に親木基、疎水基又はその両方の基を導入した誘
導体を用いる必要がある。
In the present invention, since both the A layer and the B layer are formed from a monomolecular film or a layer consisting of a cumulative layer thereof, the above-mentioned color-forming compound and auxochrome compound are both placed at appropriate sites within the molecule. It is necessary to use a derivative into which a group, a hydrophobic group, or both groups are introduced.

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜3゜の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 3 degrees of carbon atoms;
As the parent group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

なお、A層及びB層の膜厚は20OAから10gの範囲
が望ましく、好適には1.C100人から1ルの範囲で
ある。
Note that the thickness of the A layer and the B layer is preferably in the range of 20OA to 10g, preferably 1. The range is from 100 people to 1 person.

次に1本発明における光吸収層の形成に用いられる光吸
収性物質としては赤外線を吸収して溶融する溶融性光吸
収色素、又は赤外線を吸収して昇華する昇華性光吸収色
素が好適である。
Next, as the light-absorbing substance used for forming the light-absorbing layer in the present invention, a meltable light-absorbing dye that absorbs infrared rays and melts, or a sublimable light-absorbing dye that absorbs infrared rays and sublimates is suitable. .

該かる光吸収色素の一例をあげれば、例えば銅フロシア
ニン、バナジウムフタロシアニン等の金属フタロシアニ
ン、例えば、フルオレスセイン等のキサンチン系色素等
がある。
Examples of such light-absorbing dyes include metal phthalocyanines such as copper phthalocyanine and vanadium phthalocyanine, and xanthine dyes such as fluorescein.

該光吸収層は単分子膜又はその累積膜からなる層から形
成されるために、前記の光吸収性物質は分子内の適当な
部位に親水基、疎水基又はその両方の基を導入した誘導
体を用いる必要がある。
Since the light-absorbing layer is formed from a monomolecular film or a layer consisting of a cumulative film thereof, the above-mentioned light-absorbing substance is a derivative having a hydrophilic group, a hydrophobic group, or both groups introduced at appropriate sites within the molecule. It is necessary to use

疎水基及び親木基には一般に使用されるものであれば如
何なるものでも用いることができるが、特に好ましくは
疎水基としては炭素原子数5〜30の長鎖アルキル基、
親木基としてはカルボキシル基及びその金属塩(例えば
カドミウム塩)が望ましい。
Any commonly used hydrophobic group and parent tree group can be used, but particularly preferred hydrophobic groups include long-chain alkyl groups having 5 to 30 carbon atoms;
As the parent group, carboxyl groups and metal salts thereof (eg, cadmium salts) are desirable.

なお光吸収層の膜厚は30Aから1.000人の範囲が
望ましく1.好適には50人から200人の範囲である
The thickness of the light absorption layer is preferably in the range of 30A to 1,000A. The preferred range is 50 to 200 people.

また、本発明において基板に使用される材料としては、
シリコン等の半導体材料、アルミ等の金属材料、好適に
は強化ガラス、更に好適にはアクリル(PMMA) 、
ポリカーボネート(pc) 、ポリプロピレン、ポリ塩
化ビニール(pvc ) 、ポリスチレン等のプラスチ
ック材料、セラミック材料が好ましい。
In addition, the materials used for the substrate in the present invention include:
Semiconductor materials such as silicon, metal materials such as aluminum, preferably tempered glass, more preferably acrylic (PMMA),
Plastic materials such as polycarbonate (PC), polypropylene, polyvinyl chloride (PVC), polystyrene, and ceramic materials are preferred.

本発明に係わる光記録素子はA層は発色性化合物の単分
子膜又はその累積膜からなる層、BP:!:は助色性化
合物の単分子1模又はその累積11!Jからなる層及び
光吸収層は光吸収性物質の単分子膜又はその累積膜から
なる層から構成されることを1つの特徴とするものであ
る。
In the optical recording element according to the present invention, the A layer is a layer consisting of a monomolecular film of a color-forming compound or a cumulative film thereof, BP:! : is 1 model of a single molecule of an auxochrome compound or 11 of its cumulative number! One feature is that the layer made of J and the light absorption layer are composed of a monomolecular film of a light absorption substance or a layer made of a cumulative film thereof.

かかる分子の高秩序性及び高配向性を有する単分子膜又
はその累積膜を作成する方法としては、例えば1.La
ngmuirらの開発したラングミュア・プロジェット
法(LB法)を用いる。ラングミュア・プロジェット法
は、例えば分子内に親木基と疎水基を有する構造の分子
において、両者のバランス(両親媒性のバランス)が適
度に保たれているとき、分子は水面上で親木基を下に向
けて単分子の層になることを利用して単分子膜または単
分子の累積膜を作成する方法である。水面上の単分子層
は二次元系の特徴をもつ0分子がまばらに散開している
ときは、一分子当り面vIAと表面圧nとの間に二次元
理想気体の式、 nA= kT が成り立ち、°“気体v ”となる、ここに、kはポル
ツマン定数、Tは絶対温度である。Aを十分小さくすれ
ば分子間相互作用が強まり二次元固体の“°凝縮膜(ま
たは固体膜)°゛になる。凝縮膜はプラスチック基板、
ガラス基板などの種々の材質や形状を有する担体の表面
へ一層ずつ移すことができる。
As a method for producing a monomolecular film or a cumulative film thereof having such high orderliness and orientation of molecules, for example, 1. La
The Langmuir-Prodgett method (LB method) developed by Ngmuir et al. is used. The Langmuir-Prodgett method is based on the Langmuir-Prodgett method. For example, when a molecule has a parent tree group and a hydrophobic group in its molecule, and the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule will react to the parent tree on the water surface. This is a method of creating a monomolecular film or a monomolecular cumulative film by using the fact that the monomolecular layer is formed with the group facing downward. When the monomolecular layer on the water surface has the characteristics of a two-dimensional system and zero molecules are sparsely dispersed, the two-dimensional ideal gas equation, nA = kT, is expressed between the surface per molecule vIA and the surface pressure n. holds, and becomes ° “gas v ”, where k is Portzmann's constant and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction will be strengthened, resulting in a two-dimensional solid “°condensed film (or solid film)°”.The condensed film is formed on a plastic substrate,
It can be transferred layer by layer onto the surface of carriers having various materials and shapes, such as glass substrates.

次に本発明に使用する発色性化合物、助色性化合物又は
光吸収性物質である親水基、疎水基を併有する有機分子
の単分子・膜又はその累積膜を形成する方法についてざ
ら、に詳述する。
Next, the method for forming a monomolecule/film of an organic molecule having both a hydrophilic group and a hydrophobic group, or a cumulative film thereof, which is a color-forming compound, an auxochrome compound, or a light-absorbing substance used in the present invention, will be explained in detail. Describe.

まず該有機分子をベンゼン、クロロホルム等の揮発性溶
剤に溶解し、シリンダ等でこれを第3図に概略した単分
子累積膜形成装置の水+e10内の水相11上に展開さ
せる。
First, the organic molecule is dissolved in a volatile solvent such as benzene, chloroform, etc., and spread on the aqueous phase 11 in water+e10 of the monomolecular cumulative film forming apparatus schematically shown in FIG. 3 using a cylinder or the like.

該有機分子は、溶剤の揮発に伴って、親木基12を水相
に向け、疎水基13を気相に向けた状態で水相11上に
展開する。
As the solvent evaporates, the organic molecules develop on the water phase 11 with the parent tree groups 12 facing the water phase and the hydrophobic groups 13 facing the gas phase.

次にこの析出物(有機分子)が水相11上を自由に拡散
して広がりすぎないように仕切板(または浮子)14を
設けて展開面積を制限して11り物質の集合状態を制御
し、その集合状態に比例した表面圧nを得る。この仕切
板14を動かし、展開面積を縮少して膜物質の集合状態
を制御し、表面圧を徐々に上昇させ、累積膜の製造に適
する表面圧■を設定することができる。この表面圧を維
持しながら静かに清浄な基板14を垂直に上下させるこ
とにより単分子膜16が基板上に移しとられる。単分子
膜16は以上で製造されるが、単分子層累積膜17は前
記の操作を繰り返すことにより所望の累積数の単分子層
累積膜が形成される。
Next, to prevent the precipitates (organic molecules) from freely diffusing and spreading over the aqueous phase 11, a partition plate (or float) 14 is provided to limit the spread area and control the aggregation state of the substances. , obtain a surface pressure n proportional to its collective state. By moving the partition plate 14, the developed area can be reduced to control the aggregation state of the film material, and the surface pressure can be gradually increased to set the surface pressure (2) suitable for producing a cumulative film. By gently vertically moving the clean substrate 14 up and down while maintaining this surface pressure, the monomolecular film 16 is transferred onto the substrate. The monomolecular layer 16 is manufactured as described above, and the monomolecular layer cumulative film 17 is formed by repeating the above-mentioned operations to form a desired cumulative number of monomolecular layer cumulative films.

例えば表面が親水性である基板15を水面を横切る方向
に水中から引き上げると該有機分子の親木基が基板15
側に向いた単分子層1Bが基板15上に形成される。前
述のように基板15を上下させると、各工程ごとに1枚
ずつ単分子層1Bが積み重なっていく、成膜分子の向き
が引上げ工程と浸せき工程で逆になるので、この方法に
よると各層間は有機分子の親木基と親木基、有機分子の
疎水基と疎水基が向かい合ういわゆるY型膜が形成され
る(第4図(a) ) 。
For example, when a substrate 15 with a hydrophilic surface is pulled out of water in a direction transverse to the water surface, parent wood groups of the organic molecules are removed from the substrate 15.
A side facing monolayer 1B is formed on the substrate 15. When the substrate 15 is moved up and down as described above, the monomolecular layer 1B is stacked one by one in each step. Since the direction of the film-forming molecules is reversed in the pulling step and the dipping step, according to this method, there is a gap between each layer. In this case, a so-called Y-type film is formed in which the parent wood groups of the organic molecules and the parent wood groups and the hydrophobic groups of the organic molecules face each other (Figure 4(a)).

Y型膜は有機分子の親水基同志、疎水基同志が向い合っ
ているので強固である。
The Y-type film is strong because the hydrophilic groups and hydrophobic groups of the organic molecules face each other.

それに対し、基板15を水中に引き下げるときにのみ、
基板面に該有機分子を移し取る方法もある。
In contrast, only when lowering the substrate 15 into the water,
There is also a method of transferring the organic molecules onto the substrate surface.

この方法では、累積しても、成膜分°子の向きの交代は
なく全ての層において、疎水基が基板15側に向いたX
型膜が形成される(第4図(b) ) 、反対に全ての
層において親木基が基板15側に向いた累積膜はX型膜
と呼ばれる(第4図(C) ) 。
In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and in all layers the hydrophobic groups are directed to the substrate 15 side.
A type film is formed (FIG. 4(b)). On the other hand, a cumulative film in which parent wood groups in all layers face the substrate 15 side is called an X-type film (FIG. 4(C)).

X型膜は基板15を水中から引上げるときにのみ、基板
面に有機分子を移し取ることによって得られる。
The X-type film is obtained by transferring organic molecules to the substrate surface only when the substrate 15 is lifted out of the water.

以上の方法によって基板上に形成される単分子膜及び単
分子層累積膜は高密度でしかも高度の秩序性・配向性を
有しており、これらの膜で記録層を構成することによっ
て、光熱的記録の可能な高密度で高解像度の記録機能を
有する記録素子を得ることができる。また、これら成膜
方法はその原理からも分る通り、非常に簡単な方法であ
り、上記のような優れた記録機能を有する記録素子を低
コストで提供することができる。
The monomolecular film and monomolecular layer cumulative film formed on the substrate by the above method have high density and a high degree of order and orientation, and by configuring the recording layer with these films, photothermal Accordingly, it is possible to obtain a recording element having a high-density and high-resolution recording function capable of performing digital recording. Further, as can be seen from the principles thereof, these film forming methods are very simple methods, and a recording element having the above-mentioned excellent recording function can be provided at low cost.

以上述べた、本発明における単分子膜または単分子累積
膜を形成する基板は特に限定されないが、基板表面に界
面活性物質が付着していると、単分子層を水面から移し
とる時に、単分子膜が乱れ良好な単分子膜または単分子
層累積膜ができないので基板表面が清浄なものを使用す
る必要がある。
The substrate on which the monomolecular film or monomolecular cumulative film in the present invention is formed as described above is not particularly limited, but if a surfactant is attached to the surface of the substrate, when the monomolecular layer is transferred from the water surface, the monomolecular Since the film is disturbed and a good monomolecular film or monomolecular layer stack cannot be formed, it is necessary to use a substrate with a clean surface.

基板上の単分子膜または単分子層累積膜は、十分に強く
固定されており基板からの剥離、剥落音生じることはほ
とんどないが、付着力を強化する目的で基板と単分子膜
または単分子層累積膜の間に接着層を設けることもでき
る。さらに単分子層形成条件例えば水相の水素イオン濃
度、イオン種、水温、担体上げ下げ速度あるいは表面圧
の選択等によって付着力を強化することもできる。
The monomolecular film or monomolecular layer stack on the substrate is sufficiently strongly fixed and hardly peels off from the substrate or makes a peeling sound. An adhesive layer can also be provided between the layer stacks. Furthermore, the adhesion force can be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure.

以上に説明した方法で製造される本発明に係わ、る光記
録素子の構成の1例を示すと、第1図に示す通り、発色
性化合物からなるAF)2、助色性化合物からなる8層
4及びA層とB層の間に介在する光吸収性物質からなる
光吸収層3からなり、それ等の全ての層が単分子膜又は
その累積膜からなる積層体で、8層4を基板1上に支持
し、基板/B層/光吸収層/A層の順−に積層してなる
ものである。
An example of the structure of an optical recording element according to the present invention manufactured by the method described above is shown in FIG. 1, as shown in FIG. It consists of 8 layers 4 and a light absorbing layer 3 made of a light absorbing substance interposed between layers A and B, and all of these layers are a laminate consisting of a monomolecular film or a cumulative film thereof, and the 8 layers 4 is supported on a substrate 1 and laminated in the order of substrate/B layer/light absorption layer/A layer.

さらに、他の例として前記積層体のA層を基板。Furthermore, as another example, the A layer of the laminate may be used as a substrate.

上に支持し、基板/A層/光吸収層/B層の順にB層し
てもよく、又前記積層体を2設置上積重ねて最下層のA
層又はB層を基板上に支持してもよい。
The B layer may be supported in the order of the substrate/A layer/light absorption layer/B layer, or the laminate may be stacked on top of each other to form the bottom layer A.
The layer or B layer may be supported on the substrate.

本発明に係わる光記録素子はA層とB層とを光吸収層に
よって隔離して構成されているので、赤外線照射によっ
て光吸収層を溶融ないし昇華せしめて所望の位置に孔を
あけることにより、A層の発色性化合物とB層の助色性
化合物が接触して発色反応が進行し、該位置に発色点を
形成し情報を記録することができる。
Since the optical recording element according to the present invention is constructed by separating the A layer and the B layer by a light absorption layer, by melting or sublimating the light absorption layer by infrared irradiation and making holes at desired positions, The color-forming compound of layer A and the auxochrome compound of layer B come into contact and a color-forming reaction proceeds, forming a color-forming point at the position and recording information.

したがって本発明に係る光記録素子は主として光ディス
クとして使用することができる。該光ディスクから、情
報を書き込んだり或いは読取ったりするための光ピツク
アップの光学系を有する情報記憶装置の1例を第5図に
示す。
Therefore, the optical recording element according to the present invention can be mainly used as an optical disc. FIG. 5 shows an example of an information storage device having an optical pickup optical system for writing or reading information from the optical disc.

該情報記tI!装置は、制御回路27と光ピツクアップ
光学系からなる書き込み手段と、本発明に係わる光記録
素子と、出力回路28と光ピツクアップ光学系からなる
読取り手段とによって構成される。
The information record tI! The apparatus is composed of a writing means consisting of a control circuit 27 and an optical pickup optical system, an optical recording element according to the present invention, and a reading means consisting of an output circuit 28 and an optical pickup optical system.

書き込みは次のようにして行う、制御回路27は半導体
レーザ26の発振を制御する。従って、入力情報は制御
回路27及び半導体レーザ26によって光信号に変換さ
れる。光信号28は第5図に示す光ピツクアップ光学系
を通って同期回転している光ディスク18の記録層上に
結像され、上述の発色メカニズムにより発色記録される
Writing is performed as follows. The control circuit 27 controls the oscillation of the semiconductor laser 26. Therefore, the input information is converted into an optical signal by the control circuit 27 and the semiconductor laser 26. The optical signal 28 passes through the optical pickup optical system shown in FIG. 5, forms an image on the recording layer of the optical disc 18 which is rotating synchronously, and is recorded in color by the coloring mechanism described above.

読取りは次のようにして行う、半導体レーザ26から発
する低出力の連続発振光を読取り光として使う、低出力
であるから、読取り中に発色記録が行われることはない
からである。または他の可視光用光源を読取り用光源と
して用いてもよい。
Reading is performed as follows. Low-output continuous wave light emitted from the semiconductor laser 26 is used as the reading light. Since the output is low, color recording is not performed during reading. Alternatively, another visible light source may be used as the reading light source.

該読取り用光線は光ディスク18の基板表面に結像し反
射されるが、反射率は発色点とそうでない箇所とで異な
るから、この反射光を光ピツクアップ光学系を通してフ
ォトダイオード25の受光面にあてることにより電気信
号に変換し、再生読み出しを行う。
The reading light beam forms an image on the substrate surface of the optical disk 18 and is reflected, but since the reflectance differs between the coloring point and the non-coloring point, this reflected light is applied to the light receiving surface of the photodiode 25 through the optical pickup optical system. This converts the signal into an electrical signal and reproduces and reads it.

該かる再生信号のコントラストを上げ、画質等の向上を
図るためには、光記録素子の基板上にアルミ等の金属反
射層を付設することが好ましい。
In order to increase the contrast of the reproduced signal and improve the image quality, it is preferable to provide a reflective layer of metal such as aluminum on the substrate of the optical recording element.

金属反射層の膜厚は1.000 A〜2,000 Aが
好適である。その他必要に応じて誘電体ミラーでもよI
;1゜ 更に、Ai、B層、光吸収層等を保護するために最外層
の表面に保護層を設けてもよい、そのような保護層用材
料としては5i02等の誘電体、プラスチック樹脂、他
の重合性LB膜等が好適である。
The thickness of the metal reflective layer is preferably 1.000 A to 2,000 A. Other dielectric mirrors can be used as needed.
;1゜Furthermore, a protective layer may be provided on the surface of the outermost layer to protect the Ai, B layer, light absorption layer, etc. Materials for such a protective layer include dielectrics such as 5i02, plastic resins, Other polymerizable LB films and the like are suitable.

[実施例] 以下、実施例を示し、本発明をざら、に具体的に説明す
る。尚、下記において特に記述のない限り1部」は「重
量部」を、1%」は「重量%」を表わすものとする。
[Example] Hereinafter, the present invention will be briefly and concretely explained with reference to Examples. In the following, unless otherwise specified, "1 part" means "part by weight" and "1%" means "% by weight."

合成例1(光吸収性物質の合成例) バナジウムフ ロシアニン7−n の−゛−尿素lO部
と10〜15%りん酸水溶液1部を混合溶解した後、さ
らに無水フタル酸2部、VOCJI 2(バナジル塩)
10部及び 式(I) C−0−C2H5 で表わされる無水フタルシアニンの誘導体8部を加え、
100℃にて5時間加熱した。冷却した後。
Synthesis Example 1 (Synthesis Example of Light-Absorbing Substance) After mixing and dissolving 10 parts of -'-urea of vanadium phlocyanine 7-n and 1 part of a 10-15% phosphoric acid aqueous solution, 2 parts of phthalic anhydride and 2 parts of VOCJI were mixed and dissolved. (vanadyl salt)
10 parts and 8 parts of anhydrous phthalcyanine derivative represented by formula (I) C-0-C2H5,
It was heated at 100°C for 5 hours. After cooling.

2%希NaOH水溶液100部を加え、加水分解した後
、クロマトグラフィにより分離し、 式(IF) [式■中、Rは 11   “ C−0−02Hs CH(CH2)/9 ClO3 を表わす]で示される目的物質(バナジウムフタロシア
ニン誘導体)0.1部を得た。
After adding 100 parts of a 2% dilute NaOH aqueous solution and hydrolyzing, the product was separated by chromatography, and the product was expressed by the formula (IF) [in the formula (■), R represents 11" C-0-02Hs CH(CH2)/9 ClO3]. 0.1 part of the desired substance (vanadium phthalocyanine derivative) was obtained.

合成例2(発色性化合物の合成例) リス ルバイオレートラク ン;−゛ 式(III) で示されるドアミノ安息香酸誘導体1部と、式(IV) H で示されるミヒラーズヒドロール1部を酸)1部を加え
て、8時間還流し、 式(V) (CH2)、CH3 で示されるトリフェニルメタン訝導体を生成した。
Synthesis Example 2 (Synthesis Example of Color-Forming Compound) Lysulviolate chlorine; - 1 part of the doaminobenzoic acid derivative represented by formula (III) and 1 part of Michler's hydrol represented by formula (IV) H 1 part of acid) was added and the mixture was refluxed for 8 hours to produce triphenylmethane conductors represented by the formula (V) (CH2), CH3.

次に該生成物のトリフェニルメタン誘導体を2酸化鉛(
1部)存在下硫醜中で3時間加熱した後、 式(Vり (CH2)、70H。
Next, the triphenylmethane derivative of the product was converted into lead dioxide (
1 part)) After heating in sulfur for 3 hours in the presence of the formula (V(CH2), 70H).

で示されるクリスタルバイオレットラクトン誘導体を得
た。
A crystal violet lactone derivative represented by was obtained.

次いで、これに苛性ソーダ水溶液を加え、環化すること
により。
Next, by adding an aqueous solution of caustic soda to this and cyclizing it.

式(■) (OH2)、 CH3 で示されるクリスタルバイオレットラクトン誘導体0.
2部を得た。
Crystal violet lactone derivative represented by formula (■) (OH2), CH3 0.
Got 2 copies.

実施例1 (1)B層の形成方法 厚さ10+am、直径18h+*の円板上のガラス(デ
ィスク)基板を充分に清浄にした0次に前述の単分子累
積装置を用いて助色性化合物であるアラキシン酸の単分
子累積膜を形成した。
Example 1 (1) Method for Forming Layer B A sufficiently cleaned glass (disc) substrate on a disk with a thickness of 10+ am and a diameter of 18 h+* was prepared with an auxochrome compound using the monomolecular accumulator described above. A monomolecular cumulative film of araxic acid was formed.

該アラキシン酸の単分子膜tallQの形成方法は、下
記のように行った。
The method for forming the monomolecular film of alaxic acid tallQ was performed as follows.

基板が水面と垂直になるようにして、基板を詠中に沈め
た後、アラキシン酸を、濃度2X10’mal/jLの
クロロホルム溶液にして水面上に滴下し単分子膜を水面
上に展開する0表面圧を30dyne/c簡に設定し、
速度2 cm/winで基板を上下して27層に累積し
た単分子累積膜(Y型膜)を作成した。
After submerging the substrate in the water so that it is perpendicular to the water surface, a chloroform solution of araxic acid with a concentration of 2 x 10'mal/jL is dropped onto the water surface to spread a monomolecular film on the water surface. Set the surface pressure to 30 dyne/c,
A monomolecular cumulative film (Y-type film) having 27 layers was created by moving the substrate up and down at a speed of 2 cm/win.

同様の方法により、1層、50層、200層、400層
の単分子累積膜を各々作成した各試料を得た。
By the same method, samples of monomolecular cumulative films of 1 layer, 50 layers, 200 layers, and 400 layers were obtained.

(2)光吸収層の形成方法 次に、前記(1)で得た各試料のガラス基板上に形成し
たB層の上に、Ih述の単分子累積装置を用いて光吸収
性物質であるバナジウムフタロシアニン誘導体の単分子
累積膜を形成した。
(2) Method for forming a light-absorbing layer Next, layer B formed on the glass substrate of each sample obtained in (1) above is coated with a light-absorbing substance using the single-molecule accumulator described in Ih. A monomolecular cumulative film of vanadium phthalocyanine derivatives was formed.

/ヘナシウムフタロシアニン誘導体の単分子累積膜の形
成方法は、下記のように行った。
The method for forming a monomolecular cumulative film of /henacium phthalocyanine derivative was performed as follows.

B層を形成した基板が水面と垂直になるようにして、基
板を水中に沈めた後、バナジウムフタロシアニン誘導体
を濃度2 X 10’ mol/fLのクロロホルム溶
液にして水面上に滴下し単分子11gを水面上に展開す
る1表面圧を30dyne/c■に設定し、速度2 c
m/winで基板を上下して第2表に示す各層に累積し
た単分子累積膜(Y型膜)を各試料に作成した。
After submerging the substrate in water so that the substrate on which layer B was formed is perpendicular to the water surface, a solution of the vanadium phthalocyanine derivative in chloroform with a concentration of 2 x 10' mol/fL was dropped onto the water surface to obtain 11 g of single molecules. The surface pressure developed on the water surface is set to 30 dyne/c, and the speed is set to 2 c.
A monomolecular cumulative film (Y-type film) was prepared for each sample by moving the substrate up and down at a rate of m/win to accumulate the layers shown in Table 2.

(3)A層の形成方法 次に、前記(2)で各試料のガラス基板上に形成した光
吸収層の上に前述の単分子累積装置を用いて発色性化合
物であるクリスタルバイオレットラクトン誘導体の単分
子累積膜を形成した。
(3) Method for Forming Layer A Next, on the light absorption layer formed on the glass substrate of each sample in (2) above, a crystal violet lactone derivative, which is a color-forming compound, was deposited on the light absorption layer formed on the glass substrate of each sample using the single molecule accumulator described above. A monomolecular cumulative film was formed.

該クリスタルバイオレットラクトン誘導体の単分子累積
膜の形成方法は、下記のように行った。
The method for forming a monomolecular cumulative film of the crystal violet lactone derivative was performed as follows.

8層及び光吸収層を形成した基板が水面と垂直になるよ
うにして、基板をpH4の酸性液中に沈めた後、クリス
タルバイオレットラクトン誘導体を濃度2X10’腸o
1/41のクロロホルム溶液にして水面上に滴下し単分
子膜を水面上に展開する0表面圧を30dyne/am
に設定し、速度2 cm/winで基板を上下して第2
表に示す各層に累積した単分子累積膜(Y型M)を各試
料に作成した。
After submerging the substrate in an acidic solution of pH 4 so that the substrate on which the 8 layers and the light absorption layer were formed is perpendicular to the water surface, the crystal violet lactone derivative was added at a concentration of 2×10'
Make a 1/41 chloroform solution and drop it onto the water surface to spread a monomolecular film on the water surface at a surface pressure of 30 dyne/am.
and move the board up and down at a speed of 2 cm/win.
A monomolecular cumulative film (Y-type M) in each layer shown in the table was prepared for each sample.

(4)性能試験 上述の方法により製作された本発明に係る光記録素子と
比較例として従来の同様の構成(全てが単分子膜又はそ
の累積膜を使用しないで構成)に係る光ディスクを第5
図に示す情報記憶装置を用いて以下の記録条件下で記録
した後、読取り再生を行うことにより両者の性能比較を
行った。
(4) Performance test The optical recording element according to the present invention manufactured by the above-mentioned method and a conventional optical disk having a similar structure (all of which are constructed without using a monomolecular film or a cumulative film thereof) were used as a comparative example.
After recording under the following recording conditions using the information storage device shown in the figure, the performance of both was compared by reading and reproducing.

(記録条件) 半導体レーザ波長 830n層 レーザ出力  6〜9mW 記録周波数  5 MHz 光ディスクの回転数 1,800rp膳以上の条件下で
読み出しをレーザ出力1肩−で行い、信号/雑音比を求
めた結果を第2表に示す。
(Recording conditions) Semiconductor laser wavelength: 830n layer laser output: 6 to 9 mW Recording frequency: 5 MHz Optical disk rotation speed: 1,800 rpm or higher, reading was performed at a laser output of 1 -, and the signal/noise ratio was determined. Shown in Table 2.

第2表 註・・・零は比較例を示し、各層の形成は回転塗布法に
より行った。
Notes to Table 2: Zero indicates a comparative example, and each layer was formed by a spin coating method.

ftIJ2表の結果より、No、1(各層が単分子膜か
らなる場合)とNo、8とを比較すると、No、1の方
が信号/雑音比において顕著に優れることが認められる
。 No、1とNo、8はほぼ同じ膜厚であるが、性能
にこのような差異が生ずるのはNo、1の方がピンホー
ル等の欠陥が少ないためと思われる。同様に、No、2
〜No、5 (各層が単分子の累積膜からなる場合)と
No、7との比較では、No、2〜N085の方が信号
/雑音比において優れることが認められる。
From the results in the ftIJ2 table, when comparing No. 1 (when each layer is made of a monomolecular film) and No. 8, it is recognized that No. 1 is significantly superior in signal/noise ratio. No. 1 and No. 8 have almost the same film thickness, but this difference in performance appears to be because No. 1 has fewer defects such as pinholes than No. 1. Similarly, No. 2
Comparing No. 5 (when each layer is composed of a monomolecular cumulative film) and No. 7, it is recognized that No. 2 to No. 085 is superior in signal/noise ratio.

C発明の効果] 以上説明した様に本発明に係わる光記録素子はA層、B
5及び光吸収層の全てが単分子膜又はその累積膜からな
る層で構成されているので、以下に示すような優れた効
果がある。
C Effect of the invention] As explained above, the optical recording element according to the present invention has a layer A, a layer B
Since all of the light absorbing layer 5 and the light absorption layer are composed of a monomolecular film or a layer formed of a cumulative film thereof, there are excellent effects as shown below.

(1)従来の単分子膜又はその累積膜を使用していない
光記録素子と比較してb号/雑音比が高く、記録の信頼
性を向上させることができる。。
(1) Compared to an optical recording element that does not use a conventional monomolecular film or a cumulative film thereof, the b/noise ratio is higher, and the reliability of recording can be improved. .

(2)光記録素子のピンホール等の物理的欠陥を大幅に
減少させることができる。
(2) Physical defects such as pinholes in optical recording elements can be significantly reduced.

(3)従来の光記録素子と比べて、より高密度記録が可
能である。
(3) Higher density recording is possible than with conventional optical recording elements.

(4)光記録素子の大面積化が可能である。(4) It is possible to increase the area of the optical recording element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光記録素子の1例を示す概略構
成断面図、第2図(a)〜第2図(C)は従来の光記録
素子の記録プロセスを示す説明図、第3図は単分子累積
膜形成装置の概略構成断面図、第4図(a)〜第4図(
c)は単分子累積膜の作製工程図及び第5図は情報記憶
装置のブロック図である。
FIG. 1 is a schematic cross-sectional view showing an example of the optical recording element according to the present invention, FIGS. 2(a) to 2(C) are explanatory diagrams showing the recording process of a conventional optical recording element, and FIG. The figure is a schematic cross-sectional view of the monomolecular cumulative film forming apparatus, and Fig. 4(a) to Fig. 4(
c) is a manufacturing process diagram of a monomolecular cumulative film, and FIG. 5 is a block diagram of an information storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)通常無色ないし淡色の発色性化合物からなるA層
と、前記発色性化合物と接触して発色せしめる助色性化
合物からなるB層と、A層とB層との間に介在する光吸
収層とからなり、かつ (イ)前記A層は発色性化合物の単分子膜又はその累積
膜からなる層、 (ロ)前記B層は助色性化合物の単分子膜又はその累積
膜からなる層、 (ハ)前記光吸収層は光吸収性物質の単分子膜又はその
累積膜からなる層 から構成されることを特徴とする光記録素子。
(1) A layer consisting of a normally colorless or light-colored color-forming compound, a B layer consisting of an auxochrome compound that develops color when in contact with the color-forming compound, and light absorption interposed between the A layer and the B layer. (a) the A layer is a monomolecular film of a color-forming compound or a cumulative film thereof; and (b) the B layer is a monomolecular film of an auxochrome compound or a cumulative film thereof. (c) An optical recording element characterized in that the light absorption layer is composed of a monomolecular film of a light-absorbing substance or a layer consisting of a cumulative film thereof.
JP59159101A 1984-07-31 1984-07-31 Optical recording element Pending JPS6137473A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59159101A JPS6137473A (en) 1984-07-31 1984-07-31 Optical recording element
US07/233,902 US4933221A (en) 1984-07-31 1988-08-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159101A JPS6137473A (en) 1984-07-31 1984-07-31 Optical recording element

Publications (1)

Publication Number Publication Date
JPS6137473A true JPS6137473A (en) 1986-02-22

Family

ID=15686256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159101A Pending JPS6137473A (en) 1984-07-31 1984-07-31 Optical recording element

Country Status (1)

Country Link
JP (1) JPS6137473A (en)

Similar Documents

Publication Publication Date Title
JPS58224793A (en) Optical recording medium
JPS60228194A (en) Optical recording element
US4933221A (en) Optical recording device
US5316899A (en) Optical recording medium
JPS6137473A (en) Optical recording element
JPS6163489A (en) Photo-recording element
JPS6137478A (en) Optical recording element
JPS6163491A (en) Photo-recording element
JPS6163482A (en) Optical recording element
JPS6137482A (en) Optical recording element
JPS6137479A (en) Optical recording element
JPS6137475A (en) Optical recording element
JPS6137476A (en) Optical recording element
JPS6137477A (en) Optical recording element
JPS6137483A (en) Optical recording element
JPH0477969B2 (en)
JPS6137484A (en) Optical recording element
JPS6137488A (en) Optical recording element
JPS6137474A (en) Optical recording element
JPS6163484A (en) Optical recording element
JPS6163939A (en) Information storage device
JPS6163490A (en) Photo-recording element
JPS6163478A (en) Optical recording element
JPS6163480A (en) Optical recording element
JPS6137486A (en) Optical recording element